人教版九年级数学23.1 图形的旋转(教案)

合集下载

人教版九年级上册23.1图形的旋转23.1图形的旋转一课时课程设计

人教版九年级上册23.1图形的旋转23.1图形的旋转一课时课程设计

人教版九年级上册23.1图形的旋转一课时课程设计
一、教学目标
1.了解图形的旋转概念及相关术语
2.学习图形旋转的基本方法
3.能够应用图形旋转掌握一些图形变换技巧
二、教学重点和难点
教学重点
1.了解旋转的基本概念
2.理解图形旋转的基本方法
3.掌握一些图形变换的技巧
教学难点
1.看出旋转变换前后图形的某些性质是否保持不变
2.熟练使用旋转公式进行计算
三、教学过程
时间教学
步骤教学内容教学方

5
min
导入显示图片,介绍旋转的概念讲授
10
min
讲解介绍旋转的规则,如旋转中心、旋转角度等讲授
时间教学
步骤教学内容教学方

25 min 练习让学生自己尝试旋转操作,将图形旋转90
度,180度和270度
实践,
互动
10 min 解析分享学生中做得较好的练习,介绍旋转的应

分享,
讲授
10 min 拓展让学生自由发挥,将旋转应用到实际生活
中,例如旋转木马和旋转门
实践,
互动
四、教学评估
•能够解释旋转基本概念且理解旋转的规则
•掌握旋转公式进行计算,并能够应用到实际问题中
•能够灵活运用旋转技巧进行一些图形变换
五、教学资源
•人教版九年级数学上册课本
•相关课件、图表等辅助资料
六、教学建议
本课程建议采用互动式教学方式,允许学生在教师讲解后自主练习,通过互相分享和交流促进学习进步。

同时,还可以将旋转这一图形变
换方法应用到实际问题中,如家具的模拟设计等,从而加深学生对图
形旋转的理解和掌握程度。

数学:23.1图形的旋转(3个课时)教案(人教新课标九年级上)

数学:23.1图形的旋转(3个课时)教案(人教新课标九年级上)

课题:23.1图形的旋转一、教学目标1.感知图形的旋转,知道什么是图形的旋转、旋转中心和旋转角,会指出实例中的旋转中心和旋转角.2.经历用硬纸板画旋转后图形的过程,加深对图形旋转的感知,发展空间观念.二、教学重点和难点1.重点:图形的旋转概念.2.难点:图形的旋转概念.三、教学过程(一)创设情境,导入新课师:在日常生活中我们经常能看到各种美丽的图案,这些美丽的图案是怎么设计出来的?让我们仔细来看一看.(师出示下面的图案)(图在七年级下册P27)师:(指图案)大家仔细看一看,这个图案是怎么设计的?生:……(让几名同学发表看法)师:(指准图案)这是一个鸽子,把这个鸽子向右平移,得到这个鸽子,再向右平移得到这个鸽子,再向右平移得到这个鸽子,这样就得到了这一排鸽子;同样,我们把这个鸽子向下平移,得到这个鸽子,再向右平移得到这个鸽子,这样平移下去,又得到了这一排鸽子;同样方法可以得到第三排鸽子.可见这个图案是用一个鸽子经过平移得到的(边讲边板书:平移).师:我们再来看一个图案.(师出示下面的图案)(图在八年级上册P48)师:(指图案)大家看一看,这个图案又是怎么设计的?生:……(让几名同学发表看法)师:这个图案可以看成是把(指准)这个图平移到这里,再平移到这里,再平移到这里,最后形成了这个图案.这是同学们都看到的,但这个图案的形成还可以换一种方式来看,怎么换一种方式来看?(稍停)师:(指准)作这个图关于这条直线的轴对称图形,(指准)得到这个图形;再作这个图关于这条直线的轴对称图形,(指准)得到这个图形;再作这个图关于这条直线的轴对称图形,(指准)得到这个图形.这样作下去,就形成了这个图案.可见这个图案是(指准)这个图经过反复作轴对称图形而形成的(边讲边板书:轴对称).师:下面我们再来看一个图案.(师出示下面的图案)(图在九年级上册P73)师:(指图案)大家看,这个图案又是怎么设计的?生:……(让几名同学发表看法)(这个图案可以看成是利用轴对称而形成,也可以看成是利用旋转而形成,如果学生没有提出轴对称,教师也不必提)师:(指准图案)这是一片花瓣,把这片花瓣这样旋转得到这片花瓣,再这样旋转得到这片花瓣,最后形成了花的图案.可见这个图案是用一片花瓣经过旋转得到的(边讲边板书:旋转)师:看了这三个图案,我们可以回答开始时的那个问题:美丽的图案是怎么设计出来的?谁来回答这个问题?生:……(让几名同学回答)师:(指准板书)美丽的图案是利用平移、轴对称、旋转设计出来的.师:平移、轴对称、旋转是图形变换的三种方式,平移我们在初一的时候已经学过,轴对称我们在初二的时候已经学过,从本节课开始我们要学习旋转.(板书课题:23.1图形的旋转)(二)尝试指导,讲授新课师:什么是图形的旋转?(边讲边指准图案)所谓图形的旋转就是把(要指准一片花瓣)一个图形绕着某一点转动一个角度.这个点0(边讲边在图中标0)叫做旋转中心(板书:点0叫做旋转中心),转动的角(边讲边在图中标角)叫做旋转角(板书:转动的角叫做旋转角).师:(指准图案)大家算一算,这个旋转角等于多少?(让生算一会儿师再讲)这是周角,旋转角是周角的五分之一,所以旋转角是360°÷5=72°.师:图形上的点P(边讲边在图中标点P)经过旋转变成P′(边讲边在图中标P′),点P与点P′叫做这个旋转的对应点(板书:点P与点P′叫做这个旋转的对应点).(标图后,原图成下图)(三)试探练习,回授调节1.填空:如图,钟表的时针在不停地旋转,从3时到5时,时针的旋转中心是点,旋转角等于°,点B的对应点是点 .2.填空:如图,杠杆绕支点转动撬起重物,杠杆的旋转中心是点,旋转角是∠,点A的对应点是点 .3.如图,扎西坐在旋转的秋千上,请在图中画出点A,B,C的对应点A′,B′,C′.(四)尝试指导,讲授新课师:前面我们学习了图形旋转的概念,下面我们要动手画一画旋转图形.师:怎么画旋转图形?(稍停)画旋转图形有一个很好的办法.师:(演示挖有三角形洞的硬纸板)这是一块硬纸板,里面挖了一个三角形.利用硬纸板先画一个三角形(边讲边画,画好不要动),现在我们以这个顶点为旋转中心旋转(边讲边旋转),好,就转到这里,再画一个三角形(边讲边画,然后移开硬纸板,画好的图大致如下)师:(指准图)这个三角形经过旋转得到了这个三角形,点O是旋转中心(边讲边在图中标O),点A的对应点是点A′(边讲边在图中标A,A′),点B的对应点是点B′(边讲边在图中标B,B′).师:(指准图)OA转到OA′,可见∠AOA′等于旋转角(边讲边标角).(标后原图成下图)A BA/师:(指准图)刚才我们画的旋转图形是以顶点为旋转中心,如果我们以三角形外的一点为旋转中心,旋转图形又是怎么样的呢?师:(演示挖有三角形洞的硬纸板)和刚才一样,利用硬纸板先画一个三角形(边讲边画,画好不要动),现在我们以三角形外的一点为旋转中心旋转(硬纸板上要挖一个小洞为旋转中心,并用粉笔标明位置,边讲边旋转),好,就转到这里,再画一个三角形(边讲边画,然后移开硬纸板,画好的图大致如下).师:(指准图)这个三角形经过旋转得到这个三角形,点O是旋转中心(边讲边在图中标O),点A的对应点是点A′(边讲边在图中标A,A′),点B的对应点是点B′(边讲边在图中标B,B′),点C的对应点是点C′(边讲边在图中标C,C′).师:(指图)在这个三角形的旋转中,哪个角等于旋转角?(让生思考一会儿)师:(用虚线连接OA,OA′,并指准)OA转到OA′,可见∠AOA′等于旋转角(边讲边标角).(标后原图成下图)OC/B/A/CB A(五)试探练习,回授调节4.利用挖有一个三角形洞的硬纸板画出三角形的旋转图形,并在图中用字母标出旋转中心、对应点和旋转角.(要求学生在课前做好挖有一个三角形的硬纸板)(六)归纳小结,布置作业师:本节课我们学习了图形旋转的概念,什么是图形的旋转?(指准旋转图案)把一个图形绕着某一点O转动一个角度,就叫做图形的旋转,点O叫做旋转中心,转动的角叫做旋转角.图形上的点P经过旋转变为点P′,点P与点P′叫做对应点.(作业:P57练习2.P60习题6)四、板书设计23.1图形的旋转平移图案平移旋转图案旋转点O叫做旋转中心旋转图形一轴对称图案轴对称转动的角叫做旋转角旋转图形二点P与点P′叫做对应点课题:23.1图形的旋转(第2课时)一、教学目标1.经历探索过程,知道图形旋转的性质,能对性质作简单的运用.2.发展空间观念,培养分析、归纳、抽象、概括能力.二、教学重点和难点1.重点:图形的旋转性质.2.难点:探索图形的旋转性质.三、教学过程(一)基本训练,巩固旧知1.填空:把一个平面图形绕着平面内某一点O转动一个角度,就叫做图形的旋转,点O叫做旋转,转动的角叫做旋转 .如果图形上的点P经过旋转变为点P′,A那么这两个点叫做旋转的 .EB2.填空:(1)如图,△ABC 绕点A 旋转得到△ADE ,旋转中心 是点 ,点B 的对应点是点 ,点C 的对应点是点 ,∠ 等于 于旋转角;(2)如图,△ABC 绕点O 旋 转得到△DEF ,旋转中心是 点 ,点A 的对应点是 点 ,点B 的对应点是 点 ,点C 的对应点是 点 ,∠ 等于 于旋转角.(二)创设情境,导入新课师:(板书课题:23.1图形的旋转)上节课我们学习了图形旋转的概念,本节课我们要学习什么?本节课我们要学习图形旋转的性质.让我们先来看一个三角形的旋转图形.(三)尝试指导,讲授新课师:(演示挖有三角形的硬纸板)和上节课所做的一样,利用硬纸板先画一个三角形(边讲边画,画好不要动),现在我们以三角形外的一点为旋转中心旋转(边讲边旋转),好,就旋转到这里,再画一个三角形(边讲边画,然后移开硬纸板).师:(指准图)这个三角形经过旋转得到了这个三角形,点O 是旋转中心(边讲边在图中标O ),点A 的对应点是点A ′(边讲边在图中标A ,A ′),点B 的对应点是点B ′(边讲边在图中标B ,B ′),点C 的对应点是点C ′(边讲边在图中标C ,C ′).(旋转图形如下图所示)O .FEDAB CO .C /A /B /AB C师:(指图)请大家仔细观察这个图,从这个旋转图形,你发现图形旋转有什么性质?(让生观察一会儿)师:谁来说说你的发现?生:……(让几名学生发表自己的看法,如果学生说不出什么,师继续教学)师:(指准图)这是旋转前的图形,这是旋转后的图形,显然这两个图形是全等的.从这一事实我们得出图形旋转的一个性质:旋转前后的图形全等(板书:旋转前后的图形全等).师:旋转前后的图形全等,这是图形旋转的一个性质,下面我们来看第二个性质.师:(用虚线连接OA,OA′,并指准图)OA转到了OA′,线段OA与OA′的长短有什么关系?生:(齐答)相等.师:(用虚线连接OB,OB′,并指准图)OB转到了OB′,线段OB与OB′的长短有什么关系?生:(齐答)相等.师:(用虚线连接OC,OC′,并指准图)同样,OC也等于OC′.师:(指准图)OA=OA′,OB=OB′,OC=OC′,这说明什么?谁能用自己的话来概括这一事实?生:……(多让几名学生发表自己的看法,鼓励学生用自己的语言概括)师:(指准图)OA=OA′说明对应点A,A′到旋转中心的距离相等,OB=OB′说明对应点B,B′到旋转中心的距离也相等,OC=OC′说明对应点C,C′到旋转中心的距离也相等.可见,对应点到旋转中心的距离相等(板书:对应点到旋转中心的距离相等).师:(指板书)这是图形旋转的第二个性质,下面我们来看第三个性质.师:(指准图)△ABC绕着点O转到△A′B′C′,在这个旋转中,哪个角等于旋转角?生:∠AOA′.师:(指准图)OA转到OA′,可见∠AOA′等于旋转角(边讲边在图中标角).还有没有别的角等于旋转角?生:∠BOB ′.师:(指准图)OB 转到OB ′,可见∠BOB ′也等于旋转角(边讲边在图中标角).还有没有别的角等于旋转角?生:∠COC ′.(生答师在图中标角)师:(指准图)∠AOA ′,∠BOB ′,∠COC ′都等于旋转角,这说明什么?(稍停)这说明对应点与旋转中心所连线段的夹角等于旋转角(板书:对应点与旋转中心所连线段的夹角等于旋转角).师:(指板书)这就是图形旋转的第三个性质.师:下面大家结合图形把这三个性质默读几遍,看看你对这三个性质的意思理解了吗?(生默读)师:知道了图形旋转的性质,下面请大家利用性质来做两个练习. (四)试探练习,回授调节3.利用“对应点与旋转中心所连线段的夹角等于旋转角”,画出下图中的旋转角,并用量角器量出旋转角的度数.4.如图,四边形ABCD 是正方形,以点A 为中心,把△ADE 顺时针旋转90°,利用图形旋转的性质,画出旋转后的图形.(先让生做4题,然后师出示旋转后的图形,并利用性质解释点D 转到了点B ,点E 转到了点F )(五)归纳小结,布置作业ED CB A师:本节课我们学习了图形旋转的性质,请大家把这三个性质一起来读一遍.(生读)(作业:P 59习题3.4.) 四、板书设计 23.1图形的旋转 旋转前后的图形全等三角形旋转图 对应点到旋转中心的距离相等. 对应点与旋转中心所连……课题:23.1图形的旋转(第3课时)一、教学目标1.巩固图形旋转的性质,会根据性质画旋转后的图形.2.发展空间观念,培养直观想象能力和画图能力. 二、教学重点和难点1.重点:根据性质画旋转后的图形.2.难点:根据性质画旋转后的图形. 三、教学过程(一)基本训练,巩固旧知 1.填空:图形旋转的性质是: (1)旋转前后的图形 ; (2)对应点到旋转中心的距离 ;(3)对应点与旋转中心所连线段的夹角等于 . (二)创设情境,导入新课 (师出示下面的板书)OA /B /C /A C B旋转前后的图形全等.对应点到旋转中心的距离相等.对应点与旋转中心所连线段的夹角等于旋转角.师:(指准图)上节课我们利用这个图归纳出来图形旋转的三个性质.师:(指准图)△ABC经过旋转得到△A′B′C′,显然△ABC与△A′B′C′全等,于是我们有了第一个性质:旋转前后图形全等.师:(指准图)△ABC转到△A′B′C′,显然OA=OA′,OB=OB′,OC=OC′,于是我们归纳出第二个性质:对应点到旋转中心的距离相等.师:(指准图)OA转到OA′,OB转到OB′,OC转到OC′,所以∠AOA′,∠BOB′,∠COC′都等于旋转角,于是我们发现第三个性质:对应点与旋转中心所连线段的夹角等于旋转角.师:(指板书)有了图形旋转的性质,这节课我们就利用这些性质来解决问题,解决什么问题呢?请大家来看一个例题.(三)尝试指导,讲授新课(师出示例题)例任意画一个△ABC,作下列旋转:(1)以A为中心,把这个三角形顺时针旋转50°;(2)以三角形外任取一点O为中心,把这个三角形逆时针旋转90°.师:(指准例题)例题需要我们做什么?任意画一个△ABC(边讲边画△ABC),以点A为中心,把这个三角形顺时针旋转50°,画出旋转后的图形.师:(指准△ABC)要画△ABC旋转后的图形,关键是什么?(稍停)关键是要找到点A、点B、点C旋转后的位置,因为是以点A为中心旋转,所以旋转后点A没动,那点B、点C旋转后在哪里?大家自己先画个草图找一找.(生画图,师巡视)师:下面我们一起来画图.师:利用量角器在AB的顺时针方向画∠BAB′=50°,并且使AB′=AB(边讲边画);再在AC的顺时针方向画∠CAC′=50°,并且使AC′=AC(边讲边画);连接B′C′(边讲边画).师:(指准图)△AB′C′就是以A为中心,△ABC顺时针旋转50°得到的图形.(画好的图形如下所示)师:(指准例题)下面我们来看第(2)小题,(2)小题要我们做什么?任意画一个△ABC (边讲边画△ABC ),以三角形外任取一点O 为中心(边讲边画点O ),把这个三角形逆时针旋转90°,画出旋转后的图形.师:(指准△ABC )要画出△ABC 旋转后的图形,和(1)小题一样,关键是要找到点A 、点B 、点C 旋转后的位置,也就是要找到对应点A ′、点B ′、点C ′的位置. 点A ′、点B ′、点C ′在哪里?大家画个草图找一找.(生画图,师巡视)师:下面我们一起来画.师:先用虚线连接OA (边讲边画),利用三角尺在OA 的逆时针方向画∠AOA ′=90°,并且使OA ′=OA (边讲边画),点A ′就是点A 的对应点.师:用同样的方法画点B ′,先用虚线连接OB (边讲边画),利用三角尺在OB 的逆时针方向画∠BOB ′=90°,并且使OB ′=OB (边讲边画),点B ′就是点B 的对应点.师:用同样的方法画出点C ′(画出点C ′).师:连接A ′B ′,B ′C ′,C ′A ′(边讲边画),(指准图)△A ′B ′C ′就是以O 为中心,△ABC 逆时针旋转90°得到的图形.(画好的图如下所示)B C A OC /A /B /B /C /A CB(四)试探练习,回授调节2.如图,以点O 为中心,把点P 顺时针旋转45°.3.如图,以点O 为中心,把线段AB 逆时针旋转90°.4.如图,以点O 为中心,把△ABC 顺时针旋转120°.5.如图,以点B 为中心,把△ABC 旋转180°.(五)归纳小结,布置作业 B AC B A C.O B O ..O P .师:本节课我们学习了画旋转后的图形,画旋转后的图形关键是要找到对应点.(指准例(2)题图)譬如,要画△ABC旋转后的图形,关键是要找到对应点A′,B′,C′.怎么找对应点A′,B′,C′?(稍停)要利用图形旋转的性质来找.根据性质,OA=OA′,∠AOA′等于旋转角90°,这样我们找到了对应点A′,用同样方法可以找到B′,C′.师:总之,画旋转后的图形,关键是找对应点,而找对应点的根据是图形旋转的性质.(作业:P59习题1.5.)四、板书设计三角形旋转图例旋转前后的图形全等对应点到旋转中心距离相等对应点与旋转中心所连……。

人教版数学九年级上册23.1.1《图形的旋转》教学设计

人教版数学九年级上册23.1.1《图形的旋转》教学设计

人教版数学九年级上册23.1.1《图形的旋转》教学设计一. 教材分析《图形的旋转》是人民教育出版社九年级上册数学教材第五章第二节的内容。

本节内容是在学生已经掌握了图形的平移、缩放、轴对称等基本变换的基础上进行学习的,是进一步培养学生的空间想象能力和抽象思维能力的重要内容。

图形旋转的概念和性质在日常生活和生产实践中有着广泛的应用,如地图的绘制、机械设计等。

通过本节课的学习,让学生了解图形的旋转概念,理解旋转的性质,学会用旋转来解决实际问题。

二. 学情分析九年级的学生已经具备了一定的空间想象能力和抽象思维能力,对于图形的平移、缩放、轴对称等基本变换已经有了一定的了解。

但是,学生在学习过程中可能对旋转的概念和性质理解不深,不易掌握旋转的计算方法。

因此,在教学过程中,教师需要通过大量的实例和练习,帮助学生理解和掌握旋转的相关知识。

三. 教学目标1.知识与技能:使学生掌握图形旋转的概念,理解旋转的性质,学会用旋转来解决实际问题。

2.过程与方法:通过观察、操作、猜想、验证等方法,培养学生的空间想象能力和抽象思维能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的合作意识和创新精神。

四. 教学重难点1.教学重点:图形旋转的概念,旋转的性质。

2.教学难点:旋转的计算方法,旋转在实际问题中的应用。

五. 教学方法1.情境教学法:通过生活实例和数学故事,引发学生的兴趣,激发学生的学习欲望。

2.探究式教学法:引导学生观察、操作、猜想、验证,培养学生的自主学习能力。

3.合作学习法:学生进行小组讨论和合作交流,提高学生的团队协作能力。

六. 教学准备1.教学课件:制作课件,展示图形旋转的实例和性质。

2.教学素材:准备一些图形,如正方形、三角形等,用于讲解和练习。

3.计算器:为学生提供计算器,便于进行旋转的计算练习。

七. 教学过程1.导入(5分钟)教师通过一个有趣的数学故事引入本节课的内容,引发学生的兴趣。

2.呈现(10分钟)教师通过课件展示一些图形旋转的实例,如地球的自转、钟表的指针等,引导学生观察和思考。

人教版九年级数学上册23.1图形的旋转(教案)

人教版九年级数学上册23.1图形的旋转(教案)
-对于旋转中心的理解,可以通过具体例子(如旋转门、风车等)来说明旋转中心的作用,帮助学生形象地理解。
-在旋转角度的判断上,可以引导学生利用坐标轴的对称性,通过计算对应点坐标的变化来确定旋转角度。
-对于实际问题的解决,教师应引导学生分析问题,找出关键信息,确定旋转角度。例如,在设计旋转图案时,如何根据已知的旋转角度推算出其他点的坐标。
2.教学难点
-理解旋转中心的概念:学生可能难以理解旋转中心的概念,需要通过实例和动态演示来加深理解。
-旋转角度的判断:在坐标平面内,判断一个图形绕原点旋转的角度,特别是非特殊角度时,学生可能会感到困惑。
-解决实际问题时旋转角度的确定:在应用旋转知识解决实际问题时,如何确定旋转角度是学生的一大难点。
举例:
其次,对于教学难点,如旋转角度的判断和计算,我觉得自己在讲解过程中可能过于关注公式和计算方法,而忽略了引导学生从直观上理解和把握。在以后的教学中,我会尝试利用更多动态演示和实际操作,帮助学生更好地突破难点。
此外,实践活动中的分组讨论环节,我发现有些学生参与度不高,可能是因为他们对讨论主题不够感兴趣或者不知道如何展开讨论。针对这个问题,我打算在设置讨论主题时更加贴近学生的兴趣,同时给予他们更多的引导和提示,以提高讨论效果。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了图形旋转的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对图形旋转的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
关于学生小组讨论,我觉得自己在引导和启发学生思考方面还有待提高。有时候,学生可能需要更多开放性的问题和情境来激发他们的思考。因此,在今后的教学中,我会努力提高自己的提问技巧,鼓励学生多角度、多维度地思考问题。

人教版九年级数学上册第二十三章旋转《23.1图形的旋转》第1课时教学设计

人教版九年级数学上册第二十三章旋转《23.1图形的旋转》第1课时教学设计

人教版九年级数学上册第二十三章旋转《23.1图形的旋转》第1课时教学设计一. 教材分析人教版九年级数学上册第二十三章旋转《23.1图形的旋转》第1课时主要介绍了图形的旋转性质和旋转的表示方法。

本节课的内容是学生在学习了图形的平移和翻转的基础上进行的,是进一步研究图形变换的重要内容。

通过本节课的学习,学生能够理解图形旋转的性质,掌握旋转的表示方法,并能够运用旋转性质解决一些实际问题。

二. 学情分析九年级的学生已经掌握了图形的平移和翻转的知识,具备了一定的图形变换的基础。

但是,对于图形的旋转性质和旋转的表示方法可能还比较陌生,需要通过本节课的学习来掌握。

同时,学生对于实际问题中图形的旋转可能还缺乏一定的理解和应用能力,需要通过实例分析和练习来提高。

三. 教学目标1.了解图形旋转的性质,能够用语言和符号表示图形的旋转。

2.能够运用图形旋转的性质解决一些实际问题。

3.培养学生的空间想象能力和逻辑思维能力。

四. 教学重难点1.图形旋转的性质的理解和运用。

2.旋转的表示方法的掌握。

五. 教学方法采用问题驱动法和案例教学法进行教学。

通过提出问题,引导学生思考和探索,通过分析实例,使学生理解和掌握图形旋转的性质和表示方法。

六. 教学准备1.多媒体教学设备。

2.图形旋转的实例和练习题。

七. 教学过程1.导入(5分钟)通过一个生活中的实例,如旋转门的开关,引出图形的旋转的概念,激发学生的兴趣。

2.呈现(10分钟)通过PPT或者黑板,呈现图形旋转的性质和表示方法,引导学生观察和思考,让学生用自己的语言表达对图形旋转的理解。

3.操练(10分钟)让学生分组合作,通过实际操作,如剪切和拼接纸片,来验证图形旋转的性质,并能够用语言和符号表示图形的旋转。

4.巩固(10分钟)让学生独立完成一些图形旋转的练习题,巩固所学知识,并能够运用旋转性质解决一些实际问题。

5.拓展(5分钟)通过一些拓展问题,如旋转后的图形与原图形的大小和形状是否发生变化,来进一步深化学生对图形旋转性质的理解。

九年级数学人教版上册23.1图形的旋转教学设计

九年级数学人教版上册23.1图形的旋转教学设计
1.学生需独立完成作业,认真思考,确保作业质量。
2.鼓励学生尝试选做题和探究题,培养他们的创新意识和实践能力。
3.小组合作完成的作业,需注明成员姓名,体现团队合作精神。
4.作业完成后,学生应进行自我检查,确保解答过程和结果的正确性。
作业批改与反馈:
1.教师应及时批改作业,对学生的解答进行评价,指出错误和不足之处。
3.小组合作,促进交流
组织学生进行小组讨论和合作探究,让学生在交流中互相启发,共同解决问题。教师在此过程中,适时给予指导和评价,提高学生的团队协作能力。
4.知识拓展,提高创新能力
在教学过程中,结合教材内容,引入旋转在生活中的应用实例,如建筑设计、图案设计等。鼓励学生发挥想象,创新设计旋转图形,提高学生的创新意识和实践能力。
2.学会运用旋转进行图形变换,解决实际问题。
3.培养学生的空间想象能力和创新意识。
(二)教学难点
1.旋转变换中,学生对旋转中心、旋转方向和旋转角度的理解和运用。
2.在实际问题中,学生难以将旋转知识与其他几何知识相结合,形成综合解决问题的能力。
3.学生的空间想象能力有限,对旋转后的图形形状和位置关系把握不准确。
九年级数学人教版上册23.1图形的旋转教学设计
一、教学目标
(一)知识与技能
1.理解旋转的定义和基本性质,认识旋转图形与原图形之间的相互关系。
2.学会使用旋转进行图形变换,能够在平面直角坐标系中,对点、线、图形进行旋转变换。
3.能够运用旋转知识解决实际问题,如设计图案、计算旋转体的面积和体积等。
4.能够运用旋转性质进行图形的简化,提高解决问题的效率。
3.讲解旋转变换的规律,如旋转角度与旋转效果的关系,旋转中心与旋转图形的位置关系等。

人教版九年级数学上册23.1《旋转的概念及性质》教学设计

人教版九年级数学上册23.1《旋转的概念及性质》教学设计

人教版九年级数学上册23.1《旋转的概念及性质》教学设计一. 教材分析人教版九年级数学上册23.1《旋转的概念及性质》是整个初中数学的重要内容,它不仅巩固了之前所学的几何知识,还为高中数学打下基础。

本节内容通过旋转的定义、性质和变换,使学生了解旋转在实际中的应用,提高其空间想象能力和解决问题的能力。

二. 学情分析九年级的学生已经具备了一定的几何知识基础,对图形的变换有一定的了解。

但旋转作为一种特殊的图形变换,其概念和性质较为抽象,需要通过具体实例和实际操作来引导学生理解和掌握。

三. 教学目标1.了解旋转的概念,理解旋转的性质。

2.学会用旋转的观点分析和解决问题。

3.培养学生的空间想象能力和解决问题的能力。

四. 教学重难点1.旋转的概念和性质。

2.旋转在实际中的应用。

五. 教学方法1.采用问题驱动法,引导学生主动探究旋转的性质。

2.利用多媒体和实物模型,直观展示旋转过程,增强学生的空间想象力。

3.注重实践操作,让学生通过动手实践来理解和掌握旋转的概念和性质。

六. 教学准备1.多媒体教学设备。

2.实物模型和图片。

3.旋转相关的练习题和作业。

七. 教学过程1. 导入(5分钟)教师通过展示一些生活中的旋转现象,如旋转门、风车等,引导学生思考这些现象与数学有什么联系。

学生可以发现这些现象都是通过旋转来实现的,从而引出本节课的主题——旋转的概念及性质。

2. 呈现(10分钟)教师通过多媒体展示旋转的定义和性质,同时结合实物模型进行讲解,让学生直观地理解旋转的概念。

教师引导学生发现旋转并不改变图形的大小和形状,只是改变图形的位置。

3. 操练(10分钟)学生分组进行实践操作,利用准备好的实物模型和图片进行旋转,观察旋转前后的变化,验证旋转的性质。

教师巡回指导,解答学生的疑问。

4. 巩固(10分钟)教师出示一些有关旋转的练习题,让学生独立完成。

题目可以包括判断题、选择题和应用题,以巩固学生对旋转概念和性质的理解。

5. 拓展(10分钟)教师引导学生思考旋转在实际中的应用,如地图上的方向表示、机械零件的安装等。

人教版九年级数学上册23.1图形的旋转教案

人教版九年级数学上册23.1图形的旋转教案

九年级数学23.1 图形的旋转板书设计23、1旋转一、定义:像这样,把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角.如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个旋转的对应点.二、性质(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前、后的图形全等.教学过程与内容教法学法与补记一、复习引入(学生活动)请同学们完成下面各题.1.将如图所示的四边形ABCD平移,使点B的对应点为点D,作出平移后的图形.2.如图,已知△ABC和直线L,请你画出△ABC关于L的对称图形△A′B′C′.3.圆是轴对称图形吗?等腰三角形呢?你还能指出其它的吗?(口述)老师点评并总结:(1)平移的有关概念及性质.(2)如何画一个图形关于一条直线(对称轴)•的对称图形并口述它既有的一些性质.(3)什么叫轴对称图形?二、探索新知我们前面已经复习平移等有关内容,生活中是否还有其它运动变化呢?回答是肯定的,下面我们就来研究.1.请同学们看讲台上的大时钟,有什么在不停地转动?旋绕什么点呢?•从现在到下课时钟转了多少度?分针转了多少度?秒针转了多少度?(口答)老师点评:时针、分针、秒针在不停地转动,它们都绕时针的中心.•如果从现在到下课时针转了_______度,分针转了_______度,秒针转了______度.2.再看我自制的好像风车风轮的玩具,它可以不停地转动.如通过复习、加深对平移轴对称的了解同学们自己分析探究何转到新的位置?(老师点评略)3.第1、2两题有什么共同特点呢?共同特点是如果我们把时针、风车风轮当成一个图形,那么这些图形都可以绕着某一固定点转动一定的角度.像这样,把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角.如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个旋转的对应点.下面我们来运用这些概念来解决一些问题.例1.如图,如果把钟表的指针看做三角形OAB,它绕O点按顺时针方向旋转得到△OEF,在这个旋转过程中:(1)旋转中心是什么?旋转角是什么?(2)经过旋转,点A、B分别移动到什么位置?解:(1)旋转中心是O,∠AOE、∠BOF等都是旋转角.(2)经过旋转,点A和点B分别移动到点E和点F的位置.例2.(学生活动)如图,四边形ABCD、四边形EFGH都是边长为1的正方形.(1)这个图案可以看做是哪个“基本图案”通过旋转得到的?(2)请画出旋转中心和旋转角.(3)指出,经过旋转,点A、B、C、D分别移到什么位置?(老师点评)(1)可以看做是由正方形ABCD的基本图案通过旋转而得到的.(2)•画图略.(3)点A、点B、点C、点D移到的位置是点E、点F、点G、点H.通过题目练习,总结旋转的定义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:23.1图形的旋转一、教学目标1.感知图形的旋转,知道什么是图形的旋转、旋转中心和旋转角,会指出实例中的旋转中心和旋转角.2.经历用硬纸板画旋转后图形的过程,加深对图形旋转的感知,发展空间观念.二、教学重点和难点1.重点:图形的旋转概念.2.难点:图形的旋转概念.三、教学过程(一)创设情境,导入新课师:在日常生活中我们经常能看到各种美丽的图案,这些美丽的图案是怎么设计出来的?让我们仔细来看一看.(师出示下面的图案)(图在七年级下册P27)师:(指图案)大家仔细看一看,这个图案是怎么设计的?生:……(让几名同学发表看法)师:(指准图案)这是一个鸽子,把这个鸽子向右平移,得到这个鸽子,再向右平移得到这个鸽子,再向右平移得到这个鸽子,这样就得到了这一排鸽子;同样,我们把这个鸽子向下平移,得到这个鸽子,再向右平移得到这个鸽子,这样平移下去,又得到了这一排鸽子;同样方法可以得到第三排鸽子.可见这个图案是用一个鸽子经过平移得到的(边讲边板书:平移).师:我们再来看一个图案.(师出示下面的图案)(图在八年级上册P48)师:(指图案)大家看一看,这个图案又是怎么设计的?生:……(让几名同学发表看法)师:这个图案可以看成是把(指准)这个图平移到这里,再平移到这里,再平移到这里,最后形成了这个图案.这是同学们都看到的,但这个图案的形成还可以换一种方式来看,怎么换一种方式来看?(稍停)师:(指准)作这个图关于这条直线的轴对称图形,(指准)得到这个图形;再作这个图关于这条直线的轴对称图形,(指准)得到这个图形;再作这个图关于这条直线的轴对称图形,(指准)得到这个图形.这样作下去,就形成了这个图案.可见这个图案是(指准)这个图经过反复作轴对称图形而形成的(边讲边板书:轴对称).师:下面我们再来看一个图案.(师出示下面的图案)(图在九年级上册P73)师:(指图案)大家看,这个图案又是怎么设计的?生:……(让几名同学发表看法)(这个图案可以看成是利用轴对称而形成,也可以看成是利用旋转而形成,如果学生没有提出轴对称,教师也不必提)师:(指准图案)这是一片花瓣,把这片花瓣这样旋转得到这片花瓣,再这样旋转得到这片花瓣,最后形成了花的图案.可见这个图案是用一片花瓣经过旋转得到的(边讲边板书:旋转)师:看了这三个图案,我们可以回答开始时的那个问题:美丽的图案是怎么设计出来的?谁来回答这个问题?生:……(让几名同学回答)师:(指准板书)美丽的图案是利用平移、轴对称、旋转设计出来的.师:平移、轴对称、旋转是图形变换的三种方式,平移我们在初一的时候已经学过,轴对称我们在初二的时候已经学过,从本节课开始我们要学习旋转.(板书课题:23.1图形的旋转)(二)尝试指导,讲授新课师:什么是图形的旋转?(边讲边指准图案)所谓图形的旋转就是把(要指准一片花瓣)一个图形绕着某一点转动一个角度.这个点0(边讲边在图中标0)叫做旋转中心(板书:点0叫做旋转中心),转动的角(边讲边在图中标角)叫做旋转角(板书:转动的角叫做旋转角).师:(指准图案)大家算一算,这个旋转角等于多少?(让生算一会儿师再讲)这是周角,旋转角是周角的五分之一,所以旋转角是360°÷5=72°.师:图形上的点P(边讲边在图中标点P)经过旋转变成P′(边讲边在图中标P′),点P与点P′叫做这个旋转的对应点(板书:点P与点P′叫做这个旋转的对应点).(标图后,原图成下图)(三)试探练习,回授调节1.填空:如图,钟表的时针在不停地旋转,从3时到5时,时针的旋转中心是点,旋转角等于°,点B的对应点是点 .2.填空:如图,杠杆绕支点转动撬起重物,杠杆的旋转中心是点,旋转角是∠,点A的对应点是点 .3.如图,扎西坐在旋转的秋千上,请在图中画出点A ,B ,C 的对应点A ′,B ′,C ′.(四)尝试指导,讲授新课师:前面我们学习了图形旋转的概念,下面我们要动手画一画旋转图形. 师:怎么画旋转图形?(稍停)画旋转图形有一个很好的办法.师:(演示挖有三角形洞的硬纸板)这是一块硬纸板,里面挖了一个三角形.利用硬纸板先画一个三角形(边讲边画,画好不要动),现在我们以这个顶点为旋转中心旋转(边讲边旋转),好,就转到这里,再画一个三角形(边讲边画,然后移开硬纸板,画好的图大致如下)师:(指准图)这个三角形经过旋转得到了这个三角形,点O 是旋转中心(边讲边在图中标O ),点A 的对应点是点A ′(边讲边在图中标A ,A ′),点B 的对应点是点B ′(边讲边在图中标B ,B ′).师:(指准图)OA 转到OA ′,可见∠AOA ′等于旋转角(边讲边标角). (标后原图成下图)师:(指准图)刚才我们画的旋转图形是以顶点为旋转中心,如果我们以三角形外O B /ABA /的一点为旋转中心,旋转图形又是怎么样的呢?师:(演示挖有三角形洞的硬纸板)和刚才一样,利用硬纸板先画一个三角形(边讲边画,画好不要动),现在我们以三角形外的一点为旋转中心旋转(硬纸板上要挖一个小洞为旋转中心,并用粉笔标明位置,边讲边旋转),好,就转到这里,再画一个三角形(边讲边画,然后移开硬纸板,画好的图大致如下).师:(指准图)这个三角形经过旋转得到这个三角形,点O 是旋转中心(边讲边在图中标O ),点A 的对应点是点A ′(边讲边在图中标A ,A ′),点B 的对应点是点B ′(边讲边在图中标B ,B ′),点C 的对应点是点C ′(边讲边在图中标C ,C ′).师:(指图)在这个三角形的旋转中,哪个角等于旋转角?(让生思考一会儿) 师:(用虚线连接OA ,OA ′,并指准)OA 转到OA ′,可见∠AOA ′等于旋转角(边讲边标角).(标后原图成下图)(五)试探练习,回授调节4.利用挖有一个三角形洞的硬纸板画出三角形的旋转图形,并在图中用字母标出旋转中心、对应点和旋转角.(要求学生在课前做好挖有一个三角形的硬纸板)(六)归纳小结,布置作业OC /B /A /CBA师:本节课我们学习了图形旋转的概念,什么是图形的旋转?(指准旋转图案)把一个图形绕着某一点O 转动一个角度,就叫做图形的旋转,点O 叫做旋转中心,转动的角叫做旋转角.图形上的点P 经过旋转变为点P ′,点P 与点P ′叫做对应点.(作业:P 57练习2.P 60习题6) 四、板书设计 23.1图形的旋转平移图案 平移 旋转图案 旋转 点O 叫做旋转中心 旋转图形一 轴对称图案 轴对称 转动的角叫做旋转角 旋转图形二 点P 与点P ′叫做对应点课题:23.1图形的旋转(第2课时)一、教学目标1.经历探索过程,知道图形旋转的性质,能对性质作简单的运用.2.发展空间观念,培养分析、归纳、抽象、概括能力. 二、教学重点和难点1.重点:图形的旋转性质.2.难点:探索图形的旋转性质. 三、教学过程(一)基本训练,巩固旧知1.填空:把一个平面图形绕着平面内某一点O 转动一个角度,就叫做图形的旋转,点O 叫做旋转 ,转动的角叫做旋转 .如果图形上的点P 经过旋转变为点P ′,那么这两个点叫做旋转的 .2.填空:(1)如图,△ABC 绕点A 旋转得到△ADE ,旋转中心 是点 ,点B 的对应点是点 ,点C 的对应点是点 ,∠ 等于 于旋转角;(2)如图,△ABC 绕点O 旋EDA CBO .FEAB C转得到△DEF ,旋转中心是 点 ,点A 的对应点是 点 ,点B 的对应点是 点 ,点C 的对应点是 点 ,∠ 等于 于旋转角.(二)创设情境,导入新课师:(板书课题:23.1图形的旋转)上节课我们学习了图形旋转的概念,本节课我们要学习什么?本节课我们要学习图形旋转的性质.让我们先来看一个三角形的旋转图形.(三)尝试指导,讲授新课师:(演示挖有三角形的硬纸板)和上节课所做的一样,利用硬纸板先画一个三角形(边讲边画,画好不要动),现在我们以三角形外的一点为旋转中心旋转(边讲边旋转),好,就旋转到这里,再画一个三角形(边讲边画,然后移开硬纸板).师:(指准图)这个三角形经过旋转得到了这个三角形,点O 是旋转中心(边讲边在图中标O ),点A 的对应点是点A ′(边讲边在图中标A ,A ′),点B 的对应点是点B ′(边讲边在图中标B ,B ′),点C 的对应点是点C ′(边讲边在图中标C ,C ′).(旋转图形如下图所示)师:(指图)请大家仔细观察这个图,从这个旋转图形,你发现图形旋转有什么性质?(让生观察一会儿)师:谁来说说你的发现?生:……(让几名学生发表自己的看法,如果学生说不出什么,师继续教学)O .C /A /B /ABC师:(指准图)这是旋转前的图形,这是旋转后的图形,显然这两个图形是全等的.从这一事实我们得出图形旋转的一个性质:旋转前后的图形全等(板书:旋转前后的图形全等).师:旋转前后的图形全等,这是图形旋转的一个性质,下面我们来看第二个性质.师:(用虚线连接OA,OA′,并指准图)OA转到了OA′,线段OA与OA′的长短有什么关系?生:(齐答)相等.师:(用虚线连接OB,OB′,并指准图)OB转到了OB′,线段OB与OB′的长短有什么关系?生:(齐答)相等.师:(用虚线连接OC,OC′,并指准图)同样,OC也等于OC′.师:(指准图)OA=OA′,OB=OB′,OC=OC′,这说明什么?谁能用自己的话来概括这一事实?生:……(多让几名学生发表自己的看法,鼓励学生用自己的语言概括)师:(指准图)OA=OA′说明对应点A,A′到旋转中心的距离相等,OB=OB′说明对应点B,B′到旋转中心的距离也相等,OC=OC′说明对应点C,C′到旋转中心的距离也相等.可见,对应点到旋转中心的距离相等(板书:对应点到旋转中心的距离相等).师:(指板书)这是图形旋转的第二个性质,下面我们来看第三个性质.师:(指准图)△ABC绕着点O转到△A′B′C′,在这个旋转中,哪个角等于旋转角?生:∠AOA′.师:(指准图)OA转到OA′,可见∠AOA′等于旋转角(边讲边在图中标角).还有没有别的角等于旋转角?生:∠BOB′.师:(指准图)OB转到OB′,可见∠BOB′也等于旋转角(边讲边在图中标角).还有没有别的角等于旋转角?生:∠COC′.(生答师在图中标角)师:(指准图)∠AOA′,∠BOB′,∠COC′都等于旋转角,这说明什么?(稍停)这说明对应点与旋转中心所连线段的夹角等于旋转角(板书:对应点与旋转中心所连线段的夹角等于旋转角).师:(指板书)这就是图形旋转的第三个性质.师:下面大家结合图形把这三个性质默读几遍,看看你对这三个性质的意思理解了吗?(生默读)师:知道了图形旋转的性质,下面请大家利用性质来做两个练习. (四)试探练习,回授调节3.利用“对应点与旋转中心所连线段的夹角等于旋转角”,画出下图中的旋转角,并用量角器量出旋转角的度数.4.如图,四边形ABCD 是正方形,以点A 为中心,把△ADE 顺时针旋转90°,利用图形旋转的性质,画出旋转后的图形.(先让生做4题,然后师出示旋转后的图形,并利用性质解释点D 转到了点B ,点E 转到了点F )(五)归纳小结,布置作业师:本节课我们学习了图形旋转的性质,请大家把这三个性质一起来读一遍.(生读)(作业:P 59习题3.4.) 四、板书设计 23.1图形的旋转 旋转前后的图形全等三角形旋转图 对应点到旋转中心的距离相等. 对应点与旋转中心所连……ED CB A课题:23.1图形的旋转(第3课时)一、教学目标1.巩固图形旋转的性质,会根据性质画旋转后的图形.2.发展空间观念,培养直观想象能力和画图能力. 二、教学重点和难点1.重点:根据性质画旋转后的图形.2.难点:根据性质画旋转后的图形. 三、教学过程(一)基本训练,巩固旧知 1.填空:图形旋转的性质是: (1)旋转前后的图形 ; (2)对应点到旋转中心的距离 ;(3)对应点与旋转中心所连线段的夹角等于 . (二)创设情境,导入新课 (师出示下面的板书)旋转前后的图形全等. 对应点到旋转中心的距离相等.对应点与旋转中心所连线段的夹角等于旋转角.师:(指准图)上节课我们利用这个图归纳出来图形旋转的三个性质.师:(指准图)△ABC 经过旋转得到△A ′B ′C ′,显然△ABC 与△A ′B ′C ′全等,于是我们有了第一个性质:旋转前后图形全等.师:(指准图)△ABC 转到△A ′B ′C ′,显然OA=OA ′,OB=OB ′,OC=OC ′,于是我们归纳出第二个性质:对应点到旋转中心的距离相等.师:(指准图)OA 转到OA ′,OB 转到OB ′,OC 转到OC ′,所以∠AOA ′,∠BOB ′, ∠COC ′都等于旋转角,于是我们发现第三个性质:对应点与旋转中心所连线段的夹OA /B /C /C B角等于旋转角.师:(指板书)有了图形旋转的性质,这节课我们就利用这些性质来解决问题,解决什么问题呢?请大家来看一个例题. (三)尝试指导,讲授新课(师出示例题)例 任意画一个△ABC ,作下列旋转:(1)以A 为中心,把这个三角形顺时针旋转50°;(2)以三角形外任取一点O 为中心,把这个三角形逆时针旋转90°.师:(指准例题)例题需要我们做什么?任意画一个△ABC (边讲边画△ABC ),以点A 为中心,把这个三角形顺时针旋转50°,画出旋转后的图形.师:(指准△ABC )要画△ABC 旋转后的图形,关键是什么?(稍停)关键是要找到点A 、点B 、点C 旋转后的位置,因为是以点A 为中心旋转,所以旋转后点A 没动,那点B 、点C 旋转后在哪里?大家自己先画个草图找一找.(生画图,师巡视)师:下面我们一起来画图.师:利用量角器在AB 的顺时针方向画∠BAB ′=50°,并且使AB ′=AB (边讲边画);再在AC 的顺时针方向画∠CAC ′=50°,并且使AC ′=AC (边讲边画);连接B ′C ′(边讲边画).师:(指准图)△AB ′C ′就是以A 为中心,△ABC 顺时针旋转50°得到的图形.(画好的图形如下所示)师:(指准例题)下面我们来看第(2)小题,(2)小题要我们做什么?任意画一个△ABC (边讲边画△ABC ),以三角形外任取一点O 为中心(边讲边画点O ),把这个三角形逆时针旋转90°,画出旋转后的图形.师:(指准△ABC )要画出△ABC 旋转后的图形,和(1)小题一样,关键是要找到点A 、点B 、点C 旋转后的位置,也就是要找到对应点A ′、点B ′、点C ′的位置. 点A ′、点B ′、点C ′在哪里?大家画个草图找一找.(生画图,师巡视)B /C /ACB师:下面我们一起来画.师:先用虚线连接OA (边讲边画),利用三角尺在OA 的逆时针方向画∠AOA ′=90°,并且使OA ′=OA (边讲边画),点A ′就是点A 的对应点.师:用同样的方法画点B ′,先用虚线连接OB (边讲边画),利用三角尺在OB 的逆时针方向画∠BOB ′=90°,并且使OB ′=OB (边讲边画),点B ′就是点B 的对应点.师:用同样的方法画出点C ′(画出点C ′).师:连接A ′B ′,B ′C ′,C ′A ′(边讲边画),(指准图)△A ′B ′C ′就是以O 为中心,△ABC 逆时针旋转90°得到的图形.(画好的图如下所示)(四)试探练习,回授调节2.如图,以点O 为中心,把点P 顺时针旋转45°.3.如图,以点O 为中心,把线段AB 逆时针旋转90°.A BO ..O P .B C A O C /A /B /4.如图,以点O为中心,把△A BC顺时针旋转120°.BC.OA5.如图,以点B为中心,把△ABC旋转180°.CBA(五)归纳小结,布置作业师:本节课我们学习了画旋转后的图形,画旋转后的图形关键是要找到对应点.(指准例(2)题图)譬如,要画△ABC旋转后的图形,关键是要找到对应点A′,B′,C′.怎么找对应点A′,B′,C′?(稍停)要利用图形旋转的性质来找.根据性质,OA=OA′,∠AOA′等于旋转角90°,这样我们找到了对应点A′,用同样方法可以找到B′,C′.师:总之,画旋转后的图形,关键是找对应点,而找对应点的根据是图形旋转的性质.(作业:P59习题1.5.)四、板书设计三角形旋转图例旋转前后的图形全等对应点到旋转中心距离相等对应点与旋转中心所连……。

相关文档
最新文档