纳米材料自组装技术

合集下载

纳米材料自组装技术

纳米材料自组装技术

纳米材料自组装技术纳米材料自组装技术是指利用纳米颗粒和分子之间的相互作用力,在特定外界条件下实现纳米材料自组装、自排列的一种技术。

在纳米领域中,纳米材料自组装技术具有许多优势,如可控性强、成本低、工艺简单等,因此在纳米技术研究和应用中得到广泛关注。

纳米材料自组装技术的基本原理是通过调节纳米颗粒和分子之间的相互作用力,使其按照设计的结构和排列方式进行自组装。

这种相互作用力可以是静电力、范德华力、磁性力、亲疏水力等。

在纳米颗粒之间的相互作用力中,范德华力是最常用的一种,通过调节范德华力的大小和方向,可以控制纳米颗粒的组装方式和排列方式。

纳米材料自组装技术有多种方法,其中较常见的方法包括溶液中的自组装、表面吸附的自组装和气-液界面的自组装等。

在溶液中的自组装中,纳米颗粒通过溶剂的挥发、溶液的浓缩等方式进行组装,形成二维或三维结构。

表面吸附的自组装是将纳米颗粒吸附到固体表面上,通过控制吸附位置和相互作用力,实现纳米颗粒的有序排列。

气-液界面的自组装是将纳米颗粒悬浮在液体中,然后通过气体的吹扫或挥发,使纳米颗粒在液体表面上组装成膜或排列成有序结构。

纳米材料自组装技术的应用范围非常广泛。

在材料科学中,可以利用纳米材料自组装技术制备具有特定结构和性能的材料,如纳米线阵列、纳米薄膜、纳米孔等。

这些材料具有许多独特的性能,如光学性能、电学性能、磁学性能等,有广泛的应用潜力。

此外,纳米材料自组装技术还可用于制备纳米器件、生物传感器、纳米催化剂等领域。

在生物医学中,纳米材料自组装技术可以用于制备纳米药物载体、纳米图案和纳米结构等,用于癌症治疗、疾病诊断和生物传感等应用。

纳米材料自组装技术的发展还面临一些挑战和难题。

首先,纳米颗粒之间的相互作用力非常微弱,容易受到外界环境的影响,导致组装结果不稳定。

其次,纳米颗粒的组装工艺复杂,需要精确控制多个参数,如温度、浓度、pH值等。

此外,纳米材料自组装技术在大规模制备和商业化应用方面还存在一些问题,如成本高、工艺不稳定等。

纳米材料的组装与自组装

纳米材料的组装与自组装

纳米材料的组装与自组装近年来,纳米材料的研究越来越受到了重视。

纳米材料是指晶粒大小在1~100纳米之间的材料,由于其特殊的表面化学、机械和物理性质,对于材料科学、生命科学、环境科学等领域都有着广泛的应用。

然而,纳米材料制备的过程中常常面临组装和自组装问题。

本文将从这两个方面探讨纳米材料的组装与自组装,旨在为纳米材料研究和应用提供参考。

一、纳米材料的组装纳米材料的组装可以指材料的单个纳米颗粒的组装,也可以指将多个纳米颗粒组成的纳米体系的组装。

纳米材料的组装是纳米科技研究中不可或缺的一部分。

下面就针对性地介绍几种纳米材料的组装方法。

1.1 化学制备法化学制备法是指通过合成化学反应将纳米颗粒组装成具有特定形态和尺寸的结构的方法。

在这种方法中,通常使用化学反应的方法来控制纳米颗粒的大小和形状,并通过表面修饰实现组装。

例如,通过调节表面修饰剂的链长控制纳米颗粒之间的距离,从而组装成不同的结构。

1.2 模板法模板法是指利用介孔或微孔材料作为模板,将纳米颗粒沉积在孔隙中,以实现纳米材料的组装。

例如,将纳米材料溶液浸泡在具有一定孔径的硅胶模板中,通过自组装或化学反应控制纳米颗粒的大小和形态,最终将纳米颗粒沉积在孔隙中。

1.3 电化学制备法电化学制备法是指通过电化学还原或氧化,将纳米颗粒组装成具有特定形态和尺寸的结构的方法。

在这种方法中,利用电极为媒介,在电场作用下控制纳米颗粒的组装方向和排布,最终实现纳米材料的组装。

二、纳米材料的自组装在纳米领域中,自组装技术是非常重要的一种材料组装方式。

自组装是指在适当的条件下,纳米结构自发地组装成具有规则结构的过程。

自组装具有很多优点,例如高效、低成本、易于控制等,因此受到了广泛的关注和研究。

下面将介绍几种常见的自组装方法。

2.1 Langmuir-Blodgett自组装法Langmuir-Blodgett自组装法是将具有功能性基团的分子或聚合物分子溶解于有机溶剂中,形成薄膜的过程。

自组装纳米材料的制备和应用

自组装纳米材料的制备和应用

自组装纳米材料的制备和应用随着科技的发展,纳米技术越来越成为研究热点,而纳米材料中的自组装纳米材料更是备受关注。

自组装纳米材料是指在一定条件下,由于自身的特殊性质而能够自我组装成结构复杂且功能独特的材料。

本篇文章将从自组装纳米材料的制备和应用方面进行讨论。

自组装纳米材料的制备常见的自组装纳米材料包括纳米颗粒、纳米结构、纳米片、纳米晶等等。

在制备过程中,常用的技术包括溶液法、界面法、化学合成等等。

以下重点介绍其中几种比较常见的制备方法:1. 溶液法溶液法是自组装纳米材料制备的常见方式。

通过选择适当的溶剂,对称等离子体、微乳液等等,可以实现自组装纳米材料的制备。

以适当的溶剂混合物为例,当混合物制备达到所需的浓度和温度时,过饱和度会达到一定的程度,此时就可以开始自组装纳米材料。

2. 界面法界面法是指利用两种相互不溶的液体界面上的物理、化学作用来制备自组装纳米材料的方法。

其中,正交自组装技术阻止了电子进入,因此界面法可以制备大约1到100 nm的自组装金属纳米材料。

3. 化学合成法化学合成法是指利用化学反应进行自组装纳米材料的制备。

在此过程中,通过调节反应的参数,不断地制备新的型号的自组装纳米材料。

化学合成法的优点在于可以控制所得自组装纳米材料的粒径、形态、组成等物理化学性质。

自组装纳米材料的应用自组装纳米材料由于其具有独特的电学、光学、磁学等物理特性,在化学、生物、材料科学等众多方面得到了广泛应用。

以下就举出几个例子来说明:1. 拓扑结构材料由于自组装材料具有独特的拓扑结构,因此可以用于其设计新型的拓扑结构材料。

例如,在某些条件下,通过二维反硅高分子薄膜自组装可以实现均一、可控的孔径,从而为电荷和超分子合成等方面的应用提供了很好的基础。

2. 生物传感器在生物领域中,自组装纳米材料可以用于制备生物传感器,从而能够实现高分辨率的生物检测。

例如,自组装纳米材料可以用于改进磁性共振成像(MRI)的高灵敏度探测器,有助于生物学和医学等领域的实用和应用。

材料工程中各类纳米材料自组装技术原理及其优势

材料工程中各类纳米材料自组装技术原理及其优势

材料工程中各类纳米材料自组装技术原理及其优势自组装技术是材料工程领域中一种重要的制备方法,它利用材料本身的物理化学性质,将分散的纳米颗粒按照一定的规则有序地排列和组装起来,形成有序的结构和功能。

在材料工程中,各类纳米材料自组装技术被广泛应用于制备高性能材料、纳米器件、纳米传感器等领域。

本文将依次介绍各类纳米材料自组装技术的原理及其优势。

首先,介绍一维纳米线自组装技术。

一维纳米线是具有高比表面积和优异电子、光学性能的纳米材料。

利用表面张力等力学效应,可以将一维纳米线有序地组装成各种特定结构。

一维纳米线自组装技术的原理是通过控制纳米线之间的相互作用力,使其在特定的溶剂中有序排布。

通过调整溶剂的溶剂效应和表面功能化等手段,可以进一步控制纳米线的组装方式和结构。

一维纳米线自组装技术具有高效、可扩展性强、结构可调控等优势,在纳米电子器件、柔性传感器等领域有着广泛的应用前景。

其次,介绍二维纳米薄膜自组装技术。

二维纳米薄膜是具有超薄厚度、大比表面积和高载流子迁移率等特性的纳米材料。

通过利用分子间的范德华力和静电作用力等相互作用力,可以将二维纳米材料有序地自组装成纳米薄膜。

二维纳米薄膜自组装技术的原理是通过将纳米材料悬浮在溶液中,利用自身的能量最小化原则,使纳米材料有序地排列在基底上。

通过调控溶液的pH值、离子浓度、温度等参数,可以控制纳米薄膜的厚度、晶格结构和电子输运性能。

二维纳米薄膜自组装技术具有制备简单、制备速度快、结构可调控等优势,被广泛应用于柔性显示器、光电器件等领域。

然后,介绍三维纳米结构自组装技术。

三维纳米结构是由纳米材料构成的具有复杂形状和特殊功能的结构。

通过利用纳米材料的自组装性质,可以将纳米颗粒按照一定的规则有序地组装成三维结构。

三维纳米结构自组装技术的原理是通过控制纳米颗粒之间的相互作用力,使其在特定的条件下进行自组装。

通过调控溶剂的溶剂效应、表面功能化和外界场等手段,可以控制纳米颗粒的位置、排列和连接方式。

自组装技术在纳米材料合成中的应用

自组装技术在纳米材料合成中的应用

自组装技术在纳米材料合成中的应用随着科学技术的不断发展,人们对于更加精细化、高科技化的材料需求也日益增加。

在这一过程中,纳米技术逐渐成为了一种大势所趋。

纳米技术是一种能够控制物质结构在尺寸和性能等方面具有极高精度的技术,能够将材料的部分属性进行微观调整,从而制备出高性能、高可靠性、高抗冲击性、高热稳定性等各种材料。

而自组装技术则是纳米材料合成中的重要技术手段之一,可以使得不同类型、不同形态的纳米材料进行高效且精准的组装,最终实现了新材料的合成。

本文将重点探讨自组装技术在纳米材料合成中的应用。

一、自组装技术的基本原理自组装技术是指将材料的基本单元——分子、微粒子、纳米粒子、高分子等框架化功能单元在体系内自发组装为更大的结构形态的一种方法。

自组装技术能够将纳米材料进行精准合成,精益求精,通常是通过“两步法”来实现。

首先是选择合适的单元:在实际操作中,需要进行单元的筛选、择优等过程,选出最合适进行自组装的单元。

其次是设计合适的自组装方案:一方面,需要考虑单元从自己组装之后要达到的结构形态,另一方面,需要考虑形态组装的稳定性、可控性等影响因素。

当这些问题解决后,再对单元进行组装,即可得到所需要的新材料。

二、自组装技术的应用范围非常广泛,其中纳米材料合成是自组装技术的常见应用之一。

1、自组装技术在纳米材料的表面修饰中的应用纳米材料因其表面活性大、晶格缺陷多等特点,表面的化学修饰通常是将纳米材料应用在实际中的前提,通过化学修饰来改善纳米材料的使用性能和稳定性。

自组装技术可以将不同材料的化学单元组装成为表面修饰分子,将其固定在纳米材料表面,从而获得了一种新型的纳米修饰材料。

例如,自组装法可以修饰金属纳米粒子表面,例如原子层细分修饰,水相修饰,有机物基表面修饰等,也可以将自组装单元封装在纳米粒子中。

这些修饰材料具有良好的生物相容性、可溶性、可稳定性等特点,能够在纳米分析、纳米制药等多方面产生巨大的应用价值。

2、自组装技术在纳米材料的制备中的应用纳米材料在结构、形态、物理性质等方面都具有特殊的性质,利用自组装技术进行修饰和改变,能够得到新的性能更好的纳米材料。

纳米粒子自组装机制解析及其模拟算法

纳米粒子自组装机制解析及其模拟算法

纳米粒子自组装机制解析及其模拟算法纳米技术是一门涉及到物质在纳米尺度上的控制与调控的技术,近年来备受瞩目。

纳米材料的合成、组装和应用是纳米技术的三个主要方面。

其中,纳米粒子的自组装技术在纳米材料应用中具有重要意义。

本文将深入解析纳米粒子的自组装机制,介绍相关模拟算法。

一、纳米粒子的自组装机制自组装是指由简单的构建单元组成的物质在不需外界干预的情况下,在一定条件下自发地形成有序的结构或功能性组装体。

纳米粒子的自组装具有以下几个主要机制:1. 亲疏水性自组装纳米粒子具有不同的亲疏水性,通过调控粒子表面的亲疏水性,可以实现粒子之间的组装。

亲水性粒子在水溶液中会集聚形成有序结构,而疏水性粒子则会自发聚集形成疏水性区域。

通过不同亲疏水性的粒子的组装可以构建出多种形态的结构,如核壳结构、多层结构等。

2. 电荷相互作用自组装带有正电荷和负电荷的纳米粒子之间存在静电相互作用,这种作用可以驱使纳米粒子之间相互组装。

正电荷与负电荷之间的相互吸引使得纳米粒子形成排列有序的结构。

3. 磁性自组装拥有磁性的纳米粒子可以被外加磁场引导,从而实现纳米粒子的自组装。

通过调节外加磁场的方向和强度,可以控制纳米粒子的排列方式和结构形态。

以上仅是纳米粒子自组装的一些基本机制,实际中还有许多其他的机制和因素可以影响纳米粒子的自组装过程。

通过深入研究这些机制,我们可以更好地控制纳米粒子的自组装过程,实现所需的结构和功能。

二、纳米粒子自组装的模拟算法为了更好地理解纳米粒子自组装的过程和性质,研究者们开发了一系列模拟算法。

这些算法通过数值模拟的方式,模拟纳米粒子的运动和相互作用,从而预测纳米粒子的自组装行为。

1. 分子动力学模拟分子动力学模拟是一种常用的模拟纳米粒子自组装的方法。

该方法通过建立纳米粒子间相互作用的势能函数,根据牛顿第二定律,模拟纳米粒子的运动轨迹。

通过大量的模拟实验,可以分析纳米粒子的组装过程和生成的结构形态。

2. 蒙特卡洛模拟蒙特卡洛模拟是一种基于随机采样的模拟方法。

纳米材料的自组装综述

纳米材料的自组装综述

纳米材料的自组装综述纳米材料的自组装是一种具有巨大潜力的新兴领域,通过利用分子间的相互作用和动力学行为来自组装出具有特殊结构和性质的纳米材料。

自组装方法不仅能够制备出高度有序的纳米结构,还能够在纳米尺度上控制物质的形貌、结构和性能,因此被广泛应用于纳米科学、纳米技术和材料科学等领域。

自发性自组装是指纳米材料在适当条件下,由于分子间的相互作用和动力学行为,自行组装形成特定的纳米结构。

自发性自组装方法包括溶液中的自组装、蒸发结晶法、自组装膜的自发生成等。

其中,溶液中的自组装是一种常见的方法,通过溶液中的分子之间的静电相互作用、范德华力、水合作用等力来实现自组装。

在适当的溶剂和浓度条件下,纳米材料可以通过纳米粒子的互相吸引和排斥形成特定结构。

蒸发结晶法是一种将溶液中的纳米材料通过蒸发水分使其自行形成纳米结构的方法。

自组装膜的自发生成是指将自组装分子散布在固体基底上,通过控制其组装行为,使其在固体基底上形成自组装膜。

外界控制下的自组装是指通过外界参数的调控来实现纳米材料的自组装。

外界控制下的自组装方法包括利用电场、磁场、光场、温度等外界参数的调控来实现纳米材料的组装行为。

例如,电场可以通过调控分子之间的电荷来实现纳米材料的组装行为;磁场可以通过控制磁性纳米材料的相互作用来实现纳米材料的组装行为;光场可以通过控制光的强度、波长和方向来实现纳米材料的组装行为;温度可以通过调控纳米材料的热运动来实现纳米材料的组装行为。

纳米材料的自组装不仅能够制备出具有特殊结构和性能的纳米材料,还能够为纳米技术和材料科学的发展提供新的方法和途径。

自组装方法可以实现纳米材料的可控制备和自组装膜的可控形成,为纳米技术的实现和材料科学的发展提供了重要的基础。

此外,纳米材料的自组装还具有很多独特的优势,例如可以在大面积上实现纳米尺度的组装、可以制备出高度有序的纳米结构、可以通过改变组装条件来调控纳米材料的性能等。

总之,纳米材料的自组装是一种具有巨大潜力的新兴领域,通过自发性自组装和外界控制下的自组装方法,可以实现纳米材料的有序组装和控制形貌、结构和性能。

纳米自组装技术的原理及特点

纳米自组装技术的原理及特点

纳米自组装技术的原理及特点你想了解纳米自组装技术的原理和特点,对吧?那我们就从头说起,看看这项技术到底是怎么回事,为什么那么牛逼。

1. 纳米自组装技术概述1.1 什么是纳米自组装?纳米自组装技术,说白了,就是让小小的纳米级别的材料在特定条件下“自动”地组成各种复杂结构。

就像拼图一样,材料自己找准位置,组合成我们想要的模样。

这种技术真的很神奇,完全不用人动手,就能自己组装出各种精巧的结构,像微型机器、药物输送系统、甚至是电子器件。

1.2 纳米自组装的应用这项技术的应用范围广泛,几乎涵盖了科技、医学、材料等多个领域。

比如说,在医学上,我们可以用它来设计靶向药物输送系统,让药物能精准地到达病灶部位,提高治疗效果。

而在材料科学中,纳米自组装技术可以用来制造超级轻又超级强的材料,简直就像是为未来量身定制的魔法道具。

2. 纳米自组装的原理2.1 自组装的基础原理自组装的原理其实很简单,就是利用材料本身的物理化学性质,让它们在一定条件下自动组合。

就好像你把很多积木放在一起,随着时间的推移,这些积木会自动拼成你预期的样子。

这里面主要靠的是分子之间的相互作用力,比如静电力、范德华力等。

它们就像是一对对无形的“手”,把不同的纳米颗粒拉到一起,组成复杂的结构。

2.2 自组装的关键技术自组装技术中有几个关键点是我们需要了解的。

首先是材料的选择,选择合适的材料可以决定最终的结构效果。

其次,环境的控制也很重要,比如温度、溶液的pH值等,这些都可能影响自组装的结果。

最后,就是如何控制组装的精度和稳定性,这就需要我们在实验中不断调整和优化,直到达到理想效果。

3. 纳米自组装的特点3.1 高效和经济纳米自组装的一个重要特点就是高效。

传统的制造方法往往需要复杂的工艺和设备,而自组装技术则可以大大简化这些过程,节省时间和成本。

这就好比你用拼图玩具组装一个模型,比起动手打造一个复杂的模型省事多了。

3.2 可控性和灵活性自组装技术还具有很高的可控性和灵活性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
利用回流技术通过分散在溶液中的ZnO纳米粒子之间晶面 的共享成功将其自组装为一维的纳米棒状结构。
利用乙醇将柠檬酸稳定的金纳米粒子拉到分散在水中的庚 烷微液滴的表面,成功自组装成为密堆积的单层膜。
一维纳米材料的自组装
• 一维纳米材料表现出许多优异而独特的性质,比如超强的 机械强度、更高的发光效率、增强的热电性能等。
• 这些纳米粒子本身具有光学、电学和磁学的特殊性质,而表面单分子 层则提供和限制了粒子与周围环境间的作用方式。
• 通过这些表面分子之间的的相互作用,可以有效的实现对纳米粒子的 自组装。
单分子层薄膜修饰的无机纳米粒子 的自组装
• 如,单分子层保护的纳米粒子在一定条件可以在基底上通 过体系溶剂的挥发或者在水/空气界面通过LangmuirBlodgett技术自组装形成高度有序的二维/三维超晶格。
纳米粒子的自组装
• 化学修饰是实现纳米粒子自组装的一个十分重要的前提。
• 包覆在外层的有机分子同时扮演了稳定纳米粒子和提供了 纳米粒子间相互作用的双重角色。通过这些有机分子之间 的相互作用,纳米粒子很容易被化学组装成为具有新结构 的聚集体。
单分子层薄膜修饰的无机纳米粒子 的自组装
• 以单分子层薄膜稳定的胶体纳米粒子(金属、非金属)是用来自组装 制备各种分级有序结构的理想研究对象。
大分子修饰的无机纳米粒子的自组装
• 在一个小的外场刺激下,高分子体系会产生相对大的响应 。因此设计和选择适当的有机高分子可以很好的导向无机 纳米粒子,从而实现结构可控的自组装。
• 美国Russell研究小组设计了一些列具有氢键识别功能的 大分子,实现了纳米粒子在两种不相容液体界面的自组装 。在流体的界面,纳米粒子会快速运动,并很快达到组装 的平衡态。
例子:二元纳米粒子自组装为超晶格结构
TEM image of the characteristic projections of the binary superlattices, self-assembled from different nanoparticles,and modeled unit cells of the corresponding three-dimensional structures
例子:水滴铺展法自组装硅纳米线阵列
Fig.8 Self-assembly of silicon nanorod into micro-patterns via water spreading method, the resulted morphology depends on the position, i.e., the distance from the center of water drop
Template-Directed Assembly
Using templates
Template-directed colloidal self-assembly
J . Ma t e r . C h em., 2 0 0 4 , 1 4 , 4 5 9 – 4 6 8
静电力诱导的一维纳米材料的自组装
内部驱动力是实现自组装的关键可包括范德华力、氢键、 静电力等只能作用于分子水平的非共价键力和那些能作用 于较大尺寸范围内的力,如表面张力、毛细管力等。
分子自组装
• 所谓分子自组装即利用分子间短程作用力将单个分子自组 装为纳米或微米尺度的有序结构。
• 研究者们一直期望能够像操纵分子那样操纵纳米结构单元 。通过自组装技术,以纳米材料为单元,能有效地构筑纳 米或微米尺度上的有序结构。即,在没有外界干扰的情况 下,通过非共价键能将纳米结构单元自组装为多级有序结 构。
例子:基于π-π相互作用而自组装形成的磁性Fe3O4 纳米粒子
Fig.2 (a) TEM image of self-assembled microspheres prepared by dropping the as-prepared TTP-COOH-coated Fe3O4 solution (b) Structure model proposed for the self-assembly process of individual nanoparticles to form microspheres through π-πinteractions
模板诱导一维纳米材料的自组装
• 模板诱导自组装是得到理想结构一种十分 有效的方法。例如,单壁碳纳米管在氧化 硅凝胶表面进行的自组装。
(a) Self-Assembling Processes, (b) SEM image taken after the first cycle adsorption of SWNTs using amine-functionalized silica spheres
例子:胸腺嘧啶修饰的金纳米粒子的自组装
Fig. Proposed mechanism for the aggregation of polymer 1Thy-Au
没有化学修饰的无机纳米粒子的自 组装
将没有任何修饰的纳米粒子进行自组装是非常困难的,因 为粒子之间往往会产生团聚现象,在溶液中稳定分散这些 纳米粒子非常困难。
例子:自组装生长得到的ZnO 类“蝌蚪串”状分级 有序结构
SEM image of the ZnO hierarchical “tadpole-like”nanostructures
总结
• 因为纳米材料本身具有的优异物理化学性 质,使其自发现依赖一直就是科学家追逐 的研究热点。科学家们一直致力于通过自 组装的途径获得各种尺度且具有规则几何 外观的纳米材料聚集体,并期望能实现不 同于单体的优异物理化学性质。
总结
• 自然界告诉我们,复杂功能的实现大多必 然经过从小到大的多尺度分级有序的自组 织/协同过程。纳米材料的自组装必组装技术,即在一维纳米材料 生成的同时进行自组装,最终得到稳定的 、具有规则外形的聚集体。
例子:自组装氧化钛纳米棒为花状结构的聚集体
Self-assembly of TiO nanorod into flowerlike structure on glass substrate
• 将一维纳米材料组装为具有特定几何形貌的聚集体,或将 进行限域生长和实现其特定的取向会给一维纳米材料带来 崭新的整体协同效应。
• 但由于一维纳米材料的各向异性,对其进行直接组装时比 较困难的。
表面张力及毛细管力诱导的一维纳 米材料的自组装
• 在液体的表面或体相中,通过表面张力或者毛细 管力的作用,可以将一维纳米材料自发地组装为 微米尺度的有序结构。
纳米材料自组装技术
2020年4月30日星期四
自组装定义
所谓自组装(self-assembly),是指基本结构单 元(分子,纳米材料,微米或更大尺度的物质) 自发形成有序结构的一种技术。在自组装过程中 ,基本结构单元在基于非共价键的相互作用下自 发的组织或聚集为一个稳定、具有一定规则几何 外观的结构。
自组装的特点
• 自组装材料的多样性——通过自组装可以形成单 分子层、膜、囊泡、胶束、微管、小棒及更复杂 的有机/金属、有机/无机、生物/非生物的复合物 等
• 可以广泛应用在光电子、生物制药、化工等领域
自组装过程中分子在界面的识别至 关重要
自组装能否实现取决于基本结构单元的特性,如表面形貌 、形状、表面功能团和表面电势等,组装完成后最终的结 构具有最低的自由能。
例子:静电作用力诱导的自组装氧化锌纳米棒为花状结构
Self-assembly of ZnO nanorod into flowerlike structure via electrostatic interactions, as well the flowerlike ZnO nanotubes because of aging
• 科学家利用简单的LB技术,将杂乱分散在液体表 面的一维纳米材料(比如BaCrO4纳米棒,Ag纳米 线)组装为具有规则取向的纳米线阵列。这一技术 模仿了自然界运送伐木时的情形。
例子:利用LB 膜技术对溶液界面上的一维材料的自组装
Fig.6 Scanning electron microscopy images (at different magnifications) of the silver nanowire monolayer deposited on a silicon wafer
自组装法
• 自组装过程一旦开始,将自动进行到某个预期终点, 分子等结构单元将自动排列成有序的图形,即使是形 成复杂的功能体系也不需要外力的作用。
• 自组装过程并不是大量原子、离子、分子之间弱作用 力的简单叠加,而是若干个体之间同时自发的发生关 联并集合在一起形成一个紧密而又有序的整体,是一 种整体的复杂的协同作用。
纳米粒子的自组装
纳米粒子所具有的优异性质可以通过简单的操纵或调节其尺 度和几何外观来得到调节。因此, 功能性纳米粒子的可控分 级有序自组装是目前乃至将来很长一段时间里纳米科技发展 的重要方向。
将纳米粒子自组装为一维、二维或三维有序结构后可以获得 新颖的整体协同特性, 并且可以通过控制纳米粒子间的相互 作用来调节它们的性质 。
• 最典型的代表是在金或银纳米粒子的表面用硫醇进行单分 子层的修饰,通过硫醇分子间氢键来诱导自组装。
最典型的代表是在金或银纳米粒子的表面用硫醇进行单分子 层的修饰,通过硫醇分子间氢键来诱导自组装。
例子:以四齿硫醚小分子化合物修饰的金纳米粒子自组装为 球状聚集体
Fig. Schematic illustrations for the TTE-mediated assembling of TOA-Aunm particles into a spherical assembly,and the Thiolinitiated disassembling process
例子:在水/甲苯界面Fe3O4 纳米粒子自组装
相关文档
最新文档