基于51单片机太阳能路灯的控制系统

合集下载

基于单片机的太阳能路灯控制系统

基于单片机的太阳能路灯控制系统

基于单片机的太阳能路灯控制系统概述太阳能路灯是一种节能环保的新兴路灯,其优点在于不需要外接电源,只需利用太阳能进行充电,从而在夜间提供照明服务。

本文将介绍一种基于单片机的太阳能路灯控制系统,该系统能够自动调节亮度,提高能源利用率,同时延长路灯使用寿命。

设计方案该控制系统由三个主要部分组成:太阳能电池板、可充电蓄电池和单片机控制电路。

太阳能电池板将光能转化为电能,通过充电控制电路将电能储存到可充电蓄电池中。

如图所示:system_designsystem_design在夜间,单片机控制电路将控制电路工作在路灯的亮度调节模式下。

当路灯检测到环境亮度低于一定阈值时,系统将开启路灯以提供光照服务。

当环境亮度逐渐升高时,系统将自动调整亮度,以达到最佳能耗效率。

该系统还具有手动控制功能,这意味着用户可以在必要时手动开启或关闭路灯。

系统实现该系统采用了一块ATmega328P单片机,它是一款高性能、低功耗的8位微处理器。

该单片机具有丰富的程序存储器和数据存储器,可满足我们应用程序的要求。

为了测量环境亮度,我们使用一个光敏电阻,并将其连接到单片机的模拟输入引脚。

当电阻接收到的光线强度变化时,它的阻值将发生变化,并通过模拟信号输入到单片机中。

控制电路使用的是一个H桥直流电机驱动芯片,它可用于控制电机和灯的功率输出。

我们将其配置为驱动LED灯,以提供路灯的光照服务。

该系统还配备了一个电容充放电电路,用于确保可充电蓄电池的充电和放电过程。

该电路使用一个集成电路和几个外部元器件,通过PWM输出信号进行控制。

系统测试为了测试该系统的功能,我们将其放置在光线较强的环境下进行测试。

通过多次测试,可以得出该系统具有以下功能:•延长路灯使用寿命•自动调节亮度•实现手动控制•具有过充保护和过放保护功能•系统运行稳定,可靠性高基于单片机的太阳能路灯控制系统是一种高效的节能环保产品。

该系统采用了新兴的太阳能技术,为城市的照明服务提供了更可靠、更环保的方法。

基于单片机的太阳能路灯控制系统设计

基于单片机的太阳能路灯控制系统设计
基于单片机的太阳能路灯控制 系统设计
目录
01 一、系统需求分析
02 二、系统硬件设计
03 三、系统软件设计
04 四、结语
05 参考内容
随着社会对环保和能源利用的度不断提高,太阳能路灯控制系统在城市照明 中的应用越来越广泛。这种系统可以有效降低电力消耗,减少碳排放,同时提高 能源利用效率。本次演示将探讨基于单片机的太阳能路灯控制系统的设计。
三、系统软件设计
系统软件设计主要是根据传感器的输入和预设规则来控制路灯的开关和亮度。 具体来说,程序需要实现以下几个功能:
1、实时监测环境光线和时间:通过读取光敏电阻或数字光感器的电压值以 及GPS模块或网络时间服务器的当前时间,程序可以实时获取环境光线和时间数 据。
2、控制路灯开关:根据当前时间和环境光线强度,程序可以判断是否需要 打开或关闭路灯。例如,在夜晚或光线较弱的情况下,程序可以自动打开路灯; 而在白天或光线较强的情况下,程序可以自动关闭路灯。
5、日志记录:为了方便后期维护和管理,程序需要具备日志记录功能。例 如,记录每天的开关灯时间、亮度值以及异常情况等。
四、结语
基于单片机的太阳能路灯控制系统设计可以有效提高城市照明的智能化和绿 色化水平。通过实时监测环境光线和时间,自动控制路灯的开关和亮度调节,可 以有效降低电力消耗和碳排放,同时提高能源利用效率。这种系统不仅可以广泛 应用于城市道路照明中,也可以为其他领域提供一种绿色、智能的能源利用方案。
参考内容
随着人类对可再生能源的依赖日益增加,太阳能路灯系统在公共照明领域中 的应用越来越广泛。这种系统不仅可以节约电力,降低碳排放,而且可以持续供 电,不受天气影响。然而,如何有效地管理和控制太阳能路灯系统,使其在保证 照明质量的最大限度地减少电力消耗,是当前面临的一个重要问题。本次演示提 出了一种基于单片机的太阳能路灯智能控制系统设计,以解决这一问题。

基于51单片机的太阳能热水器控制系统设计

基于51单片机的太阳能热水器控制系统设计

基于51单片机的太阳能热水器控制系统设计一、本文概述随着全球对可再生能源需求的日益增加,太阳能作为一种清洁、可持续的能源形式,已经引起了广泛的关注和应用。

太阳能热水器作为一种常见的太阳能应用产品,其在节能减排、提高生活质量等方面具有显著的优势。

然而,太阳能热水器在实际使用过程中,仍存在一些问题,如水温控制不稳定、能效利用率不高等。

为了解决这些问题,本文提出了一种基于51单片机的太阳能热水器控制系统设计方案。

该系统以51单片机为核心控制器,结合温度传感器、水位传感器、执行机构等硬件设备,实现了对太阳能热水器水温和水位的精确控制。

通过实时监测水温和水位信息,系统能够自动调整加热功率和补水流量,确保水温稳定在用户设定的范围内,同时避免了水资源的浪费。

系统还具有故障诊断功能,能够及时发现并处理潜在的故障问题,提高了系统的可靠性和稳定性。

本文首先介绍了太阳能热水器的工作原理和现状,分析了传统控制系统存在的问题和不足。

然后,详细阐述了基于51单片机的太阳能热水器控制系统的硬件组成和软件设计。

在硬件设计方面,本文介绍了各个硬件模块的功能和选型原则,包括温度传感器、水位传感器、执行机构等。

在软件设计方面,本文详细说明了系统的控制算法和程序流程,包括温度控制算法、水位控制算法、故障诊断算法等。

本文通过实验验证了系统的可行性和有效性,为太阳能热水器的智能化、高效化提供了有益的探索和实践。

本文的研究不仅有助于提升太阳能热水器的能效利用率和用户体验,还为其他可再生能源应用产品的智能化控制提供了有益的参考和借鉴。

本文的研究成果对于推动太阳能热水器行业的技术进步和产业发展具有重要的现实意义和应用价值。

二、太阳能热水器控制系统总体设计太阳能热水器控制系统的总体设计是确保整个系统高效、稳定运行的关键。

在设计过程中,我们充分考虑了太阳能热水器的实际应用场景和用户需求,以及51单片机的性能特点,从而构建了一个既实用又可靠的控制系统。

基于51的太阳能LED路灯的设计与实现

基于51的太阳能LED路灯的设计与实现

基于51的太阳能LED路灯的设计与实现朱黎;陈雨佳【摘要】本文基于AT89S51单片机实现对太阳能LED路灯照明控制系统进行优化设计和研究.该系统以太阳为光源,白天充电,晚上使用,也可根据外界环境明暗的变化,能够自动进行灯亮和灯灭.整个系统分为路灯控制器、太阳能采集电路、蓄电池控制器、红外传感器距离感应电路、光敏电阻模块、负载输出控制与过流检测电路、键盘电路、节能LED电路、LCD显示等模块.通过红外传感器可以接收物体在一定范围内发出的红外线,实现行人过往时点亮路灯,改善节能环保的目的.作品整体设计由金属架子(底座有废旧木板)构成、设计作品工艺精湛、美观、实用性强、体现了绿色环保理念、极大的方便了人们的夜间出行.【期刊名称】《电子设计工程》【年(卷),期】2014(022)020【总页数】3页(P181-182,186)【关键词】太阳能;控制器;AT89S52;红外感应;蓄电池;PWM;LED【作者】朱黎;陈雨佳【作者单位】陕西工业职业技术学院陕西咸阳712000;陕西工业职业技术学院陕西咸阳712000【正文语种】中文【中图分类】TN710随着科学技术的迅速发展,世界能源危机日益严重,利用常规能源已不能适应世界经济快速增长的需要,开发和利用新能源越来越引起各国的重视。

太阳能作为一种“取之不尽,用之不竭”安全可靠、无噪声、无污染和可再生的能源越来越受到重视[1]。

加之现今光伏技术的逐渐成熟,利用光伏发电成为解决能源问题的一大途经。

随着可持续发展的不断深入,人们在积极开发各类可再生新能源的同时也在倡导节能减排的绿色环保技术而在照明领域,寿命长节能安全绿色环保色彩丰富微型化的LED固态照明也已被公认为世界一种节能环保的重要途径[2],太阳能LED路灯同时整合了这两者的优势。

1 系统的整体方案设计本论文主要研究方向是太阳能LED路灯的研究,其核心部件为蓄电池控制器和路灯控制器。

蓄电池控制器是控制太阳能电池方阵对蓄电池充电以及蓄电池给负载供电的自动控制设备,能自动防止蓄电池过充电和过放电,有效的保护蓄电池,延长使用年限。

简述基于单片机的太阳能路灯控制系统的设计[001]

简述基于单片机的太阳能路灯控制系统的设计[001]

基于单片机的太阳能路灯控制系统的设计摘要:本文介绍了一种基于单片机的跟踪式太阳能路灯控制系统,该系统以单片机为核心,采用声控、红外感应、光控等模块实现智能化控制。

当太阳能光照不足时,将电路切换到市电路中给蓄电池供电。

通过蓄电池过冲、过放功能,来保护电路以及延长蓄电池使用寿命。

关键词:单片机;太阳能;双极轴追光;市电切换0 引言目前国内外太阳能路灯主要采用固定安装方式,其全天的有效平均日照时间约为3.5小时[1]。

其余日照时间因太阳光光强不足或太阳能入射角小的原因而导致发电量大幅度下降[2]。

单轴追光装置输出特性是明显的非线性,极易受到外部环境的影响,同时电池板固定装置决定了一天之内受照射的平均量很低导致成本高[3]。

而太阳能路灯具有广泛的地域应用,对比单轴追光,双轴追光更能提高太阳能利用率,在降低成本、加快太阳能路灯的普及和提高太阳能利用率的条件下,其具有较高的研究意义[4]。

1 路灯控制系统总体设计本文设计的路灯控制系统如图1所示。

通过声、光、红外等模块感知外界环境,传输给单片机并作出反馈,实现对电机的驱动以及路灯的智能调节,达到太阳能电池板跟踪式追光的要求。

编写程序算法,使传感器与控制电路输出相应的控制信号驱动电机组配合。

控制电池板的X轴的方位角和Z轴的高度角,使光线垂直射到电池板上,从而使太阳能的利用率达到最高。

根据蓄电池两端的电压与最低阀值电压或与峰值电压的比较,使电路进行市电充电与太阳能涓流充电状态间的智能切换[5]。

且该系统能通过断电保护来防止蓄电池过冲过放以及电流反涌烧坏电路。

实验室搭建模型如图2所示。

2 硬件设计2.1 硬件总体介绍该系统采用光线采集模块、声控模块、红外检测模块、市电切换模块、太阳能跟踪模块等组成。

其中以AT89C51单片机为控制核心,主控制器主要完成对光照强度检测、太阳方位检测、定时、计数、中断程序处理、电机动作等控制。

2.2 双轴跟踪装置机械结构双轴太阳跟踪装置的机械结构如图3 所示,以两个伺服电机分别控制转台,驱使高度角和方位角方向的旋转以达到平板时刻与太阳光线垂直的目的[6]。

基于51单片机的模拟路灯控制系统

基于51单片机的模拟路灯控制系统

中文摘要中文摘要本作品是具有自动化程度高、运行可靠、使用维护方便的照明控制系统,为城市路灯现代化提供了一些参考方案。

系统采用STC单片机为核心的最小系统板,设计了模拟路灯控制系统。

控制系统采用定时器设定时钟功能,设定、显示开关灯时间;用了基于555为核心的红外传感器检测物体的定位。

路灯单元控制系统采用恒流源供电,具有输出功率调整功能,并能定时调整功率。

阐述了基于单片机模拟路灯控制系统实现的设计思想、方法及过程。

该模拟控制系统,能有效的节约能源,减少照灯具的损耗。

城市亮化随之被政府所重视,既而大量的资金投入进行建设和改造中去,使得我们的城市夜晚变得灯火辉煌,绚丽多彩,但同时,诸多问题也随之而来:能耗的逐年攀升,产生的某些问题亦逐渐显露出来,如城市路灯的维护量增大,带来人员不足的问题,使得路灯故障时不能得到及时的修复以致造成人民生活的不便;维护费用也随之增加,社会成本过高,电费支出过多,财政承担相对困难,给政府带来了相对大的压力;光污染现象严重……这些问题的产生无疑给当地的路灯管理部门的各方面工作带来很大的压力,因此他们迫切的想解决此问题,故针对这种情况我们设计并制作了这一节能智能型的模拟路灯控制系统,其主要价值在于能更好的节能与监测,在很多方面给人们带来了方便,给维护人员降低了难度。

在白天模式的时候,还能根据环境明暗的变化控制路灯的开启和关闭路灯,在夜晚模式的情况下,根据交通路面情况自动开关灯。

当灯出现故障不亮时,能够检测并且通过声光系统报警,显示器上显示故障灯的编号。

自制的单元控制器中的LED灯恒流驱动电源,在多数情况下,具有系统稳定,功耗低等特点。

以STC89C51RC为核心,利用时钟控制LED灯的开关时间段,通过红外感应模块将物体运动的信号通过555的TTL高低电平输入单片机,并通过三红外线输入的情况判断物体运行方向,再控制LED灯的开关情况。

并完成四方面的功能:时间设定功能,环境明暗判断,独立控制功能,交通条件控制功能。

基于51单片机路灯控制系统设计概要

基于51单片机路灯控制系统设计概要

目录0 前言 (1)1 总体方案设计 (1)2 硬件电路设计 (2)2.1STC89C52单片机系统 (2)2.2 光电传感器模块 (3)2.3显示模块设计 (5)3 软件设计 (6)3.1 主程序设计 (6)3.2 计算流量子程序 (7)3.3 显示子程序 (8)4 调试分析及硬件组装 (9)5 结论及进一步设想 (10)参考文献 (10)课设体会 (11)附录1 电路原理图 (12)附录2 程序清单 (13)路灯控制系统设计(1)张磊沈阳航空航天大学自动化学院摘要:本设计以STC89C52单片机为核心控制芯片,此单片机可靠性高、性价比高、精度高、微型化、易于操控、管脚功能简单。

整个电路采用模块化设计,由单片机最小系统模块、显示模块、光电传感器模块组成。

光电传感器发送信号给单片机综合分析处理,实现路灯控制系统的各种功能。

在此基础上设计了系统的总体方案,最后通过硬件和软件实现了各个模块的功能。

相关模块附有硬件电路图、程序流程图、功能与原理的说明。

最后经实验证明,这套系统软硬件设计能有效结合、抗干扰能力强、功能完善,可以实现对汽车流量的监测并能达到节能的目的,可应用于马路路灯的控制。

关键词:STC89C52;亮灭;流量0 前言此路灯控制系统最主要的模块是光电开关(光电传感器)模块,既是控制路灯亮灭的传感器也是计算流量的传感器。

此光电传感器是利用被检测物对光束的遮挡或反射,由同步回路选通电路,从而检测物体有无的。

物体不限于金属,所有能反射光线的物体均可被检测。

此光电开关属于漫反射式光电开关,它是一种集发射器和接收器于一体的传感器,当有被检测物体经过时,物体将光电开关发射器发射的足够量的光线反射到接收器,于是光电开关就产生了开关信号。

当被检测物体的表面光亮或其反光率极高时,对射式和镜反射式都不适用,漫反射式的光电开关才是是首选的检测模式,因为红外线光电开关在环境照度高的情况下都能稳定工作。

所以此路灯控制系统具有稳定性好,可靠性高,体积小重量轻,节能等优点。

基于51单片机的路灯控制系统设计开题报告

基于51单片机的路灯控制系统设计开题报告

基于51单片机的路灯控制系统设计开题报告基于51单片机的路灯控制系统设计开题报告在经济发展迅速的今天,报告十分的重要,我们在写报告的时候要注意语言要准确、简洁。

那么,报告到底怎么写才合适呢?下面是小编帮大家整理的基于51单片机的路灯控制系统设计开题报告,欢迎阅读,希望大家能够喜欢。

一、本课题的内容及研究意义1、论文研究的目的和意义如今,照明电路的数量越来越多,使得城市街道、小区内的路灯的用电量占城市用电量的比重越来越大,在用电高峰期时,电网超负荷运行,电网电压都低于额定值,在用电低谷期供电电压又高于额定值,当电压高时不但影响照明设备的使用寿命,而且耗电量也大幅增加,当低谷时,照明设备有不能正常工作。

所以,对城市的路灯的设计已经成为了当务之急,特别是午夜之后车流量急剧减少时,应该适当的关闭路灯,节约用电。

但是我国的既节能又能延长路灯寿命的技术相比国外却是落后了,因此智能节能路灯控制系统的设计对于城市的发展至关重要。

本论文旨在设计一套对外界光线和电压信号的采集来控制路灯的自动启停以及智能调压的控制系统,它能对路灯进行稳压、调压、自启动并延长路灯寿命的作用。

2、论文研究内容本设计可以通过对外界光线和电压信号的采集来控制路灯的自动启停以及智能调压从而减少城市路灯照明耗电量,又对输入电压进行稳压调节来提高用电效率。

要求独立选择芯片、设计电路、编制程序、调试、完成整个系统功能。

主要内容如下:(1)根据控制技术的特点,进行路灯系统设计的整体研究与设计。

(2)针对光线和电压信号的采集,采用数据采集技术。

(3)通过按键可对相关的参数值进行设置,从而实现对不同时间进行不同的开灯模式。

(4)当电压符合额定电压时,系统自动进行稳压。

(5)在午夜之后降低电压以调节路灯亮度,实现调压。

二、本课题的研究现状和发展趋势目前,路灯系统一般采用钠灯、水银灯、金卤灯等灯具。

这类灯具有发光效率高、光色好、安装简易等优点,被广泛使用,但同时也存在着诸如:功率因子低、对电压要求严格、耗电量大等缺点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

本设计基于C8051F330的PWM 限流控制器结合蓄电池充放电特性和电池伏安特性,专为LED路灯设计的充放电路。

白天太阳能电池板给蓄电池充电作为供电能源,灯不亮;在晚上,蓄电池对LED路灯放电,达到照明目的。

1 太阳能路灯控制系统硬件设计
1.1 硬件组成
路灯控制电路系统如图1- 1 所示。

图1-1 路灯控制电路系统
1.2 控制器
1.2.1 充放电电路
选用C8051F330 单片机作主控制芯片,检测太阳电池电压、蓄
电池电压及充放电流等参数,并按一定算法控制MOS管的导通和关
断,达到控制路灯系统充放电的功能。

图1- 2 为控制器充放电电路图,电池板电压经R1 和R2 分压送至
A/D转换口检测,以判别光线强弱。

光照充足时,电池板给蓄电池充
电。

控制器实时检测蓄电池端电压,同时按设定转换点的蓄电池端电压
值,控制充电各阶段的电压转换和停充。

图1-2 充放电电路
1.2.2 MOSFET开关电路
设计中用MOSFET 实现电路通断。

MOSFET 开关频率高适合作为PWM 控制充电开关。

采用N 沟道MOSFET ,导通电压Vth>0,由图1- 3 实现MOSFET 驱动。

R1 为基极限流电阻,C 为加速电容。

当输入信号上升、下降时,R1 电阻瞬间被旁路并提供基极电流,在晶体管由导通状态变化到截止状态时能够迅速从基区取出电子(因为R1 被旁路),消除开关的时间滞后,提高开关速度。

图1-3 MOSFET 驱动电路图
1.3 电流采样电路
通过康铜丝电阻采样的电压经LM358 放大输入单片机,进行数据的处理。

如下图1- 4 所示。

图1-4 电流的采样电路
回路电流在康铜丝电阻上产生的压降输入到放大器的反向输入端。

其中 10-R R -U U R U R U -0V
0U -U 12032
31021====
1.4 电源电路
如图1- 5 所示,蓄电池电压经过R1 限流后输入到稳压器7812再通过IN4733 进行分压后,经稳压器AS117,将输出电压调至3.3V以供单片机工作。

图1-5 电源电路
1.5 外围电路的硬件设计
C8051F330 的P0.2 为蓄电池电压采样值输入,P0.3 为太阳能光伏电压采样值输入,P0.4 为主电路中电流采样输入,P0.1 与P0.5 设计为脉宽调制信号输出,P0.6 为温度检测输入,加设拨码开关为路灯设置定时,可分别定时1~16 个小时。

2 软件设计
2.1 系统软件框图
程序设计完成系统初始化,并以查询方式检测电路参数及控制充放电,其流程图如图2- 1 所示:
图2-1 软件流程图
根据铅酸蓄电池特点,应用C8051F330 的PWM 功能对其进行充电管理。

当太阳能电池正常充电时蓄电池开通,MCU关断负载;夜间或太阳能电池不充电时蓄电池对LED放电。

当充电电压高于28.2V时,停止对蓄电池充电;此后当电压掉至24.8V时,蓄电池进入浮充态,当低于21.6V后,浮充态关闭,进入均充态。

当蓄电池电压低于21.6V时,MCU停止对负载供电,以保护蓄电池不过放。

2.2 充电程序(PWM波输出控制)C8051F330 的可编程计数器阵列PCA实现3 路8 位PWM 或16 位PWM 功能。

PCA 的PCA0H 与PCA0L 决定调制波频率,通过改变捕捉/ 比较模块的高字节PCA0CPHn 与低字节PCA0CPLn 可以改变调制波的占空比。

本设计通过调节占空比实现蓄电池三个充电阶段:蓄电池电量小于21.6v 快充,大于21.6v 小于24.8v 均匀充,大于24.8v 小于28,2v浮充。

采用8 位PWM 输出,占空比η为η=(256- PCAOCPHn)/256
附程序:
voidCharge (void)
{
if (c>0x0f0a)//>28.2v关闭充电
{
PCA0CPM0|=0x40;// 使能PCA模块0的比较器功能
PCA0CPL0=0x00;// 设置占空比
PCA0CPH0=0xFF;// 占空比约为0%
P0_1=1;
}
else
if (c>0x0d3a)//>24.8v浮充电
{
PCA0CPM0|=0x40;// 使能PCA模块0 的比较
器功能
PCA0CPL0=0x00;// 设置占空比
PCA0CPH0=0x80;// 占空比为50%
P0_1=1;
}
else
if (c>0x0b85)//>21.6v均充电
{
PCA0CPM0|=0x40;// 使能PCA 模块0 的
比较器功能
PCA0CPL0=0x00;// 设置占空比
PCA0CPH0=0x30;// 占空比为81.25%
P0_1=1;
}
else // 快充电
{
PCA0CPM0|=0x40;// 使能PCA 模块0 的比
较器功能
PCA0CPL0=0x00;// 设置占空比
PCA0CPH0=0x00;// 占空比为100%
P0_1=1;
}
3 总结
本设计依照光伏发电的工作特点和运行规律进行试验,其高效节能的照明,准确对太阳能半导体系统进行充、放电控制,从而能有效维持蓄电池的寿命,并且蓄电池在经过4 天的连续阴雨天后,仍可以正常工作,基本符合本设计的要求。

相关文档
最新文档