建筑内部热水供应系统
高层建筑热水供应系统

任务5、高层建筑热水供应系统
高层建筑热水供应系统的供水方式 知识点 供 水 方 式 的 认 识 高层建筑热水供应系统的分区供水方式主要有集中式和分散式两种。
集 各区热水配水循环管网也自成系统,但各区的加热设备
中 式
和循环水泵分散设置在各区的设备层中。
分
区
供
水
1. 供水安全可靠,且水加热器按各区水压选用,
任务5、高层建筑热水供应系统
项目四、热水供应系统
学练凝
任务5、高层建筑热水供应系统
思考与讨论 ● 结合4.1的知识,思考传统的供水方式是否ቤተ መጻሕፍቲ ባይዱ合高层热水供应。 ● 高层供水又有哪些特点?针对这些特点,对于高层供水又有哪些要求?
项目四、热水供应系统 思
练凝
高层建筑热水供应系统的技术要求
● 高层建筑具有层数多、建筑高度高、热水用水点 多等特点,如果采用一般建筑的各种热水供水方 式,会使热水管网系统中的压力过大,产生配水 管网始末端压差悬殊、配水均衡性难以控制等一 系列问题。
方 优点
式
承压均衡且回水立管短。
分
1. 设备分散设置不但要占用一定的建筑面积
散 式
缺点 2. 维修管理也不方便
分 区
3. 且热媒管线较长。
供
水
方
式
高层建筑分散式热水供水方式
项目四、热水供应系统 思
练凝
任务5、高层建筑热水供应系统
高层建筑热水供应系统的管网布置与敷设
热水给水和生活给水的异同——建筑设备

汽水混合加热器
立 式 热 水 锅 炉
间接热水加热器
• (1)容积式热水加热器:容积 式加热器贮存一定量的热水量, 用以供应和调节热水用量的变 化,使供水稳定均匀,它具有 加热器和热水箱的双重作用。 • (2)半容积式加热器:一般只 贮存10~20分钟存水量。体积缩 小,节省占地面积,运行维护 工作方便,安全可靠。 • (3)快速热水器:水—水快速 加热器和汽—水快速加热器。 • (4)半即热式热水加热器:此 种加热器是有限量贮水的加热 器,其贮水量很小,加热面积 大,体积小,占地面积很小, 是一种很好的加热设备。
热水系统主要由3部 分组成:
1
水加热器
2
热水管网
3
附属设备
热水供应系统的分类
• • • 1.局部热水供应系统 特点:供水范围小,热水分散制备,配水点较少,且和热源较近,热水管路 短,热损失小。 适用:适用于使用要求不高,用水点少且分散的建筑。 热源:宜采用蒸汽、煤气、炉灶余热或太阳能等。 2.集中热水供应系统 特点:供水范围大,热水集中制备,管道输送到个配水点。 适用:适用于使用要求高,耗热量大,用水点多且分布较密集的建筑。 热源:应首先利用工业余热、废热、地热和太阳热。热水的加热,贮存及输 送均集中于锅炉房。 3.区域热水供应系统 特点:供水规模大、设备集中、热效高、使用方便、对环境污染小 适用:适用于使用要求不高,用水点少且分散的建筑。 热源:建设小区锅炉房集中供应热水,或利用城市热网供水
热水给水和生活给水的 异同
建筑内部给水系统概述
热水供应也属于给水,与冷水供应的区别 是水温,必须满足用水点对水温、水量的要, 因此热水系统除了水的系统:管道、用水器具 等,还有“热”的供应,热源、加热系统等等。
建筑给水系统的分类

建筑给水系统的分类建筑给水系统是指在建筑物内部,为满足生活、生产和消防等需要而设置的供水系统。
根据其用途和特点,可以将建筑给水系统分为以下几类:1. 生活用水系统生活用水系统是指供应住宅、公共场所和办公室等区域的饮用、洗浴、厨房和卫生间等生活用水的系统。
其主要设备包括自来水进口管道、净化器、储水器、热水器、分配管道和终端设备等。
2. 生产用水系统生产用水系统是指供应工业企业或商业场所使用的制冷剂循环冷却、锅炉循环冷却、纯化洗涤以及其他工艺需求的供水系统。
其主要设备包括进口管道、储罐或储槽、循环泵和分配管道等。
3. 消防供水系统消防供水系统是指为满足火灾扑救需要而设置的供应消防设施(如喷淋头)所需的高压大流量供水系统。
其主要设备包括进口管道、室外消火栓箱或室内消火栓箱(含开放式与封闭式消火栓)、水泵、水箱、管道和终端设备等。
4. 中水回用系统中水回用系统是指将生活污水经过处理后,再利用于灌溉、冲厕和清洗等非饮用领域的供水系统。
其主要设备包括进口管道、处理设施(如生物反应器、沉淀池和消毒装置等)、储存设施(如储槽或储罐)以及分配管道和终端设备等。
5. 雨水收集利用系统雨水收集利用系统是指将建筑物屋面的雨水通过收集管道输送到储存设施中,再利用于灌溉、冲厕和清洗等非饮用领域的供水系统。
其主要设备包括收集管道、储存设施(如地下贮槽或屋顶贮槽)、过滤器以及分配管道和终端设备等。
以上就是建筑给水系统的分类,不同类型的给水系统在设计时需要考虑不同的因素,如供应量、流量、质量要求以及安全性等。
在实际工程中,还需要根据当地法规和标准进行设计,并且进行定期检查和维护,确保系统的正常运行和安全使用。
第3章建筑热水供应详解

一、分类、组成、供水方式
1、管网压力工况不同,可分为: 开式、闭式供水方式。
2、加热冷水的方式不同,可分为: 直接加热、间接加热。
3、管网设置循环管道的不同,可分为: 全循环、半循环、不循环。
4、系统中循环动力不同,可分为: 机械循环、自然循环。
5、水平干管位置不同,可分为: 上行下给式、下行上给式。
第三章 建筑热水供应
建筑内部热水供应系统概述
热水供应也属于给水,与冷水供应的区 别是水温,必须满足用水点对水温、水量的 要求,因此热水系统除了水的系统:管道、 用水器具等,还有“热”的供应,热源、加 热系统等。
一、分类、组成、供水方式
建筑内的热水供应系统按照热水供应 范围的大小,可分为以下三种: ❖1、局部热水供应系统; ❖2、集中热水供应系统; ❖3、区域热水供应系统。
热水供水方式
❖ 4、按热水管网运行方式分类 ❖ (1)全天循环供应方式 ❖ (2)定时循环供应方式 ❖ 5、按热水管网是否设置循环管网分类 ❖ (1)全循环热水供应方式 ❖ (2)半循环热水供应方式 ❖ (3)无循环热水供应方式
热水供应要求
❖ 1、热水水质 ❖ 2、用水定额 ❖ 3、热水水温 ❖ (1)热水使用温度 ❖ (2)热水供应温度 ❖ (3)热冷水的比例计算
热水管网的布置与敷设
1、热水管网的布置 布置形式:上行下给式、下行上给式。 2、热水管网的敷设 热水管网的敷设可分为明装和暗装两种形式。 3、热水管道保温 热水管道和设备在保温之前,应进行防腐蚀处理。
耗热量、热水量和热媒耗量的计算及加热设备
❖ 1、耗热量计算 ❖ (1)全日供应热水的住宅、别墅、医院、疗养院、
加热设备
❖ 1、太阳能热水器 ❖ 太阳能热水器是将太阳能转换成热能并将水加热的装
学校建筑集中热水供应系统方案

学校建筑集中热水供应系统方案摘要:近年来,随着大城市实施的人才引进、入户政策以及中考政策,大量的人口涌入,而高密度的城市建设,用地紧张,严重限制了高中学位供给。
因此,学校建筑出现了高密度,高配套、大规模的特点。
其中学校建筑配套的增多及标准的提高,对热水供应提出了更为严格的要求。
学校这样一个人口密集度场所,必须合理选择建筑集中热水供应系统方案,以保证师生热水供应的充足和稳定,提升校园生活品质。
本文主要介绍学校建筑热水供应系统的特点,介绍几种典型的热水供应系统方案,再以深圳某学校热水设计为例,对如何保证热水效果进行阐述,以期为其他学校建筑集中热水供应系统设计提供参考。
关键词:学校建筑;集中热水;热水系统方案集中热水供应系统是学校建筑给排水设计中非常关键的一部分,热水供应系统设计是否合理,直接影响到师生的用水体验。
尤其是在如今社会经济高速发展的时代下,人们对学校建筑热水供应的经济性、舒适性、安全性与稳定性等均提出了更高的要求。
为此,在学校建筑给排水设计过程中,设计者必须立足于建筑工程项目的具体情况与建设要求,合理选择热源类型与不同系统管网循环方式,并做好换热器、平衡阀、回水循环泵、恒温混水阀等选型工作,从而有效保证热水使用效果。
1 集中热水供应系统的特征对于学校建筑给排水工程而言,不同用水点对热水的需求各不相同,其中教师宿舍要求全天不间断热水供水,宜采用全日制热水供水系统,需依据最大小时热水用水量对耗热量进行计算;对于浴室、学生宿舍、食堂等场所,则宜采用定时集中热水系统,需依据热水用水卫生器具数量通过设计秒流量对耗热量进行计算。
通常情况下,学校建筑的供热楼栋的位置相对分散,且供热距离比较远,所以存在多栋建筑集中热水系统的热水循环、集中供热与分散供热等系统选择的问题。
在集中热水供应系统设计过程中,需要用到热水锅炉、太阳能、空气源热泵等多热源,还需达到绿色节能的标准,这就使得系统设计更为复杂[1]。
另外,宿舍热水需求量占比较大,用水时间集中,需要在屋顶设置开式热水箱,这就要求合理对重力供水与加压供水进行分区,从而增加了热水系统设计的复杂性。
热水供应系统的分类、组成和供水方式

● 包括:蒸汽、热水的控制附件及管道的连接附件,如温度自动调节器、疏水器、减压阀、 安全阀、自动排气阀、膨胀罐、管道伸缩器、闸阀、水嘴等。
温度自动调节器
疏水器
项目四、热水供应系统 思
学
小练习
凝
任务1、热水供应系统的分类、组成和供水方式
参考答案:
项目四、热水供应系统 思
练凝
任务1、热水供应系统的分类、组成和供水方式
按热水配水管网 水平干管的位置
项目四、热水供应系统 思
练凝
任务1、热水供应系统的分类、组成和供水方式
热水供应系统的供水方式
按热水加热方式
直接加热
间接加热
● 直接加热也称一次换热,是利用以燃气、燃油、燃煤为燃料的热水锅炉,
按热水管网的 压力工况
把冷水直接加热到所需热水温度,或者是将蒸汽或高温水通过穿孔管或喷 射器直接通入冷水混合制备热水。
集中维护管理;
2. 加热设备热效率较高,热水成本
集 中 热 水 供
优点
较低; 3. 各热水使用场所不必设置加热装
置,占用总建筑面积较少; 4. 使用较为方便舒适。
热水用量较大,用水点比较集
中的建筑,如标准较高的居住
适用范围
建筑、旅馆、公共浴室、医院、 疗养院、体育馆、游泳池、大
应 系 统
1. 设备、系统较复杂,建筑投资较 大;
按热水管网 采用的循环动力
按热水配水管网 水平干管的位置
适用范围
要求供水稳定、安全,噪声要求低的旅馆、住宅、医院、办公楼等 建筑。
项目四、热水供应系统 思
练凝
任务1、热水供应系统的分类、组成和供水方式
热水供应系统的供水方式
按热水加热方式
第5章 热水计算

t t q DLK 1 t 2
c z s j
t t t f
z c
t
△t—配水管网中的面积比温降,℃/㎡; △T—配水管网起点和终点的温差,一般△T=5~15℃; F—计算管路配水管网的总外表面积,㎡; ∑f—计算管段的散热面积,㎡,可按表9-15计算。
Q Q Q
r L
h
Q t t Q t t
r h h r
L
L
2.公式(9-1)和(9-2)仅适用于全日集中热水供应系统热水量的计算, 不适用于定时热水供应系统热水量的计算。一般情况下,定时热 水供应时,由于使用时间集中,用水频繁,热水用水量会比全日 供水量有所增加,可参照当地同类型建筑用水变化情况确定。 3.一般小时热水量在初步设计阶段或已知人数、床位数等用水计算 单位数时,采用公式(9-1)计算;在施工图设计阶段或已知卫生器 具数目时,采用公式(9-2)计算。
T F
机械循环管网的计算
2)计算配水管网总的热损失 Q q
n s i 1 s
也可按设计小时耗热量的5%~10%来估算 3)计算总循环流量
Q q C T
s x B
Qs—配水管网总的热损失,W; qx一全日热水供应系统的总循环流量,L/S;
△T—配水管网起点和终点的温差。
机械循环管网的计算
9-4 热水管网的水力计算
目的:计算第一循环管网(热媒管网)的管径和相应的水头损失;计算 第二循环管网(配水管网和回水管网)的设计秒流量、循环流量、 管径、水头损失;确定循环方式,选择热水管网所需的各种设 备,如循环水泵、疏水器、膨胀设施等。 一、第一循环管网的水力计算 1. 热媒为热水:以热水为热媒时,热媒流量 Gm 按公式 (9-7) 计算。 热媒循环管路中的配、回水管道,其管径应根据热媒流量控制管 中流速不大于1.2m/s,每m管长的沿程水头损失在5OPa~1OOPa范 围内,由 Gm 查附录 9-1 来确定,并据此计算管路的总水头损失 Hh 。 当锅炉与水加热器或贮水器连接时,热媒管网的热水自然循环压 力值Hzr按下式计算: Hzr=lO△h(ρ 1-ρ 2)
建筑物的太阳能热水供应系统设计

建筑物的太阳能热水供应系统设计在当今世界,人们对于环境保护和可再生能源的需求越来越迫切。
太阳能作为一种清洁、可再生的能源来源,备受关注。
建筑物的太阳能热水供应系统设计是利用太阳能将阳光转化为热能,提供热水给建筑使用。
本文将详细介绍建筑物太阳能热水供应系统的设计原理、主要构成以及设计要点。
一、设计原理建筑物的太阳能热水供应系统的设计原理是基于太阳能热水器的工作原理。
太阳能热水器系统包括太阳能集热器、热水储存装置和管道输送系统。
太阳能集热器通过吸收太阳辐射能将其转化为热能,传递给热水储存装置中的水,以提供热水给建筑物使用。
二、主要构成1. 太阳能集热器:太阳能集热器是太阳能热水系统的核心部件,其作用是将太阳光转化为热能。
太阳能集热器一般由玻璃罩板、吸热板和背板构成。
玻璃罩板用于捕获太阳光,并形成温室效应,提高集热效率。
吸热板通过热传导将太阳能转化为热能。
2. 热水储存装置:热水储存装置用来储存太阳能转化的热能,以满足建筑物的热水需求。
热水储存装置一般由水箱和保温层构成。
水箱用来储存热水,保温层则用来减少热能的损失,提高系统的效率。
3. 管道输送系统:管道输送系统负责将热水从太阳能集热器传输到热水储存装置或建筑物的热水供应点。
输送系统包括进水管道、出水管道、水泵和控制阀。
水泵用来增加水流速度,保证热能的传输效率。
控制阀则用来调整热水的流量和温度,以满足不同需求。
三、设计要点1. 太阳能集热器的选型:根据建筑物的用途和热水需求,选择适合的太阳能集热器。
常见的太阳能集热器有平板式太阳能集热器和真空管式太阳能集热器。
平板式太阳能集热器适用于低温热水需求,而真空管式太阳能集热器适用于高温热水需求。
2. 热水储存装置的设计:根据建筑物的热水需求和太阳能集热器的产热能力,确定热水储存装置的大小。
同时,保温层的设计要做好,以减少热能的损失。
保温层材料应选择导热系数小的材料,并确保保温层的完整性。
3. 管道输送系统的设计:根据建筑物的结构和热水供应点的位置,设计合理的管道布局和管道长度,尽量减少水流阻力和热能损失。