2020年春 浙教版 八年级下册数学 第3章 数据分析初步 单元考试测试卷 (解析版)
2020年春季八年级浙教版数学下册单元考试测试卷:第3章数据分析初步

第3章 达标检测卷(时间:90分钟 满分:120分)一、细心填一填(每小题3分,共24分)1.甲、乙两人进行射击测试,两人10次射击成绩的平均数都是8.5环,方差分别是:s 甲2=2,s 乙2=1.5,则射击成绩较稳定的是___.(填“甲”或“乙”)2.数据1,2,3,a 的平均数是3,数据4,5,b ,6的众数是5,则a +b =____. 3.已知一组数据3,1,5,x ,2,4的众数是3,那么这组数据的标准差是____. 4.某大学自主招生考试只考数学和物理,计算综合得分时,按数学占60%,物理占40%计算.已知小明数学得分为95分,综合得分为93分,那么小明物理得分是___分.5.某校抽样调查了七年级学生每天体育锻炼时间,整理数据后制成了如下的频数分布表,这个样本的中位数在第____组.6.一组数据3,4,6,8,x 的中位数是x ,且x 是满足不等式组⎩⎪⎨⎪⎧x -3≥0,5-x >0,的整数,则x的值为___.7.两组数据m ,6,n 与1,m ,2n ,7的平均数都是6,若将这两组数据合并成一组数据,则这组新数据的中位数为____.8.已知一组数据1,2,3,…,n (从左往右数,第1个数是1,第2个数是2,第3个数是3,依此类推,第n 个数是n ).设这组数据的各数之和是s ,中位数是k ,则s =____.(用只含有n ,k 的代数式表示)二、精心选一选(每小题3分,共30分)9.某校对九年级6个班学生平均一周的课外阅读时间进行了统计,分别为(单位:h):3.5,4,3.5,5,5,3.5.这组数据的众数是( )A .3B .3.5C .4D .510.在端午节到来之前,学校食堂推荐了A ,B ,C 三家粽子专卖店,对全校师生爱吃哪家店的粽子做调查,以决定最终向哪家店采购.下面的统计量,最值得关注的是( )A .方差B .平均数C .中位数D .众数11.在样本方差的计算公式S 2=110[(x 1-20)2+(x 2-20)2+…+(x 10-20)2]中,数字10与20分别表示样本的( )A .容量,平均数B .平均数,容量C .容量,方差D .标准差,平均数 12.期中考试后,班里有两位同学议论他们所在小组同学的数学成绩,小明说:“我们组成绩是86分的同学最多”,小英说:“我们组的7位同学成绩排在最中间的恰好也是86分”,上面两位同学的话能反映的统计量是( )A .众数和平均数B .平均数和中位数C .众数和方差D .众数和中位数 13.某班组织了一次读书活动,统计了10名同学在一周内的读书时间,他们一周内的读书时间累计如表,则这10名同学一周内累计读书时间的中位数是( )A.8 B .7 C .9 D .1014.某市6月份日平均气温统计如图,则在日平均气温这组数据中,众数和中位数分别是( )A .21,21B .21,21.5C .21,22D .22,2215.今年,我省启动了“关爱留守儿童工程”.某村小学为了了解各年级留守儿童的数量,对一到六年级留守儿童数量进行了统计,得到每个年级的留守儿童人数分别为10,15,10,17,18,20.对于这组数据,下列说法错误的是( )A .平均数是15B .众数是10C .中位数是17D .方差是44316.某学校举行理科(含数学、物理、化学、生物四科)综合能力比赛,四科的满分都为一周内累计的读书时间/时5 8 10 14 人数/个1432100分.甲、乙、丙三人四科的测试成绩如下表,综合成绩按照数学、物理、化学、生物四科测试成绩的1.2∶1∶1∶0.8的比例计分,则综合成绩第一名是( )学科数学物理化学生物甲95858560乙80809080丙70908095A.甲B.乙C.丙D.不确定17.一组数据6,4,a,3,2的平均数是5,这组数据的标准差为( )A.2 2 B.5 C.8 D.318.在某中学举行的演讲比赛中,八年级5名参赛选手的成绩如下表,请你根据表中提供的数据,计算出这5名选手成绩的方差为( )选手1号2号3号4号5号平均成绩得分9095■898891A.2 B.6.8 C.34 D.93三、耐心做一做(共66分)19.(8分)在“全民读书月活动”中,小明调查了全班40名同学本学期计划购买课外书的花费情况,并将结果绘制如图的统计图.请根据相关信息,解答下列问题:(直接填写结果)(1)这次调查获取的样本数据的众数是___;(2)这次调查获取的样本数据的中位数是____;(3)若该校共有学生1 000人,根据样本数据,估计本学期计划购买课外书花费50元的学生有____人.20.(10分)为了了解某种电动汽车的性能,对这种电动汽车进行了抽检,将一次充电后行驶的里程数分为A,B,C,D四个等级,其中相应等级的里程依次为200千米,210千米,220千米,230千米,获得如下不完整的统计图.根据以上信息,解答下列问题:(1)问:这次被抽检的电动汽车共有几辆?并补全条形统计图;(2)估计这种电动汽车一次充电后行驶的平均里程数为多少千米?21.(10分)某公司员工的月工资情况统计如下表:员工人数 2 4 8 20 8 4月工资(元) 7 000 6 000 4 000 3 500 3 000 2 700(1)分别计算该公司员工月工资的平均数、中位数和众数;(2)你认为用(1)中计算出的哪个数据来代表该公司员工的月工资水平更为合适?请简要说明理由.22.(12分)为了推动阳光体育运动的广泛开展,引导学生走向操场,走进大自然,走到阳光下,积极参加体育锻炼,学校准备购买一批运动鞋供学生借用,现从各年级随机抽取了部分学生的鞋号,绘制了如下的统计图①和图②,请根据相关信息,解答下列问题:(1)本次接受随机抽样调查的学生人数为___,图①中m的值为___;(2)求本次调查获取的样本数据的众数和中位数;(3)根据样本数据,若学校计划购买200双运动鞋,建议购买35号运动鞋多少双?23.(12分)甲、乙两人是NBA联盟凯尔特人队的两位明星球员,两人在前五个赛季的罚球命中率如下表:甲球员的命中率(%) 87 86 83 85 79乙球员的命中率(%) 87 85 84 80 84(1)分别求出甲、乙两位球员在前五个赛季罚球的平均命中率;(2)在某场比赛中,因对方球员技术犯规需要凯尔特人队选派一名队员进行罚球,你认为甲、乙两位球员谁来罚球更好?(请通过计算说明理由)24.(14分)如图,A,B两个旅游点从2012年至2016年“五一”的旅游人数变化情况分别用实线和虚线表示.根据图中所有示信息,解答以下问题:(1)B旅游点的旅游人数相对上一年来说,增长最快的是哪一年?(2)求A,B两个旅游点从2012年至2016年旅游人数的平均数和方差,并从平均数和方差的角度,用一句话对这两个旅游点的情况进行评价;(3)A旅游点现在的门票价格为每人80元,为保护旅游点环境和游客的安全,A旅游点的最佳接待人数为4万人,为控制游客数量,A旅游点决定提高门票价格.已知门票价格x(元)与游客人数y(万人)满足函数关系y=5-x100.若要使A旅游点的游客人数不超过4万人,则门票价格至少应提高多少?参考答案1. 乙2.113.1534.905.26.47.78.nk9.B 10.D 11.A 12.D 13.C 14.C 15.C 16.A 17.A 18.B 19.(1)30元 (2)50元 (3)25020. 解:(1)被抽检的电动汽车共有30÷30%=100(辆),补全条形统计图略. (2)x =1100(10×200+30×210+40×220+20×230)=217(千米).21. 解:(1)平均数=3 800元,中位数=3 500元,众数=3 500元.(2)用众数代表该公司员工的月工资水平更为合适,因为3 500出现的次数最多,能代表大部分人的工资水平. 22.解:(1)40 15.(2)众数为35 中位数为36+362=36.(3)∵在40名学生中,鞋号为35的学生人数比例为30%,∴由样本数据,估计学校各年级中学生鞋号为35的人数比例为30%,则计划购买200双运动鞋,有200×30%=60(双)为35号.23. 解:(1)x 甲=(87+86+83+85+79)÷5=84;x 乙=(87+85+84+80+84)÷5=84.所以甲、乙两位球员罚球的平均命中率都为84%. (2)S甲2=[(87-84)2+(86-84)2+(83-84)2+(85-84)2+(79-84)2]÷5=8,S乙2=[(87-84)2+(85-84)2+(84-84)2+(80-84)2+(84-84)2]÷5=5.2.由x 甲=x 乙,S 甲2>S 乙2可知,乙球员的罚球命中率比较稳定,建议由乙球员来罚球更好.24. 解:(1)B 旅游点的旅游人数相对上一年来说,增长最快的是2 013年.(2) x A =1+2+3+4+55=3(万人),x B =3+3+2+4+35=3(万人).S A 2=15×[0+0+(-1)2+12+0]=25(万人2).从2012年至2016年,A ,B 两个旅游点平均每年的旅游人数均为3万人,但A 旅游点较B 旅游点的旅游人数波动大.(3) 由题意得5-x100≤4,解得x ≥100,100-80=20(元).答:门票价格至少应提高20元.。
浙教 版八年级下册第3章《数据分析初步》2020年单元测试卷(含答案解析)

浙教新版八年级下学期第3章《数据分析初步》2020年单元测试卷考试时间:100分钟满分:120分班级:___________姓名:___________座号:___________成绩:___________一.选择题(共12小题,满分36分,每小题3分)1.如果一组数据2,4,x,3,5的众数是4,那么该组数据的平均数是()A.5.2B.4.6C.4D.3.62.某同学在本学期的前四次数学测验中得分依次是95,82,76,88,马上要进行第五次测验了,他希望五次成绩的平均分能达到85分,那么这次测验他应得()分.A.84B.75C.82D.873.如表是10支不同型号签字笔的相关信息,则这10支签字笔的平均价格是()型号A B C价格(元/支)1 1.5 2数量(支)3 2 5A.1.4元B.1.5元C.1.6元D.1.7元4.某公司欲招聘一名公关人员,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们的成绩如表:候选人甲乙丙丁测试成绩(百分制)面试86929083笔试90838392如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权.根据四人各自的平均成绩,公司将录取()A.甲B.乙C.丙D.丁5.用计算器计算数据13.49,13.53,14.07,13.51,13.84,13.98,14.67,14.80,14.61,14.60,14.41,14.31,14.38,14.02,14.17的平均数约为()A.14.15B.14.16C.14.17D.14.206.如图是根据我市某天七个整点时的气温绘制成的统计图,则这七个整点时气温的中位数和平均数分别是()A.30,28B.26,26C.31,30D.26,227.数据3,6,7,4,x的平均数是5,则这组数据的中位数是()A.4B.4.5C.5D.68.样本数据10,10,x,8的众数与平均数相同,那么这组数据的中位数是()A.8B.9C.10D.129.为了解某种电动汽车一次充电后行驶的里程数,抽检了10辆车,统计结果如图所示,则在一次充电后行驶的里程数这组数据中,众数和中位数分别是()A.220,220B.220,210C.200,220D.230,21010.在一组数据3,4,4,6,8中,下列说法错误的是()A.它的众数是4B.它的平均数是5C.它的中位数是5D.它的众数等于中位数11.在今年的中招体育考试中,我校甲、乙、丙、丁四个班级的平均分完全一样,方差分别为:S甲2=8.5,S乙2=21.7,S丙2=15,S丁2=17,则四个班体考成绩最稳定的是()A.甲班B.乙班C.丙班D.丁班12.甲、乙、丙、丁四人进行射击测试,经过测试,平均成绩均为9.2环,方差如下表所示:选手甲乙丙丁方差 1.75 2.930.500.40则在这四个选手中,成绩最稳定的是()A.甲B.乙C.丙D.丁二.填空题(共8小题,满分24分,每小题3分)13.已知一组数据x1,x2,x3,x4的平均数是5,则数据x1+3,x2+3,x3+3,x4+3的平均数是.14.某校规定学生的体育成绩由三部分组成,早晨锻炼及体育课外活动表现占成绩的15%,体育理论测试占35%,体育技能测试占50%,小明的上述三项成绩依次是94分,90分,96分,则小明这学期的体育成绩是分.15.某同学在使用计算器求20个数的时候,将88误输入为8,那么由此求出的平均数与实际平均数的差为.16.某学校抽查了30名学生参加“学雷锋社会实践”活动的次数,并根据数据绘制成了如图所示的条形统计图,则30名学生参加活动的次数的中位数是次.17.自然数4、5、5、x、y从小到大排列后,其中位数为4,如果这组数据唯一的众数是5,那么,所有满足条件的x、y中,x+y的最大值是.18.某同学对甲、乙、丙、丁四个市场二月份每天的白菜价格进行调查,计算后发现这个月四个市场的价格平均值相同、方差分别为S甲2=8.5,S乙2=2.5,S丙2=10.1,S丁2=7.4,二月份白菜价格最稳定的市场是.19.已知一个样本1、3、2、5、x,它的平均数是3,则这个样本的标准差为.20.用科学记算器求得271,315,263,289,300,277,286,293,297,280的平均数为,标准差为.(精确到0.1)三.解答题(共8小题,满分60分)21.(6分)某老师计算学生的学期总评成绩时按照如下的标准:平时成绩占20%,期中成绩占30%,期末成绩占50%.小东和小华的成绩如下表所示:学生平时成绩期中成绩期末成绩小东708090小华907080请你通过计算回答:小东和小华的学期总评成绩谁较高?22.(6分)作为一项惠农强农应对当前国际金融危机、拉动国内消费需求的重要措施,“家电下乡”工作已经国务院批准从2008年12月1日起在我市实施.我市某家电公司营销点自去年12月份至今年5月份销售两种不同品牌冰箱的数量如下图:(1)完成下表:平均数方差甲品牌销售量/台10乙品牌销售量/台(2)请你依据折线图的变化趋势,对营销点今后的进货情况提出建议.23.(6分)某班为了从甲、乙两同学中选出班长,进行了一次演讲答辩和民主测评,A、B、C、D、E五位老师作为评委,对“演讲答辩”情况进行了评价,全班50位同学参与了民主测评,结果如下表:A B C D E好较好一般甲9092949588甲4073乙8986879491乙4244表一演讲答辩得分表二民主测评得票规则:①演讲答辩得分按“去掉一个最高分和一个最低分后,再算出平均分”的方法确定;②民主测评得分=“好”票数×2分+“较好”票数×1分+“一般”票数×0分;③演讲答辩得分和民主测评得分按4:6确定权重,计算综合得分,请你计算一下甲、乙的综合得分,选出班长.24.(6分)学生的平时作业、期中考试、期末考试三项成绩分别按2:3:5的比例计入学期总评成绩.小明、小亮、小红的平时作业、期中考试、期末考试的数学成绩如下表,计算这学期谁的数学总评成绩最高?平时成绩期中成绩期末成绩小明969490小亮909693小红90909625.(9分)青海省玉树县发生了7.1级地震;某校开展了“玉树,我们在一起”的赈灾捐款活动,其中九年级二班全体同学的捐款情况如下表:捐款金额5 10152050(元)7 18123捐款人数(人)由于填表的同学不小心把墨水滴在了表上,致使表中数据不完整,但知道捐款金额为10元的人数为全班人数的36%,结合上表回答下列问题:(1)九年级二班共有多少人?(2)学生捐款金额的众数和中位数分别为多少元?(3)如果把该班学生的捐款情况绘制成扇形统计图,则捐款金额为20元的人数所对应的扇形圆心角为多少度?26.(9分)某校九年级全体学生参加某次数学考试,以下是根据这次考试的有关数据制作的统计图,请你根据图中的数据完成下列问题.(2)这次考试分数在80﹣99分的学生数占总人数的百分比为%(精确到0.01%);(3)将条形图补充完整,并在图中标明数值;(4)这次考试,各分数段学生人数的中位数所处的分数段是分.27.(9分)为了了解某学校初四年级学生每周平均课外阅读时间的情况,随机抽查了该学校初四年级m名同学,对其每周平均课外阅读时间进行统计,绘制了如下条形统计图(图一)和扇形统计图(图二):(1)根据以上信息回答下列问题:①求m值.②求扇形统计图中阅读时间为5小时的扇形圆心角的度数.③补全条形统计图.(2)直接写出这组数据的众数、中位数,求出这组数据的平均数.28.(9分)在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m),绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)图1中a的值为;(Ⅱ)求统计的这组初赛成绩数据的平均数、众数和中位数;(Ⅲ)根据这组初赛成绩,由高到低确定9人进入复赛,请直接写出初赛成绩为1.65m 的运动员能否进入复赛.浙教新版八年级下学期第3章《数据分析初步》2020年单元测试卷参考答案与试题解析一.选择题(共12小题)1.如果一组数据2,4,x,3,5的众数是4,那么该组数据的平均数是()A.5.2B.4.6C.4D.3.6【分析】根据这组数据的众数是4,求出x的值,根据平均数的公式求出平均数.【解答】解:∵这组数据的众数是4,∴x=4,=(2+4+4+3+5)=3.6.故选:D.2.某同学在本学期的前四次数学测验中得分依次是95,82,76,88,马上要进行第五次测验了,他希望五次成绩的平均分能达到85分,那么这次测验他应得()分.A.84B.75C.82D.87【分析】设这次测验他应得x分,根据算术平均数的计算公式:列出算式,求解即可.【解答】解:设这次测验他应得x分,根据题意得:=85,解得:x=84,则这次测验他应得84分.故选:A.3.如表是10支不同型号签字笔的相关信息,则这10支签字笔的平均价格是()型号A B C价格(元/支)1 1.5 2数量(支)3 2 5A.1.4元B.1.5元C.1.6元D.1.7元【分析】平均数的计算方法是求出所有数据的和,然后除以数据的总个数.【解答】解:该组数据的平均数=(1×3+1.5×2+2×5)=1.6(元).故选:C.4.某公司欲招聘一名公关人员,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们的成绩如表:候选人甲乙丙丁测试成绩(百分制)面试86929083笔试90838392如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权.根据四人各自的平均成绩,公司将录取()A.甲B.乙C.丙D.丁【分析】根据题意先算出甲、乙、丙、丁四位候选人的加权平均数,再进行比较,即可得出答案.【解答】解:甲的平均成绩为:(86×6+90×4)÷10=87.6(分),乙的平均成绩为:(92×6+83×4)÷10=88.4(分),丙的平均成绩为:(90×6+83×4)÷10=87.2(分),丁的平均成绩为:(83×6+92×4)÷10=86.6(分),因为乙的平均分数最高,所以乙将被录取.故选:B.5.用计算器计算数据13.49,13.53,14.07,13.51,13.84,13.98,14.67,14.80,14.61,14.60,14.41,14.31,14.38,14.02,14.17的平均数约为()A.14.15B.14.16C.14.17D.14.20【分析】本题要求同学们,熟练应用计算器.【解答】解:借助计算器,先按MOOE按2再按1,会出现一竖,然后把你要求平均数的数字输进去,好了之后按AC键,再按shift再按1,然后按5,就会出现平均数的数值.故选:B.6.如图是根据我市某天七个整点时的气温绘制成的统计图,则这七个整点时气温的中位数和平均数分别是()A.30,28B.26,26C.31,30D.26,22【分析】此题根据中位数,平均数的定义解答.【解答】解:由图可知,把7个数据从小到大排列为22,22,23,26,28,30,31,中位数是第4位数,第4位是26,所以中位数是26.平均数是(22×2+23+26+28+30+31)÷7=26,所以平均数是26.故选:B.7.数据3,6,7,4,x的平均数是5,则这组数据的中位数是()A.4B.4.5C.5D.6【分析】根据题目中的数据可以求得x的值,然后将题目中的数据按照从小到大的顺序排列,即可解答本题.【解答】解:∵3,6,7,4,x的平均数是5,∴x=5×5﹣(3+6+7+4)=25﹣20=5,∴在数据3,6,7,4,5中按照从小到大是3,4,5,6,7,故这组数据的中位数5,故选:C.8.样本数据10,10,x,8的众数与平均数相同,那么这组数据的中位数是()A.8B.9C.10D.12【分析】根据平均数的定义先求出x.求中位数可将一组数据从小到大依次排列,中间数据(或中间两数据的平均数)即为所求.【解答】解:若x=8,则样本有两个众数10和8平均数=(10+10+8+8)÷4=9,与已知中样本众数和平均数相同不符所以样本只能有一个众数为10则平均数也为10,(10+10+x+8)÷4=10,求得x=12.将这组数据从小到大重新排列后为:8,10,10,12;最中间的那两个数的平均数即中位数是10.故选:C.9.为了解某种电动汽车一次充电后行驶的里程数,抽检了10辆车,统计结果如图所示,则在一次充电后行驶的里程数这组数据中,众数和中位数分别是()A.220,220B.220,210C.200,220D.230,210【分析】根据众数与中位数的定义,找出出现次数最多的数,把这组数据从小到大排列,求出最中间两个数的平均数即可.【解答】解:数据220出现了4次,最多,故众数为220,共1+2+3+4=10个数,排序后位于第5和第6位的数均为220,故中位数为220,故选:A.10.在一组数据3,4,4,6,8中,下列说法错误的是()A.它的众数是4B.它的平均数是5C.它的中位数是5D.它的众数等于中位数【分析】一组数据中出现次数最多的数为众数;将这组数据从小到大的顺序排列,处于中间位置的一个数或两个数的平均数是中位数.根据平均数的定义求解.【解答】解:在这一组数据中4是出现次数最多的,故众数是4;将这组数据已经从小到大的顺序排列,处于中间位置的那个数是4,那么由中位数的定义可知,这组数据的中位数是4;由平均数的公式的,=(3+4+4+6+8)÷5=5,平均数为5,故选:C.11.在今年的中招体育考试中,我校甲、乙、丙、丁四个班级的平均分完全一样,方差分别为:S甲2=8.5,S乙2=21.7,S丙2=15,S丁2=17,则四个班体考成绩最稳定的是()A.甲班B.乙班C.丙班D.丁班【分析】根据四个班的平均分相等结合给定的方差值,即可找出成绩最稳定的班级.【解答】解:∵甲、乙、丙、丁四个班级的平均分完全一样,方差分别为:S甲2=8.5、S乙2=21.7、S丙2=15、S丁2=17,且8.5<15<17<21.7,∴甲班体考成绩最稳定.故选:A.12.甲、乙、丙、丁四人进行射击测试,经过测试,平均成绩均为9.2环,方差如下表所示:选手甲乙丙丁方差 1.75 2.930.500.40则在这四个选手中,成绩最稳定的是()A.甲B.乙C.丙D.丁【分析】先比较四个选手的方差的大小,根据方差的性质解答即可.【解答】解:∵2.93>1.75>0.50>0.4,∴丁的方差最小,∴成绩最稳定的是丁,故选:D.二.填空题(共8小题)13.已知一组数据x1,x2,x3,x4的平均数是5,则数据x1+3,x2+3,x3+3,x4+3的平均数是8.【分析】根据平均数的性质知,要求x1+3,x2+3,x3+3,x4+3的平均数,只要把数x1,x2,x3,x4的和表示出即可.【解答】解:∵x1,x2,x3,x4的平均数为5∴x1+x2+x3+x4=4×5=20,∴x1+3,x2+3,x3+3,x4+3的平均数为:=(x1+3+x2+3+x3+3+x4+3)÷4=(20+12)÷4=8,故答案为:8.14.某校规定学生的体育成绩由三部分组成,早晨锻炼及体育课外活动表现占成绩的15%,体育理论测试占35%,体育技能测试占50%,小明的上述三项成绩依次是94分,90分,96分,则小明这学期的体育成绩是93.6分.【分析】因为早晨锻炼及体育课外活动表现占成绩的15%,体育理论测试占35%,体育技能测试占50%,利用加权平均数的公式即可求出答案.【解答】解:由题意知,小明的体育成绩=94×15%+90×35%+96×50%=93.6(分).故小明的体育成绩是93.6分.故答案为93.6.15.某同学在使用计算器求20个数的时候,将88误输入为8,那么由此求出的平均数与实际平均数的差为4.【分析】运用平均数的意义求解.两组数据的总和相差88﹣8=80,则它们的平均数相差80÷20.【解答】解:由题意知,将88误输入为8,则总和将少加(88﹣8)=80,所以算出的平均数比实际的平均数少80÷20=4.故答案为:4.16.某学校抽查了30名学生参加“学雷锋社会实践”活动的次数,并根据数据绘制成了如图所示的条形统计图,则30名学生参加活动的次数的中位数是2次.【分析】根据中位数的定义求解即可.【解答】解:这组数据按顺序排列后中位数为:2.故答案为:2.17.自然数4、5、5、x、y从小到大排列后,其中位数为4,如果这组数据唯一的众数是5,那么,所有满足条件的x、y中,x+y的最大值是5.【分析】根据题意得x与y都不超过4,再由这组数据唯一的众数是5,则x≠4且y≠4,则x+y的最大值为2+3.【解答】解:∵这组数据的中位数为4,∴x≤4,y≤4,∵这组数据唯一的众数是5,∴x≠4且y≠4,∵要求x+y的最大值,∴x=2,y=3,或x=3,y=2,即x+y的最大值=2+3=5,故答案为5.18.某同学对甲、乙、丙、丁四个市场二月份每天的白菜价格进行调查,计算后发现这个月四个市场的价格平均值相同、方差分别为S甲2=8.5,S乙2=2.5,S丙2=10.1,S丁2=7.4,二月份白菜价格最稳定的市场是乙.【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【解答】解:∵S甲2=8.5,S乙2=2.5,S丙2=10.1,S丁2=7.4,∴S乙2<S丁2<S甲2<S丙2,∴二月份白菜价格最稳定的市场是乙;故答案为:乙.19.已知一个样本1、3、2、5、x,它的平均数是3,则这个样本的标准差为.【分析】本题可运用平均数的公式求出x的值,再代入方差的公式,开方后即可得出标准差.【解答】解:因为样本平均数是3,所以x=3×5﹣1﹣3﹣2﹣5,即x=4,所以S2=×(4+0+1+4+1)=2,则标准差为.故答案为:.20.用科学记算器求得271,315,263,289,300,277,286,293,297,280的平均数为287.1,标准差为14.4.(精确到0.1)【分析】根据平均数、标准差的概念计算.方差S2=[(x1﹣)2+(x2﹣)2+…+(x n ﹣)2],标准差是方差的算术平方根.【解答】解:由题意知,数据的平均数=(271+315+263+289+300+277+286+293+297+280)=287.1方差S2=[(271﹣287.1)2+(315﹣287.1)2+(263﹣287.1)2+(289﹣287.1)2+(300﹣287.1)2+(277﹣287.1)2+(286﹣287.1)2+(293﹣287.1)2+(297﹣287.1)2+(280﹣287.1)2]=207.4标准差为≈14.4.故填287.1,14.4.三.解答题(共8小题)24.某老师计算学生的学期总评成绩时按照如下的标准:平时成绩占20%,期中成绩占30%,期末成绩占50%.小东和小华的成绩如下表所示:学生平时成绩期中成绩期末成绩小东708090小华907080请你通过计算回答:小东和小华的学期总评成绩谁较高?【分析】分别求出小东和小华的学期总评分,比较得到结果.【解答】解:小东总评成绩为70×20%+80×30%+90×50%=83(分);小华总评成绩为90×20%+70×30%+80×50%=79(分).∴小东的学期总评成绩高于小华.22.作为一项惠农强农应对当前国际金融危机、拉动国内消费需求的重要措施,“家电下乡”工作已经国务院批准从2008年12月1日起在我市实施.我市某家电公司营销点自去年12月份至今年5月份销售两种不同品牌冰箱的数量如下图:(1)完成下表:平均数方差甲品牌销售量/台10乙品牌销售量/台(2)请你依据折线图的变化趋势,对营销点今后的进货情况提出建议.【分析】(1)读图可得数据,故甲品牌的方差为(9+4+4+9)=;乙品牌的平均数为(9+10+11+9+12+9)=10;(2)根据折线图,分析可得建议,答案不唯一.【解答】解:(1)计算平均数、方差如下表:平均数方差甲品牌销售量/台10乙品牌销售量/台10(2)建议如下:从折线图来看,甲品牌冰箱的月销售量呈上升趋势,进货时可多进甲品牌冰箱.23.某班为了从甲、乙两同学中选出班长,进行了一次演讲答辩和民主测评,A、B、C、D、E五位老师作为评委,对“演讲答辩”情况进行了评价,全班50位同学参与了民主测评,结果如下表:A B C D E好较好一般甲9092949588甲4073乙8986879491乙4244表一演讲答辩得分表二民主测评得票规则:①演讲答辩得分按“去掉一个最高分和一个最低分后,再算出平均分”的方法确定;②民主测评得分=“好”票数×2分+“较好”票数×1分+“一般”票数×0分;③演讲答辩得分和民主测评得分按4:6确定权重,计算综合得分,请你计算一下甲、乙的综合得分,选出班长.【分析】首先分别求出甲、乙两位选手各自演讲答辩的平均分,然后根据平均数的概念分别计算出甲、乙两位选手的民主测评分,最后根据不同权重计算加权成绩.【解答】解:甲演讲答辩的平均分为:=92;乙演讲答辩的平均分为:=89,甲民主测评分为:40×2+7×1=87,乙民主测评分为:42×2+4×1=88,∴甲综合得分:=89,∴乙综合得分:=88.4,∵89>88.4,∴应选择甲当班长.24.学生的平时作业、期中考试、期末考试三项成绩分别按2:3:5的比例计入学期总评成绩.小明、小亮、小红的平时作业、期中考试、期末考试的数学成绩如下表,计算这学期谁的数学总评成绩最高?平时成绩期中成绩期末成绩小明969490小亮909693小红909096【分析】根据三项成绩比算出三个人的成绩,比较大小即可得出结果.【解答】解:小明数学总评成绩:96×+94×+90×=92.4,小亮数学总评成绩:90×+96×+93×=93.3,小红数学总评成绩:90×+90×+96×=93,∵93.3>93>92.4,∴小亮成绩最高.答:这学期小亮的数学总评成绩最高.25.青海省玉树县发生了7.1级地震;某校开展了“玉树,我们在一起”的赈灾捐款活动,其中九年级二班全体同学的捐款情况如下表:5 10152050捐款金额(元)捐款人数7 18123(人)由于填表的同学不小心把墨水滴在了表上,致使表中数据不完整,但知道捐款金额为10元的人数为全班人数的36%,结合上表回答下列问题:(1)九年级二班共有多少人?(2)学生捐款金额的众数和中位数分别为多少元?(3)如果把该班学生的捐款情况绘制成扇形统计图,则捐款金额为20元的人数所对应的扇形圆心角为多少度?【分析】(1)由于知道捐款金额为10元的人数为全班人数的36%,由此即可求出九年级二班共有多少人;(2)首先利用(1)的结果计算出捐15元的同学人数,然后利用中位数、众数的定义即可求出捐款金额的众数和中位数;(3)由于捐款金额为20元的人数为12人,由此求出捐款金额为20元的人数是总人数的百分比,然后乘以360°就知道扇形的圆心角.【解答】解:(1)∵18÷36%=50,∴九年级二班共有50人;(2)∵捐15元的同学人数为50﹣(7+18+12+3)=10,∴学生捐款的众数为10元,又∵第25个数为10,第26个数为15,∴中位数为=12.5元;(3)依题意捐款金额为20元的人数所对应的扇形圆心角的度数为.26.某校九年级全体学生参加某次数学考试,以下是根据这次考试的有关数据制作的统计图,请你根据图中的数据完成下列问题.(1)该校参加这次数学考试的九年级学生共有716人;(2)这次考试分数在80﹣99分的学生数占总人数的百分比为19.41%(精确到0.01%);(3)将条形图补充完整,并在图中标明数值;(4)这次考试,各分数段学生人数的中位数所处的分数段是60﹣79分.【分析】(1)根据分数的百分比和频数可求总数;(2)由条形图可得:考试分数在80﹣99分的学生数,借助(1)的结论,可计算出其百分比;(3)计算出100﹣﹣120之间的人数,据此可补全条形图;(4)根据中位数的求法,即可得出答案.【解答】解:(1)参加这次数学考试的九年级学生人数=124÷17.33%≈716;(2)参加这次数学考试的九年级学生占的百分比为:139÷716≈19.41%;(3)100﹣﹣120的频数为:716×29.88%=214,如图:(4)中位数从高到低排列,100﹣120分占29.88%,80﹣99占19.41%,即80﹣120占49.29%小于50%,所以中位数在60﹣79分.27.为了了解某学校初四年级学生每周平均课外阅读时间的情况,随机抽查了该学校初四年级m名同学,对其每周平均课外阅读时间进行统计,绘制了如下条形统计图(图一)和扇形统计图(图二):(1)根据以上信息回答下列问题:①求m值.②求扇形统计图中阅读时间为5小时的扇形圆心角的度数.③补全条形统计图.(2)直接写出这组数据的众数、中位数,求出这组数据的平均数.【分析】(1)①根据2小时所占扇形的圆心角的度数确定其所占的百分比,然后根据条形统计图中2小时的人数求得m的值;②结合周角是360度进行计算;③求得总人数后减去其他小组的人数即可求得第三小组的人数;(2)利用众数、中位数的定义及平均数的计算公式确定即可.【解答】解:(1)①∵课外阅读时间为2小时的所在扇形的圆心角的度数为90°,∴其所占的百分比为=,∵课外阅读时间为2小时的有15人,∴m=15÷=60;②依题意得:×360°=30°;③第三小组的频数为:60﹣10﹣15﹣10﹣5=20,补全条形统计图为:(2)∵课外阅读时间为3小时的20人,最多,∴众数为3小时;∵共60人,中位数应该是第30和第31人的平均数,且第30和第31人阅读时间均为3小时,∴中位数为3小时;平均数为:=2.75小时.28.在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m),绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)图1中a的值为25;(Ⅱ)求统计的这组初赛成绩数据的平均数、众数和中位数;(Ⅲ)根据这组初赛成绩,由高到低确定9人进入复赛,请直接写出初赛成绩为1.65m 的运动员能否进入复赛.【分析】(Ⅰ)用整体1减去其它所占的百分比,即可求出a的值;(Ⅱ)根据平均数、众数和中位数的定义分别进行解答即可;(Ⅲ)根据中位数的意义可直接判断出能否进入复赛.【解答】解:(Ⅰ)根据题意得:1﹣20%﹣10%﹣15%﹣30%=25%;则a的值是25;故答案为:25;(Ⅱ)观察条形统计图得:==1.61;∵在这组数据中,1.65出现了6次,出现的次数最多,∴这组数据的众数是1.65;将这组数据从小到大排列,其中处于中间的两个数都是1.60,则这组数据的中位数是1.60.(Ⅲ)能;∵共有20个人,中位数是第10、11个数的平均数,∴根据中位数可以判断出能否进入前9名;∵1.65m>1.60m,∴能进入复赛.21。
浙教版2020年八年级数学下册:第3章 数据分析初步测试卷含答案

浙教版2020年八年级数学下册:第3章数据分析初步测试卷含答案时间:120分钟班级:________姓名:________得分:________一、选择题(每小题4分,共40分)1.一组数据:5,4,6,5,6,6,3,这组数据的众数是( A)A.6 B.5 C.4 D.32.在端午节到来之前,学位食堂推荐了A,B,C三家粽子专卖店,对全校师生爱吃哪家的粽子作调查,以决定最终向哪家店采购,下面的统计量中最值得关注的是( D ) A.方差B.平均数C.中位数D.众数3.如图是根据某班40名同学一周的体育锻炼情况绘制的条形统计图,那么该班40名同学一周参加体育锻炼时间的众数、中位数分别是( B )A.16,10.5 B.8,9C.16,8.5 D.8,8.54.若数据10,9,a,12,9的平均数是10,则这组数据的方差是( B )A.1 B.1.2 C.0.9 D.1.45.甲、乙两组各有12名学生,组长绘制了本组5月份家庭用水量的统计图表如图,比较5月份两组家庭用水量的中位数,下列说法正确的是( B )甲组12户家庭用水量统计表用水量(吨)4569户数452乙组12户家庭用水量统计图A.甲组比乙组大B.甲、乙两组相同C.乙组比甲组大D.无法判断6.某校举行“我爱我校”演讲比赛,由7名学生组成评委组.小明统计了每位评委对某参赛选手的评分并制成如下表格:众数中位数平均数方差7.98.38.20.3如果以去掉一个最高分和一个最低分后其他5名评委的平均分记为选手的最后得分,那么表中的数据一定不发生变化的是( B )A.众数B.中位数C.平均数D.方差7.在“朗读者”节目的影响下,某中学开展了“好书伴我成长”读书活动,为了解5月份八年级300名学生读书情况,随机调查了八年级50名学生读书的册数,统计数据如下表所示:册数01234人数41216171关于这组数据,下列说法正确的是( A )A.中位数是2 B.众数是17 C.平均数是2 D.方差是28.一样本的各数据都减少4,则新数据的( C)A.平均数与标准差都不变B.平均数减少4,标准差减少2C.平均数减少4,标准差不变D.平均数减少4,方差减少29.甲、乙两地去年12月前5天的日平均气温如图所示,下列描述错误的是( C) A.两地气温的平均数相同B.甲地气温的中位数是6℃C.乙地气温的众数是4℃ D.乙地气温相对比较稳定第9题图第10题图10.对某校八年级学生随机抽取若干名进行体能测试,成绩记为1分、2分、3分、4分共4个等级,将调查结果绘制成条形统计图和扇形统计图,根据图中信息,这些学生的平均分数是( C )A.2.25 B.2.5 C.2.95 D.3二、填空题(每小题4分,共24分)11.某招聘考试分笔试和面试两种,其中笔试按60%,面试按40%计算加权平均数作为总成绩,小王笔试成绩90分,面试成绩85分,那么小王的总成绩是__88__分.12.有13位同学参加学校组织的才艺表演比赛,已知他们所得的分数互不相同,共设7个获奖名额,某同学知道自己的比赛分数后,要判断自己能否获奖,在这13名同学成绩的统计量中只需知道一个量,它是__中位数__.(填“众数”“方差”“中位数”或“平均数”)13.一组数据2,3,x,y,12中,唯一众数是12,平均数是6,这组数据的中位数是__3__.14.为选择一名选手参加全国中学生游泳锦标赛自由泳比赛,我市四名中学生参加了男子100米自由泳训练,他们成绩的平均数x及其方差S2如下表所示:甲乙丙丁x1′05″331′04″261′04″261′07″29S2 1.1 1.1 1.3 1.6如果选拔一名学生去参赛,应派__乙__去.15.当五个整数从小到大排列后,其中位数是4,如果这组数据的唯一众数是6,那么这组数据可能的最大的和是__21__.16.下列几种说法:①数据2,2,3,4的众数是2;②数据1,0,0,1,0的中位数和众数相等;③数据11,11,11,11,11的方差为1;④若一组数据a,b,c的平均数为10,则新数据a+1,b+1,c+1的平均数为10;⑤已知一组数据x1,x2,…,x n 的方差是S2,则新的一组数据ax1+1,ax2+1,…,ax n+1(a为常数,a≠0)的方差是a2S2.其中正确的有__①②⑤__.(填序号即可)三、解答题(共56分)17.(6分)为了估计西瓜、苹果和香蕉三种水果一个月的销售量,某水果店对三种水果7天的销售量进行了统计,统计结果如图所示:(1)若西瓜、苹果和香蕉的售价分别为6元/千克、8元/千克和3元/千克,则这7天销售额最大的水果品种是__A__.A.西瓜B.苹果C.香蕉(2)估计一个月(按30天计算)该水果店可销售苹果多少千克?解:1407×30=600(千克)18.(8分)在一次男子马拉松长跑比赛中,随机抽得12名选手所用的时间(单位:分钟)得到如下样本数据:140146143175125164134155152168162148(1)计算该样本数据的中位数和平均数;(2)如果一名选手的成绩是147分钟,请你依据样本数据的中位数,推断他的成绩如何?解:(1)中位数为150分钟,平均数为151分钟;(2)由(1)可得,中位数为150,可以估计在这次马拉松比赛中,大约有一半选手的成绩快于150分钟,有一半选手的成绩慢于150分钟,这名选手的成绩为147分钟,快于中位数150分钟,可以推断他的成绩估计比一半以上选手的成绩好.19.(8分)某市首批一次性投放公共自行车700辆供市民租用出行,由于投入数量不够,导致出现需要租用却未租到车的现象,现随机抽取的某五天在同一时段的调查数据汇成如下表格.请回答下列问题:(1)表格中的五个数据(人数)的中位数是多少?(2)由随机抽样估计,平均每天在7:00~8:00,需要租用公共自行车的人数是多少?解:(1)表格中5个数据按从小到大的顺序排列为1200,1200,1300,1300,1500,所以中位数是1300(2)平均每天需要租用自行车却未租到车的人数:(1500+1200+1300+1300+1200)÷5=1300,∵某市首批一次性投放公共自行车700辆供市民租用出行,∴平均每天需要租用公共自行车的人数是1300+700=200020.(10分)为了参加“市中小学生首届诗词大会”,某校八年级的两班学生进行了预选,其中班上前5名学生的成绩(百分制)分别为:八(1)班86,85,77,92,85;八(2)班79,85,92,85,89.通过数据分析,列表如下:八(1)85b c22.8八(2)a858519.2(1)直接写出表中a,b,c的值;(2)根据以上数据分析,你认为哪个班前5名同学的成绩较好?说明理由.解:(1)a=79+85+92+85+895=86,b=85,c=85,(2)∵22.8>19.2,∴八(2)班前5名同学的成绩较好.21.(12分)对垃圾进行分类投放,能有效提高对垃圾的处理和再利用,减少污染,保护环境.为了了解同学们对垃圾分类知识的了解程度,增强同学们的环保意识,普及垃圾分类及投放的相关知识,某校数学兴趣小组的同学们设计了“垃圾分类知识及投放情况”问卷,并在本校随机抽取若干名同学进行了问卷测试.根据测试成绩分布情况,他们将全部测试成绩分成A,B,C,D四组,绘制了如下统计图表:“垃圾分类知识及投放情况”问卷测试成绩统计表组别分数/分频数各组总分/分A60<x≤70382581B70<x≤80725543C80<x≤90605100D90<x≤100m2796依据以上统计信息解答下列问题:(1)求得m=________,n=________;(2)这次测试成绩的中位数落在________组;(3)求本次全部测试成绩的平均数.解:(1)∵被调查的学生总人数为72÷36%=200人,∴m=200-(38+72+60)=30,n=38200×100%=19%;(2)∵共有200个数据,其中第100、101个数据均落在B组,∴中位数落在B组;(3)本次全部测试成绩的平均数为2581+5543+5100+2796200=80.1(分).22.(12分)某学校有两个校区:南校和北校,这两个校区九年级学生各有300名,为了解这两个校区九年级学生的英语单词掌握情况,进行了抽样调查,过程如下:①收集数据,从南校和北校两个校区的九年级各随机抽取10名学生,进行英语单词测试,测试成绩(百分制)如下:南校92 100 86 89 73 98 54 95 98 85北校100 100 94 83 74 86 75 100 73 75②整理、描述数据,按如下分数段整理、描述这两组样本数据:(说明:成绩90分及以上为优秀,80~89分为良好,60~79分为合格,60分以下为不合格)③分析数据,对上述数据进行分析,分别求出了两组样本数据的平均数、中位数、众数、方差如下表:④得出结论.结合上述统计全过程,回答下列问题:(1)补全③中的表格;(2)请估计北校九年级学生英语单词掌握优秀的人数;(3)你认为哪个校区的九年级学生英语单词掌握得比较好?说明你的理由.(至少从两个不同的角度说明推断的合理性)解:(1)由题可得,南校区的九年级随机抽取的10名学生的成绩的众数为98,北校区的九年级随机抽取的10名学生的成绩为:73、74、75、75、83、86、94、100、100、100,∴北校区的九年级随机抽取的10名学生的成绩的中位数为:84.5;而众数为100;(2)北校区九年级学生英语单词掌握优秀的人数为:410×300=120(人).(3)我认为南校区的九年级学生英语单词掌握得比较好,理由如下:①南校区的九年级学生在英语单词测试中,平均数较高,表示南校区的九年级学生的英语单词掌握情况较好;②南校区的九年级学生在英语单词测试中,中位数较高,表示南校区英语单词掌握优秀的学生较多.(答案不唯一)。
浙教版八年级下册第3章《数据分析初步》单元检测卷(含答案解析)

2020年春浙教版八年级下册第1章《二次根式》单元测试A卷考试时间:100分钟满分:120分班级:___________姓名:___________学号:___________成绩:___________一.选择题(共12小题,满分36分,每小题3分)1.(3分)下列各式中,一定是二次根式的是()A.B.C.D.2.(3分)当x为下列何值时,二次根式有意义()A.x≠2B.x>2C.x≤2D.x≥23.(3分)若a<0,则的值为()A.3B.﹣3C.3﹣2a D.2a﹣34.(3分)已知实数a在数轴上的位置如图,化简﹣的结果为()A.﹣1B.﹣2C.2a﹣1D.1﹣2a5.(3分)下列式子为最简二次根式的是()A.B.C.D.6.(3分)下列计算错误的是()A.=﹣2B.=2C.=2D.=27.(3分)已知a=,b=﹣2,则a与b的关系是()A.a=b B.a=﹣b C.a=D.ab=﹣18.(3分)下列各式与是同类二次根式的是()A.B.C.D.9.(3分)计算4+3﹣的结果是()A.B.C.D.10.(3分)下列运算正确的是()A.B.2=C.=3D.11.(3分)若有意义,则的值是()A.非正数B.负数C.非负数D.正数12.(3分)已知a、b、c是△ABC三边的长,则+|a+b﹣c|的值为()A.2a B.2b C.2c D.2(a一c)二.填空题(共8小题,满分24分,每小题3分)13.(3分)=.14.(3分)已知实数a在数轴上的位置如图所示,则化简|a﹣1|﹣的结果是.15.(3分)若=3﹣b,则b应满足.16.(3分)已知n是一个正整数,是整数,则n的最小值是.17.(3分)若式子在实数范围内有意义,则x的取值范围是.18.(3分)把化成最简二次根式为.19.(3分)若最简二次根式与﹣是同类根式,则a=.20.(3分)小明发明了一种用“二次根式法”来产生密码的方法,如对于二次根式的计算结果是13,则在被开放数和结果时间加上数字0,就得到一个密码“169013”,则对于二次根式,用小明的方法产生的这个密码是(密码中不写小数点)三.解答题(共8小题,满分60分)21.(6分)计算:2﹣(﹣).22.(6分)计算:.23.(6分)计算:(﹣)0|+﹣()﹣124.(8分)先化简,再求值:6x2+2xy﹣8y2﹣2(3xy﹣4y2+3x2),其中x=,y=.25.(8分)已知n=﹣6,求的值.26.(8分)一个长方体的塑料容器中装满水,该塑料容器的底面是长为4cm,宽为3cm 的长方形,现将塑料容器内的一部分水倒入一个底面半径2cm的圆柱形玻璃容器中,玻璃容器水面高度上升了3cm,求长方形塑料容器中的水下降的高度.(注意:π取3).27.(9分)化简:.28.(9分)有一块矩形木板,木工采用如图的方式,在木板上截出两个面积分别为18dm2和32dm2的正方形木板.(1)求剩余木料的面积.(2)如果木工想从剩余的木料中截出长为1.5dm,宽为ldm的长方形木条,最多能截出块这样的木条.2020年春季浙教版八年级下册第1章《二次根式》单元测试参考答案与试题解析一.选择题(共12小题,满分36分,每小题3分)1.(3分)下列各式中,一定是二次根式的是()A.B.C.D.【分析】根据二次根式的定义判断即可.【解答】解:A、当a+1≥0,即a≥﹣1时,是二次根式,本选项错误;B、当a﹣1≥0,即a≥1时,是二次根式,本选项错误;C、当a2﹣1≥0时,是二次根式,本选项错误;D、a2+2a+2=a2+2a+1+1=(a+1)2+1>0,∴一定是二次根式,本选项正确;故选:D.2.(3分)当x为下列何值时,二次根式有意义()A.x≠2B.x>2C.x≤2D.x≥2【分析】根据二次根式的性质被开方数大于等于0,就可以求解.【解答】解:根据二次根式有意义的条件可得:2﹣x≥0,解得:x≤2.故选:C.3.(3分)若a<0,则的值为()A.3B.﹣3C.3﹣2a D.2a﹣3【分析】利用二次根式的性质和绝对值的意义得到原式=﹣(a﹣3)﹣|a|,然后去绝对值后合并即可.【解答】解:∵a<0,∴原式=﹣(a﹣3)﹣|a|=﹣a+3+a=3.故选:A.4.(3分)已知实数a在数轴上的位置如图,化简﹣的结果为()A.﹣1B.﹣2C.2a﹣1D.1﹣2a【分析】根据数轴得到﹣1<a﹣1<0,根据二次根式的性质化简.【解答】解:由数轴可知,0<a<1,∴﹣1<a﹣1<0,则﹣=a﹣(1﹣a)=2a﹣1,故选:C.5.(3分)下列式子为最简二次根式的是()A.B.C.D.【分析】根据最简二次根式的定义即可求出答案.【解答】解:(B)原式=2,故B不是最简二次根式;(C)原式=2,故C不是最简二次根式;(D)原式=,故D不是最简二次根式;故选:A.6.(3分)下列计算错误的是()A.=﹣2B.=2C.=2D.=2【分析】直接利用二次根式的性质分别计算得出答案.【解答】解:A、=2,原式计算错误,故此选项符合题意;B、=2,原式计算正确,故此选项不合题意;C、(﹣)2=2,原式计算正确,故此选项不合题意;D、=2,原式计算正确,故此选项不合题意;故选:A.7.(3分)已知a=,b=﹣2,则a与b的关系是()A.a=b B.a=﹣b C.a=D.ab=﹣1【分析】直接利用二次根式的性质进而化简得出答案.【解答】解:∵a===2﹣,b=﹣2=﹣(2﹣),∴a=﹣b.故选:B.8.(3分)下列各式与是同类二次根式的是()A.B.C.D.【分析】根据同类二次根式的概念即可求出答案.【解答】解:(A)原式=2,故A与是同类二次根式;(B)原式=2,故B与不是同类二次根式;(C)原式=3,故C与不是同类二次根式;(D)原式=5,故D与不是同类二次根式;故选:A.9.(3分)计算4+3﹣的结果是()A.B.C.D.【分析】根据二次根式的运算法则即可求出答案.【解答】解:原式=2+﹣2=,故选:A.10.(3分)下列运算正确的是()A.B.2=C.=3D.【分析】利用二次根式的加减法对A、B进行判断;利用二次根式的性质对C进行判断;利用二次根式的乘法法则对D进行判断.【解答】解:A、与不能合并,所以A选项错误;B、2与﹣不能合并,所以B选项错误;C、原式=,所以C选项错误;D、原式==5,所以D选项正确.故选:D.11.(3分)若有意义,则的值是()A.非正数B.负数C.非负数D.正数【分析】根据二次根式的有意义的条件可求出a的范围.【解答】解:由题意可知:﹣a>0,∴原式=>0,故选:D.12.(3分)已知a、b、c是△ABC三边的长,则+|a+b﹣c|的值为()A.2a B.2b C.2c D.2(a一c)【分析】根据三角形三边的关系:两边之和大于第三边,两边之差小于第三边,可知根号和绝对值里数的取值.【解答】解:∵三角形两边之和大于第三边,两边之差小于第三边,∴a﹣b﹣c<0,a+b﹣c>0∴+|a+b﹣c|=b+c﹣a+a+b﹣c=2b.故选:B.二.填空题(共8小题,满分24分,每小题3分)13.(3分)=10.【分析】方法一:先计算25×4=100,再算100的算术平方根;方法二:把原式展开成与的乘积形式,再计算.【解答】解:方法一:=10.方法二:=5×2=10.故答案为10.14.(3分)已知实数a在数轴上的位置如图所示,则化简|a﹣1|﹣的结果是1﹣2a.【分析】根据绝对值和二次根式的性质即可求解.【解答】解:根据数轴上的数所在位置,可知a﹣1<0,a>0.所以原式=1﹣a﹣a=1﹣2a.故答案为1﹣2a.15.(3分)若=3﹣b,则b应满足b≤3.【分析】根据二次根式的性质、绝对值的性质解答.【解答】解:∵=|b﹣3|,当|b﹣3|=3﹣b时,b﹣3≤0,解得,b≤3,故答案为:b≤3.16.(3分)已知n是一个正整数,是整数,则n的最小值是3.【分析】先化简二次根式,然后依据化简结果为整数可确定出n的值【解答】解:=2.∵n是一个正整数,是整数,∴n的最小值是3.故答案为:3.17.(3分)若式子在实数范围内有意义,则x的取值范围是x≥10.【分析】二次根式中的被开方数是非负数.根据二次根式有意义的条件列出不等式,解不等式即可.【解答】解:由题意得,x﹣10≥0,解得,x≥10,故答案为:x≥10.18.(3分)把化成最简二次根式为.【分析】先化成分数,再根据二次根式的性质进行化简即可.【解答】解:==,故答案为:.19.(3分)若最简二次根式与﹣是同类根式,则a=1.【分析】根据同类二次根式和最简二次根式的定义得到a+2=5a﹣2,然后解关于a的方程即可.【解答】解:根据题意得a+2=5a﹣2,解得a=1.故答案为1.20.(3分)小明发明了一种用“二次根式法”来产生密码的方法,如对于二次根式的计算结果是13,则在被开放数和结果时间加上数字0,就得到一个密码“169013”,则对于二次根式,用小明的方法产生的这个密码是256016(密码中不写小数点)【分析】先计算出,然后根据产生密码的方法写出对应的密码即可.【解答】解:=1.6,所以小明用“二次根式法”的方法产生的这个密码是256016.三.解答题(共8小题,满分60分)21.(6分)计算:2﹣(﹣).【分析】先把二次根式化为最简二次根式,然后合并即可.【解答】解:原式=2﹣3+=﹣.22.(6分)计算:.【分析】利用平方差公式和完全平方公式计算.【解答】解:原式=3﹣2+5﹣2+1=7﹣2.23.(6分)计算:(﹣)0|+﹣()﹣1【分析】将原式中每一项分别化为1+﹣1+3﹣再进行化简.【解答】解:原式=1+﹣1+3﹣=3;24.(8分)先化简,再求值:6x2+2xy﹣8y2﹣2(3xy﹣4y2+3x2),其中x=,y=.【分析】根据整式的加减法则进行化简,再把值代入化简后的整式计算即可求解.【解答】解:原式=6x2+2xy﹣8y2﹣6xy+8y2﹣6x2=(6x2﹣6x2)+(2xy﹣6xy)+(﹣8y2+8y2)=﹣4xy.当x=,y=时,原式=﹣4××=﹣8.25.(8分)已知n=﹣6,求的值.【分析】直接利用二次根式的性质得出m,n的值,进而化简得出答案.【解答】解:∵与有意义,∴m=2019,则n=﹣6,故==45.26.(8分)一个长方体的塑料容器中装满水,该塑料容器的底面是长为4cm,宽为3cm 的长方形,现将塑料容器内的一部分水倒入一个底面半径2cm的圆柱形玻璃容器中,玻璃容器水面高度上升了3cm,求长方形塑料容器中的水下降的高度.(注意:π取3).【分析】根据倒出的水的体积不变列式计算即可.【解答】解:设长方形塑料容器中水下降的高度为h,根据题意得:4×3h=3×(2)2×3,解得:h=2,所以长方形塑料容器中的水下降2cm.27.(9分)化简:.【分析】先分母有理化,然后合并即可.【解答】解:原式=﹣1+﹣+﹣+…+﹣=﹣1=3﹣1.28.(9分)有一块矩形木板,木工采用如图的方式,在木板上截出两个面积分别为18dm2和32dm2的正方形木板.(1)求剩余木料的面积.(2)如果木工想从剩余的木料中截出长为1.5dm,宽为ldm的长方形木条,最多能截出2块这样的木条.【分析】(1)根据二次根式的性质分别求出两个正方形的边长,结合图形计算得到答案;(2)求出3和范围,根据题意解答.【解答】解:(1)∵两个正方形的面积分别为18dm2和32dm2,∴这两个正方形的边长分别为3dm和4dm,∴剩余木料的面积为(4﹣3)×3=6(dm2);(2)4<3<4.5,1<<2,∴从剩余的木料中截出长为1.5dm,宽为ldm的长方形木条,最多能截出2块这样的木条,故答案为:2.11。
浙教版初中数学八年级下册第3章 数据分析初步测试题(解析版)

浙教版初中数学八年级下册第3章数据分析初步测试题一、单选题1.某次歌唱比赛,最后三名选手的成绩统计如下:若唱功、音乐常识、综合知识按6∶3∶1的加权平均分排出冠军、亚军、季军,则冠军、亚军、季军分别A. 王飞、李真、林杨B. 王飞、林杨、李真C. 李真、王飞、林杨D. 李真、林杨、王飞2.某中学对学生进行各学科期末综合评价,评价分平时成绩和期末实考成绩两部分,平时成绩与期末实考成绩按4:6计算作为期末评价结果,若小明数学的平时成绩为85分,期末实考成绩为90分,则他的数学期末评价结果为()A. 89 分B. 88 分C. 87 分D. 86 分3.已知一组数据共有20个数,前面14个数的平均数是10,后面6个数的平均数是15,则这20个数的平均数是()A. 23B. 1.15C. 11.5D. 12.54.在一次排球垫球测试后,随机抽取八年级(2)班的5名同学的成绩(单位:个)如下:38.40.40,42,45,这组数据的众数是()A. 38B. 40C. 41D. 425.疫情无情,人有情爱心捐款传真情,新型冠状病毒感染的肺炎疫情期间,某班同学积极参加献爱心活动,该班50名学生的捐款统计情况如表:则他们捐款金额的平均数和中位数分别是()A. 39,10B. 39,30C. 30.4,30D. 30.4,106.若数据4,x,2,8 ,的平均数是4,则这组数据的中位数和众数是()A. 3 和2B. 2 和3C. 2 和2D. 2 和47.某校要从四名学生中选拔一名参加市风华小主播大赛,在校的挑战赛中,四名学生的平均成绩x和方差如表所示,如果要选一名成绩高且发挥稳定的学生参赛,那么应选的学生是()A. 甲B. 乙C. 丙D. 丁8.对一组数据:2,2,1,3,3 分析错误的是()A. 中位数是1B. 众数是3和2C. 平均数是2.2D. 方差是0.569.在某次测试后,班里有两位同学议论他们小组的数学成绩,小明说:“我们组考87分的人最多”,小华说:“我们组7位同学成绩排在最中间的恰好也是87分”.上面两位同学的话能反映出的统计量()A. 众数和平均数B. 平均数和中位数C. 众数和中位数D. 众数和方差10.已知x1,x2,x3的平均数x̅=1,方差S2=2,则2x1,2x2,2x3的平均数和方差分别为()A. 2,8B. 2,6C. 2,12D. 4,12二、填空题11.若5个正数a1,a2,a3,a4,a5的平均数是a,则a1,a2,0,a3,a4,a5的平均数是________.12.有8个数的平均数是11,还有12个数的平均数是12,则这20个数的平均数是________.13.当五个整数从小到大排列后,其中位数是4,如果这组数据的唯一众数是6,那么这组数据可能的最大的和是________.14.某销售人员一周的销售业绩如下表所示,这组数据的中位数是________.15.有一组数据:2,-6,4,6,7,这组数据的极差是________.16.已知样本x1,x2,x3,…,x n的方差是1,那么样本2x1+3,2x2+3,2x3+3,…,2x n+3的方差是________.三、综合题17.703班6名同学参加了学校组织的中国古典文学知识竞赛,优秀成绩为85分(满分100分),6名同学的成绩记录如下(其中成绩大于85分用“+”表示,成绩小于85分用“-”表示):-4,-3,+8,-9,+4,+1,问这6名同学的平均成绩是多少?18.某校为提高学生的汉字书写能力,开展了“汉字听写”大赛.七、八年级学生参加比赛,为了解这两个年级参加比赛学生的成绩情况,从中各随机抽取10名学生的成绩,数据如下(单位:分):七年级88 94 90 94 84 94 99 94 99 100八年级 84 93 88 94 93 98 93 98 97 99整理数据:按如下分数段整理数据并补全表格:分析数据:补全下列表格中的统计量:得出结论:你认为哪个年级学生“汉字听写”大赛的成绩比较好?并说明理由.(至少从两个不同的角度说明推断的合理性)19.(1)在某次考试中,现有甲、乙、丙3名同学,共四科测试实际成绩如下表:(单位:分)若欲从中表扬2人,请你从平均数的角度分析哪两人将被表扬?(2)为了体现学科差异,参与测试的语文、数学、英语科学实际成绩须以2:3:2:3的比例计入折合平均数.请你从折合平均数的角度分析哪两人将被表扬?20.在“2019慈善一日捐”活动中,某校八年级(1)班40名同学的捐款情况如下表:根据表中提供的信息回答下列问题:(1)x的值为________ ,捐款金额的众数为________元,中位数为________元.(2)已知全班平均每人捐款57元,求a的值.21.某校八年级共有三个班,都参加了学校举行的书法绘画大赛,三个班根据初赛成绩分别选出了10名同学参加决赛(满分100分),如下表所示:解答下列问题:(1)请填写下表:(2)请从以下两个不同的角度对三个班级的决赛成绩进行分析:①从平均数和众数相结合看(分析哪个班级成绩好);②从平均数和中位数相结合看(分析哪个班级成绩好);(3)如果在每个班级参加决赛的选手中选出3人参加总决赛,你认为哪个班级的实力更强一些,请简要说明理由.22.为了从甲、乙两名选手中选拔出一个人参加射击比赛,现对他们进行一次测验,两个人在相同条件下各射靶10次,为了比较两人的成绩,制作了如下统计图表.甲、乙射击成绩统计表甲、乙射击成绩折线统计图(1)请补全上述图表(请直接在表中填空和补全折线图);(2)如果规定成绩较稳定者胜出,你认为谁应胜出?说明你的理由;(3)如果希望(2)中的另一名选手胜出,根据图表中的信息,应该制定怎样的评判规则?为什么?答案解析一、单选题1.【答案】C【考点】加权平均数及其计算【解析】【解答】根据加权平均数的公式,可分别求出:王飞的成绩是:(98×6+80×3+80)÷10=90.8(分);李真:(95×6+90×3+90)÷10=93(分);林杨:(80×6+100×3+100)÷10=88(分).∵93>90.8>88,∴冠军是李真、亚军是王飞、季军是林杨.故答案为:C.【分析】根据加权平均数的公式分别求出三名选手的成绩,然后比较即可.2.【答案】B【考点】加权平均数及其计算【解析】【解答】解:故答案为:B.【分析】根据加权平均数的计算方法,结合期中和期末的成绩和权重,求出小明整个学期的平均成绩即是小明数学期末评价结果.3.【答案】C【考点】平均数及其计算【解析】【解答】解:由题意得:(10×14+15×6)÷20=11.5,故答案为:C.【分析】由题意可以求出前14个数的和,后6个数的和,进而得到20个数的总和,从而求出20个数的平均数.4.【答案】B【考点】众数【解析】【解答】解:这组数据中40出现2次,是这组数据中出现次数最多的数,∴这组数据的众数是40.故答案为:B.【分析】众数是一组数据中出现次数最多的数据。
浙教版数学八年级下册 第三章 数据分析初步检测卷 (含答案)

第三章检测卷数据分析初步班级学号得分姓名一、仔细选一选(本大题有10小题,每小题3分,共30分)1.已知样本数据1,2,4,3,5,下列说法不正确的是( )A. 平均数是3B. 中位数是4C. 极差是4D. 方差是22.下列说法正确的是( )A. 方差反映了一组数据的分散或波动的程度B. 数据1,5,3,7,10的中位数是3C. 任何一组数据的平均数和众数都不相等D. 调查一批灯泡的使用寿命适合用全面调查方式3. 某单位组织职工开展植树活动,植树量与人数之间的关系如图所示,下列说法不正确的是( )A. 参加本次植树活动共有30人B. 每人植树量的众数是4棵C. 每人植树量的中位数是5棵D. 每人植树量的平均数是5棵4. 如图是某市五月份1至8日的日最高气温随时间变化的折线统计图,则这8天的日最高气温的中位数是( )A. 22℃B. 22.5℃C. 23℃D. 23.5℃5. 已知一组数据:5,15,75,45,25,75,45,35,45,35,那么40是这一组数据的( )A. 平均数但不是中位数B. 平均数也是中位数C. 众数D. 中位数但不是平均数6. 一组数1,1,2,3,5,8,13是“斐波那契数列”的一部分,若去掉其中的两个数后这组数的中位数、众数保持不变,则去掉的两个数是( )A. 2,5B. 1,2C. 2,3D. 5,87. 四名运动员参加了射击预选赛,他们成绩的平均环数x及其方差S²如下表所示.如果选出一个成绩较好且状态稳定的人去参赛,那么应选( )甲乙丙丁x7887S²11 1.2 1.8A. 甲B. 乙C. 丙D.丁8. 给出下述四个命题:①众数与数据的排列顺序有关;②10个数据中,至少有5个数据大于这10个数据的平均数;③若x̅甲>x̅乙,则S甲2>S乙2;;④一组数据6,8,7,8,9,10的众数和平均数都是8.其中正确命题的个数是( )A. 1B. 2C. 3D. 49. 某电脑公司销售部为了定制下个月的销售计划,对20位销售员本月的销售量进行了统计,绘制成如图所示的统计图,则这20位销售人员本月销售量的平均数、中位数、众数分别是( )A. 19,20,14B. 19,20,20C. 18.4,20,20D. 18.4,25,2010. 下表为某班成绩的次数分配表.已知全班共有38人,且众数为50分,中位数为60分,则x²−2y的值为( )成绩(分)20304050607090100次数(人)235x6y34二、认真填一填(本大题有6小题,每小题4分,共24分)11. 数据3,4,10,7,6的中位数是 .12.视力情况0.7以下0.70.80.9 1.0 1.0以上人数所占的百分比5%8%15%20%40%12%从表中看出全班视力情况的众数是 .13. 某射击俱乐部将11名成员在某次射击训练中取得的成绩绘制成如图所示的条形统计图.由图可知,11名成员射击成绩的中位数是环.14. 小明某学期的数学平时成绩80分,期中考试80分,期末考试90分.若计算这学期数学成绩的方法如下:平时:期中:期末=3:3:4,则小明这学期数学成绩是分.15. 为迎接五月份全县九年级体育中考测试,小强每天坚持引体向上锻炼,星期日—一一.四五六个数1112131213,平均数是12,那么这组数据的方差是 .16. 六个正整数的中位数是4.5,众数是7,极差是6,这六个正整数的和为 .三、全面答一答(本大题有7小题,共66分)17.(6分)数与代数空间与图形统计与概率综合与实践学生甲90938990学生乙94929486(1)(2)如果数与代数、空间与图形、统计与概率、综合与实践的成绩按3:3:2:2计算,那么甲、乙的数学综合素质成绩分别为多少分?18.(8分)某市首批一次性投放公共自行车700辆供市民租用出行,由于投入数量不够,导致出现需.时间第一天7:00~8:00第二天7:00~8:0第三天7:00~8:0第四天7:00~8:0第五天7:00~8:0需要租用自行车却未租到车的人数(人)15001200130013001200(1) 表格中的五个数据(人数)的中位数是多少?(2)由随机抽样估计,平均每天在7:00~8:00需要租用公共自行车的人数是多少?19.(8分)某单位750名职工积极参加向贫困地区学校捐书活动,为了解职工的捐书量,采用随机抽样的方法抽取30名职工作为样本,对他们的捐书量进行统计,统计结果共有4本、5本、6本、7本、8本五类,分别用A,B,C,D,E表示.根据统计数据绘制了如图所示的不完整的条形统计图,由图中给出的信息解答下列问题:(1)补全条形统计图.(2)求这30名职工捐书本数的平均数、众数和中位数.20.(10分)单位:分):甲789710109101010乙10879810109109(1)甲队成绩的中位数是分,乙队成绩的众数是分.(2)计算乙队的平均成绩和方差.(3)已知甲队成绩的方差是1.4分²,则成绩较为整齐的是队.21.(10分)教育局为了了解我市八年级学生参加社会实践活动情况,随机抽查了我市部分八年级学生第一学期参加社会实践活动的天数,并用得到的数据绘制了两幅统计图,下面给出了两幅不完整的统计图.请根据图中提供的信息,回答下列问题:(1)a= ,该扇形所对圆心角的度数为,请补全条形统计图.(2)在这次抽样调查中,众数和中位数分别是多少?(3)如果我市共有八年级学生2000人,请你估计“活动时间不少于7 天”的学生人数大约有多少人.22.(12分)学校开展“书香校园”活动以来,受到同学们的广泛关注,学校为了解全校学生课外阅读的情况,随机调查了部分学生在一周内借阅图书的次数,并制成不完整的统计图(如图表).借阅图书的次数0次1次2次 3 次4次及以上人数713a103(1)a=,(2)该调查统计数据的中位数是,众数是 .(3)请计算扇形统计图中“3次”所对应扇形的圆心角的度数.(4)若该校共有2000名学生,根据调查结果,估计该校学生在一周内借阅图书“4次及以上”的人数.23.(12分)3 月4 月5月 6 月7 月8月库尔勒香梨(t)48581013哈密瓜(t)8797107(1)平均数方差库尔勒香梨89哈密瓜(2)补全哈密瓜的折线统计图(用虚线).(3)请你根据下面两个要求对这两种瓜果在去年3月份至8月份的销售情况进行分析:①根据平均数和方差分析;②根据折线图上两种瓜果销售量的趋势分析.第三章检测卷 数据分析初步1. B2. A3. D4. B5. B6. A7. B8. A9. C 10. B11.6 12.1.0 13.8 14.8415 87 解析∵平均数是12,∴这组数据的和=12×7=84,∴墨汁覆盖三天的数的和=84-4×12=36.∵这组数据唯一众数是13,∴被墨汁覆盖的三个数为:10.13,13, S 2=17[(11−12)2+ 12−12)²+(10−12)²+(13−12)²+(13−12)²+(13−12)²+(12−12)2]=87.故答案为 87. 16.25或26或27 解析:∵六个正整数,中位数是4.5,∴第三个数与第四个数的和为9,且2≤第三个数≤4,又∵众数是7,极差是 6.∴这六个正整数是:1,1,2,7,7,7;1,2,2,7,7,7;1,2,3,6,7,7;1.2,4,5,7,7;1,3,4,5,7,7;∴这六个正整数的和为1+1+2+7+7+7=25;1+2+2+7+7+7=26;1+2+3+6+7+7=26;1+2+4+5+7+7=26;1+3+4+5+7+7=27.故答案为25或26或27.17.解:(1)甲成绩的中位数是 90(分),乙成绩的中位数是93(分).(2)甲: 90×310+93×310+89×210+90×210=90.7(分),乙: 94×310+92×310+94×210+86×210=91.8(分),则甲的数学综合素质成绩为90.7分,乙的数学综合素质成绩为91.8分.18.解:(1)中位数是1300(人).(2)平均每天需要租车却未租到车的人数:(1500+1200+1300+1300+1200)÷5=1300(人).故平均每天需要租车的人数:1300+700=2000(人)19.解:(1)捐D 类书的人数为:30-4-6-9-3=8.图略(2)众数为:6(本),中位数为:6(本),平均数为: x̅=130(4×4+5×6+6×9+7×8+8×3)=6(本). 20.解:(1)把甲队的成绩从小到大排列为:7,7,8,9,9,10,10,10,10,10,最中间两个数的平均数是(9+10)÷2=9.5(分),则中位数是9.5分;乙队成绩中10出现了4次,出现的次数最多,则乙队成绩的众数是10分.故答案为9.5 10.(2)乙队的平均成绩是 110×(10×4+8×2+7+9×3)=9(分),则方差是: 110×[4×(10 −9)²+2×(8−9)²+(7−9)²+3×(9−9)²]=1(分²).(3)∵甲队成绩的方差是1.4分²,乙队成绩的方差是1分²,∴成绩较为整齐的是乙队.故答案为乙.21.(1)10 36°(1)图略(8天,60人) (2)众数5天,中位数6天 (3)800人22.解:(1)∵被调查的总人数为13÷26%=50人,∴a=50-(7 +13+10+3)=17,b%=1050×100%=20%,即b=20,故答案为:17 20.(2)由于共有50个数据,其中位数为第25,26个数据的平均数,而第25,26个数据均为2次,所以中位数为2次,出现次数最多的是2次,所以众数为2次.(3)扇形统计图中“3次”所对应扇形的圆心角的度数为 360°×20(4)估计该校学生在一周内借阅图书“4次及以上”的人数为 2000×350=120.23.解:(1) 43₃ (2)图如下.(3)①库尔勒香梨与哈密瓜销量平均数相同,从平均数来看销售情况一样;但是库尔勒香梨与哈密瓜的方差相差很大,因为哈密瓜的方差小,所以哈密瓜的销售情况好于库尔勒香梨;②由折线图可以看出,库尔勒香梨的销售量曲线起伏较大,所以哈密瓜的销售情况比于库尔勒香梨稳定,但库尔勒香梨的销量呈上升趋势.。
浙教版八年级下数学《第三章数据分析初步》单元检测卷有答案
第三章数据分析初步单元检测卷姓名:__________ 班级:__________一、单选题(共12题;共36分)1.已知一组数据:12,5,9,5,14,下列说法不正确的是()A. 平均数是9B. 中位数是9 C. 众数是5 D. 极差是52.下列说法正确的是()A. 方差反映了一组数据的分散或波动的程度B. 数据1,5,3,7,10的中位数是3C. 任何一组数据的平均数和众数都不相等D. 调查一批灯泡的使用寿命适合用全面调查方式3.甲、乙两名同学在参加体育中考前各作了5次投掷实心球的测试,甲所测的成绩分别为10.2m,9m,9.4m,8.2m,9.2m,乙所测得的成绩的平均数与甲相同且所测成绩的方差为0.72,那么()A. 甲、乙成绩一样稳定B. 甲成绩更稳定C. 乙成绩更稳定D. 不能确定谁的成绩更稳定4.下表为某班成绩的次数分配表。
已知全班共有38人,且众数为50分,中位数为60分,求x2-2y之值为何?()A. 33B. 50C. 69D. 905.为纪念雷锋逝世52周年暨毛主席号召“向雷锋同志学习”49周年,育才中学举行了“学雷锋”演讲比赛.下面是8位评委为其中一名参赛者的打分:9.4,9.6,9.8,9.9,9.7,9.9,9.8,9.5.若去掉一个最高分,一个最低分,这名参赛者的最后得分是()2 C. 9.74D. 9.686.某市市区一周空气质量报告中某项污染指数的数据分别是:31、35、31、34、30、32、31.这组数据的中位数、众数分别是()A. 31,31B. 32,31 C. 31,32 D. 32,357.10名初中毕业生的中考体育考试成绩如下:35 、36 、36 、36 、36、 37 、38、 39、 39、40 ,这些成绩的中位数是( )A. 35B.36 C. 3 6.5 D. 40 8.如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:)A. 甲B . 乙 C.丙 D.丁9.某市一周的日最高气温如图所示,则该市这周的日最高气温的众数是()A. 25 B . 26 C.2810.一条葡萄藤上结有五串葡萄,每串葡萄的粒数如图所示(单位:粒).则这组数据的中位数为( )A. 37B.35 C. 3 3.8 D. 32 11.(2015•铁岭)2015年5月31日,我国飞人苏炳添在美国尤金举行的国际田联钻石联赛100米男子比赛中,获得好成绩,成为历史上首位突破10秒大关的黄种人.如表是苏炳添近五次大赛参赛情况:A. 10.06秒,10.06秒B. 10.10秒,10.06秒C. 10.06秒,10.08秒 D. 10.08秒,10.06秒12.在“手拉手,献爱心”捐款活动中,某校初三5个班级的捐款数分别为260、220、240、280、290(单位:元),则这组数据的极差是( )元.A. 220B. 290C. 70D. 20二、填空题(共11题;共44分)13.数据0,1,1,2,3,5的平均数是________.14.一组数据的方差为4,则标准差是________.15.已知数据9.9,10.3,9.8,10.1,10.4,10,9.8,9.7,利用计算器求得这组数据的平均数是________16.已知一组数据1、2、x的平均数为4,那么x的值是________.17.小林同学为了在体育中考获得好成绩,每天早晨坚持练习跳绳,临考前,体育老师记载了他5次练习成绩,分别为143,145,144,146,a ,这五次成绩的平均数为144.小林自己又记载了两次练习成绩为141,147,则他七次练习成绩的平均数为________.18.一组数据8,6,10,7,9的方差为________.19.请用计算器求数据271,315,263,289,300,277,286,293,297,280的平均数,结果是________20.已知一组数据为1,2,3,4,5,则这组数据的方差为________.21.某中学规定学生的学期体育总评成绩满分为100分,其中平均成绩占20%,期中考试成绩占30%,期末考试成绩占50%,小彤的三项成绩(百分制)依次为95,90,88,则小彤这学期的体育总评成绩为________.22.小明某学期的数学平时成绩80分,期中考试80分,期末考试90分.若计算这学期数学成绩的方法如下:平时:期中:期末=3:3:4,则小明这学期数学成绩是________分.23.甲、乙两名学生在5次数学考试中,得分如下:甲:89,85,91,95,90;乙:98,82,80,95,95.________ 的成绩比较稳定.三、解答题(共2题;共20分)24.某校九年级甲班学生中,有5人13岁,30人14岁,5人15岁,求这个班级学生的平均年龄.25.某校八(1)班开展男生、女生垫排球比赛活动,每队各派5名同学参加.死皮赖脸是男生队和女生队5名同学的比赛数据(单位:个):(1)计算两队的平均成绩;(2)从成绩稳定性角度考虑,哪队成绩稍好,请说明理由.参考答案一、单选题D A B B B A C A A B C C二、填空题13. 2 14. 2 15. 10 16. 9 17. 14418. 2 19. 287.1 20. 2 21. 90 22. 84 23. 甲三、解答题24. 解:根据题意得:=14(岁),答:这个班级学生的平均年龄是14岁.25. (1)解:男生队:=100(个);女生队:=100(个).(2)解:;∵ ,∴男生队的成绩更稳定性,即男生队成绩稍好.。
浙教版八年级下第三章数据分析初步单元综合检测试卷含答案
第三章数据分析初步一、选择题1.已知样本数据 1、2、4、3、5,下列说法不正确的是( A. 平均数是 3 B. 中位数是 4 ) C. 极差是 4 ) D. 2 和 4 D. 方差是 22.若数据 2,x,4,8 的平均数是 4,则这组数据的中位数和众数是( A. 2 和 3 B. 3 和 2 C. 2 和 23.在统计中,样本的标准差可以反映这组数据的( ) A. 集中程度 B. 分布规律 C. 离散程度 ) D. 3 ) D. 数值大小4.一组数据 2,0,1,x,3 的平均数是 2,则这组数据的方差是( A. 2 B. 4 C. 15.有 8 个数的平均数是 11,另外有 12 个数的平均数是 12,这 20 个数的平均数是( A. 11.6 B. 2.32 C. 23.2 D. 11.56.四名运动员参加了射击预选赛,他们成绩的平均环数及其方差 s2 如表所示.如果选出一个成绩较好且状态 稳定的人去参赛,那么应选()A. 甲B. 乙C. 丙D. 丁7.有一组数据如下:3、a、4、6、7,它们的平均数是 5,那么这组数据的方差是( ) A. 10 B. C. 2 D.8.在一次演讲比赛中,某班派出的 5 名同学参加年级竞赛的成绩如下表(单位:分),其中隐去了 3 号同学的 成绩,但得知 5 名同学的平均成绩是 21 分,那么 5 名同学成绩的方差是( 编号 1 号 2 号 3 号 4 号 5 号 得分 20 A. 2.4 19 25 18 B. 6 C. 6.8 D. 7.5 )9.某工厂共有 50 名员工,他们的月工资的标准差为 S,现厂长决定给每个员工增加工资 100 元,则他们的新 工资的标准差为( ) A. S+100 B. S C. S 变大了 D. S 变小了 )10.将一组数据中的每一个数减去 40 后, 所得新的一组数据的平均数是 2, 则原来那组数据的平均数是 ( A. 40 B. 42 C. 38 D. 211.在某校“我的中国梦”演讲比赛中,有 9 名学生参加比赛,他们决赛的最终成绩各不相同,其中的一名学生 要想知道自己能否进入前 5 名,不仅要了解自己的成绩,还要了解这 9 名学生成绩的( A. 众数 B. 方差 C. 平均数 D. 中位数 )12.甲、乙、丙三位选手各 10 次射击成绩的平均数和方差统计如表: 选手 甲 乙丙 9.3 9.3平均数 9.3 方差0.026 a 0.032 )已知乙是成绩最稳定的选手,且乙的 10 次射击成绩不都一样,则 a 的值可能是( A. 0 B. 0.020 C. 0.030 D. 0.035二、填空题13. 数据 1,2,3,5,5 的众数是 ________ ,平均数是________ . 14.已知一组数据 1,a,3,6,7,它的平均数是 4,这组数据的中位数是________. 15.甲、乙两同学参加跳远训练,在相同条件下各跳了 6 次,统计两人的成绩得:平均数 差S2=,方甲>S2乙, 则成绩较稳定的是________ .(填甲或乙)16.某市广播电视局欲招聘播音员一名,对 A、B 两名候选人进行了两项素质测试,两人的两项测试成绩如表 所示. 测试项目 测试成绩 A 面试 90 B 95 80综合知识测试 852 的比例计算两人的总成绩, 根据实际需要, 广播电视局将面试、 综合知识测试的得分按 3: 那么________ (填 A 或 B)将被录用. 17.请用计算器求数据 271,315,263,289,300,277,286,293,297,280 的平均数,结果是________ 18.甲乙两地 9 月上旬的日平均气温如图所示,则甲乙两地这 10 天日平均气温方差大小关系为 ________ (填>或<).19.下表是我市某一天在不同时段测得的气温情况:则这一天的气温的温差是________ ℃,温度最接近的两个 时间是________ 与 ________0:00 4:00 8:00 12:00 16:00 20:00 25℃ 27℃ 29℃ 32℃ 34℃ 30℃20.已知 x1 , x2 , x3 , x4 的方差是 a,则 3x1﹣5,3x2﹣5,3x3﹣5,3x4﹣5 的方差是________.三、解答题21.某乡镇企业生产部有技术工人 15 人,生产部为了合理制定产品的每月生产定额,统计了这 15 人某月的加 工零件数如下: 每人加工零件数 540 450 300 240 210 120 人数 1 1 2 6 3 2(1)写出这 15 人该月加工零件的平均数、中位数和众数; (2)生产部负责人要定出合理的每人每月生产定额,你认为应该定为多少件合适?22.为了从甲、乙两名射击运动员中选拔一名参加比赛,对这两名运动员进行测试,他们 10 次射击命中的环数 如下: 甲 7 9 8 6 10 7 9 8 6 10 乙 7 8 9 8 8 6 8 9 7 10 根据测试成绩,你认为选择哪一名运动员参赛更好?为什么?23.一销售某品牌冰箱的公司有营销人员 14 人,销售部为制定销售人员月销售冰箱定额(单位:台),统计了 14 人某月的销售量如下表: 每人销售台数 20 17 13 8 5 4 人数 1 1 2 532(1)这 14 位营销员该月销售冰箱的平均数、众数和中位数分别是多少? (2)你认为销售部经理给这 14 位营销员定出每月销售冰箱的定额为多少台才比较合适?并说明理由.参考答案一、 题 B B C A A B C C B 二、填空题 13. 5; 18. > 三、解答题 21. 解:(1) = 中位数是:240 件, 众数是:240 件; (2)240 合适. 22. 解: = S 甲 2=2B D B14. 315. 乙16. B 20. 9a17. 287.119. 9;8:00;0:00=260(件),=(7+9+8+6+10+7+9+8+6+10)=8(环),(7+8+9+8+8+6+8+9+7+10)=8(环), [(7﹣8)2+(9﹣8)2+(8﹣8)2+(6﹣8)2+(10﹣8)2+(7﹣8)2+(9﹣8)2+(8﹣8)2+(6﹣8)+(10﹣8)2]=2, [(7﹣8)2+(8﹣8)2+(9﹣8)2+(8﹣8)2+(8﹣8)2+(6﹣8)2+(8﹣8)2+(9﹣8)2+(7﹣8)2+S 乙 2=2 (10﹣8) ]=1.2,∵S 甲 >S 乙22,∴乙运动员的成绩比较稳定, ∴选择乙运动员参赛更好. 23. (1)解:平均数: 众数:8 中位数:8 (2)解:每月销售冰箱的定额为 8 台比较合适.因为中位数和众数都是 8,是大部分人能够完成的台数。
浙教版数学八年级下册 第3章 数据分析初步 单元测试(含答案)
第3章数据分析初步班级学号姓名得分一、仔细选一选(本大题有 10小题,每小题3分,共30分)1.一组数据:0,1,2,3,3,5,5,10的中位数是( )A. 2.5B. 3C. 3.5D. 52.已知一组数据:1,2,2,3,若添加一个数据2,则发生变化的统计量是( )A. 平均数B. 中位数C. 众数D. 方差3.已知数据1,2,3,4,5,则下列关于这组数据的说法正确的是( )A. 平均数、中位数和众数都是3B. 标准差是√153C. 方差为10D. 以上答案都错4. 一组数据:201,200,199,202,200,若分别减去200,得到另一组数据:1,0,—1,2,0,则其中判断错误的是( )A. 前一组数据的中位数是200B. 前一组数据的众数是 200C. 后一组数据的平均数等于前一组数据的平均数减去200D. 后一组数据的方差等于前一组数据的方差减去 2005. 点点同学对数据26,36,36,46,5■,52进行统计分析,发现其中一个两位数被墨水涂污看不到了,则计算结果与被涂污数字无关的是( )A. 平均数B. 中位数C. 方差D. 标准差6. 如图是根据某班50名学生一周的体育锻炼情况绘制的条形统计图,则这个班50名学生一周参加体育锻炼时间的众数与中位数分别为( )A. 9 h,8 hB. 8h,9 hC. 8 h,8.5 hD. 19 h,17 h7.数据3,1,x,—1,—3的平均数是0,则这组数据的方差是( )A. 1B. 2C. 3D. 48. 学校举行图书节义卖活动,将所售图书的款项捐给其他贫困学生.在这次义卖活动中,某班级售书情况如下表:售价3元 4 元5元6元数目14本11本10本15本下列说法正确的是( )A. 该班级所售图书的总收入是226元B. 在该班级所售图书价格组成的一组数据中,中位数是4C. 在该班级所售图书价格组成的一组数据中,众数是15D. 在该班级所售图书价格组成的一组数据中,方差是29.一组数据1,3,4,2,7的方差是a,若减少一个数据3,剩余的数的方差是b,则a与b的大小关系是( )A. a<bB. a=bC. a>bD. 不能确定₃,那么另一组数3x₁−2,3x₂−2,3x₃−2,3x₄10. 已知一组数据x₁,x₂,x₃,x₄,x₅的平均数是2,方差13−2,3x₅−2的平均数和方差分别是( )A. 2 13B. 2,1C.4,23D. 4,3二、认真填一填(本大题有6小题,每小题4分,共24分)11. 数据1,2,3,5,5的众数是 ,平均数是 .12. 为从甲、乙两名射击运动员中选出一人参加比赛,特统计了他们最近10次射击训练的成绩,其中他们射击的平均成绩均为8.9环,方差分别是 S 甲2=0.8环², S 乙2=13环²,从稳定性的角度看,的成绩更稳定(填“甲”或“乙”).13. 一组数据的方差 S 2=115[(x 1−10)2+(x 2−10)2+⋯+(x 15−10)2],则平均数是 . 14. 某校规定:学生的数学学期综合成绩是由平时、期中和期末三项成绩按3:3:4的比例计算所得.若某同学本学期数学的平时、期中和期末成绩分别是90分,90分和85分,则他本学期数学学期综合成绩是 分.15. 某计算机程序第一次算得m 个数据的平均数为x ,第二次算得另外n 个数据的平均数为y ,则这(m +n )个数据的平均数等于 .16. 若五个正整数的中位数是3,唯一的众数是7,则这五个数的平均数是 .三、全面答一答(本大题有7小题,共66分)17.(6分)某校九年级甲班学生中,13岁的有5人,14岁的30人,15岁的5人,求这个班级学生的平均年龄.18.(8分)某同学在这学期的前四次数学测试中,得分依次为:95,82,76和88,马上要进行第五次数学测试了,她希望五次成绩的平均数能够达到或超过85分,那么,这次测试她至少要考多少分?19.(8分)为了从甲、乙两名射击运动员中选拔一名参加比赛,对这两名运动员进行测试,他们10次射击命中的环数如下:甲:7,9,8,6,10,7,9,8,6,10;乙:7,8,9,8,8,6,8,9,7,10.根据测试成绩,你认为选择哪一名运动员参赛更好? 为什么?20.(10分)某公司招聘职员两名,对甲、乙、丙、丁四名候选人进行了笔试和面试,各项成绩满分均为100分,然后再按笔试占60%,面试占40%计算候选人的综合成绩(满分为100分).他们的各这四名候选人面试成绩的中位数是 .(2)现得知候选人丙的综合成绩为87.6分,则表中x的值等于 .(3)求其余三名候选人的综合成绩,并以综合成绩排序确定所要招聘的前两名的人选.21.(10分)某企业举行“爱心一日捐”活动,捐款金额分为五个档次,分别是50元,100元,150元,200元,300元.宣传小组随机抽取部分捐款职工并统计了他们的捐款金额,绘制成两个不完整的统计图,请结合图表中的信息解答下列问题:(1)宣传小组抽取的捐款人数为人,请补全条形统计图.(2)统计的捐款金额的中位数是元.(3)在扇形统计图中,求100元所对应扇形的圆心角的度数.(4)已知该企业共有500人参与本次捐款,请你估计捐款总额大约为多少元?捐款金额各档次人数统计图22.(12分)为了提高学生对毒品危害性的认识,我市相关部门每个月都要对学生进行“禁毒知识应知应会”测评.为了激发学生的积极性,某校对达到一定成绩的学生授予“禁毒小卫士”的荣誉称号.为了确定一个适当的奖励目标,该校随机选取了七年级20名学生在5月份测评的成绩,数据如下:收集数据:90 91 89 96 90 98 90 97 91 98 99 97 91 88 90 97 95 90 95 88(1)根据上述数据,将下列表格补充完整.成绩(分)888990919596979899学生人数2132121平均数众数中位数9391得出结论:(2)根据所给数据,如果该校想确定七年级前50%的学生为“良好”等次,你认为"良好"等次的测评成绩至少定为多少分?数据应用:(3)根据数据分析,该校决定在七年级授予测评成绩前30%的学生“禁毒小卫士”荣誉称号,请估计评选该荣誉称号的最低分数,并说明理由.23. (12分)甲、乙两名队员参加射击训练,每人射击10次,成绩平均成绩(环)中位数(环)众数(环)方差(环²)甲a77 1.2乙7b8c(1)a= ;b= ;c= .(2)填空:(填“甲”或“乙”).①从平均数和中位数的角度来比较,成绩较好的是;②从平均数和众数的角度来比较,成绩较好的是;③成绩相对较稳定的是 .第3章 数据分析初步1. B2. D3. D4. D5. B6. B7. D8. A9. A 解析:数据1,3,4,2,7的平均数是: 15(1+3+4+2+7)= 175,方差: a =15[(1−175)2+(3−175)2+(4−175)2+(2− 175)2+(7−175)2]=1062;数据1,4,2,7 的平均数是: 14(1+ 4+2+7)=72,方差: b ≠14[(1−72))2+(4−72)2+(2− 72)2+(7−72)2−]214快时a<b;故选 A.10. D11.5 3.2 12.甲 13.10 14.88 15.mx+ny n+n 16. 417.解:根据题意得: 13×5+30×14+5×155+30+5=14(岁),答:这个班级学生的平均年龄是14岁.18.84 分19.解: x̅甲=110(7−9+8+6+10+7+9+8+6+10)=8(环),xz 110(7+8+9+8+8+6+8+9+7+10)=8(环)S 甲2=110[(7−8)2+(9−8)2−(8−8)2+(6−8)2+(10−8)2+(7- 8)2+(9−8)4+(8−8)2+(6−8y )−+(10−8)2]=2(环2),S 乙2:= 11n [(7−8)2+(8−8)2+(9−8)2+(8−8)2+(8−8)2+(8−8)2 +(8−8)²+(9−8)²+(7−8)⁻|(10−8)²]=1.22(环²).∵SR>S ₂,∴乙运动员的成绩比较稳定,∴选择乙运动员参赛更好.20.(1)89分 (2)86分(3)解:(1)这四名候选人面试成绩从低到高排列为:86.88,90,92,则中位数是(88+90)÷2=89(分).(2)丙的综合成绩为:87.6=60%x+90×40%,解得x=86.(3)甲的综合成绩为:90×60%+88×40%=89.2(分),乙的综合成绩为:84×60%+92×40%=87.2(分),丁的综合成绩为:88×0.6+86×0.4=87.2(分),∴综合成绩排序为:甲、丙、乙、丁,确定招聘的前两名人选为甲、丙.21.解:(1)50 补全条形统计图略. (2)150 (3)1050×360∘=72∘. (4)(50×4+100×10+150×12+200×18+300×6)÷50×500=84 000(元).22.解:(1)由题意得:90分的有5个;97分的有3个;出现次数最多的是90分.∴众数是90分;故答案为:5 390.(2)20×50%=10,如果该校想确定七年级前50%的学生为“良好”等次,则“良好”等次的测评成绩至少定为91分.(3)估计评选该荣誉称号的最低分数为97分.理由如下:∵20×30%=6.∴估计评选该荣誉称号的最低分数为97分.23.解:(1)a 110₀(5+2×6+4×7+2×8+9)=7(环) b =−12×(7+8)=7.5(环). c =110[(3−7)2+(4−7)2+(6−7)+(8−7 +(7−7)²+(8−7)²+(7−7)²+(8−7)²+(10−7)+(9−7)2]=4.2(环²);故答案为:7 7.5 4.2.(2)由表中数据可知,甲、乙平均成绩相等,乙的中位数,众数均大于甲,说明乙的成绩好于甲,乙的方差大于甲.①从平均数和中位数的角度来比较,成绩较好的是:乙;②从平均数和众数的角度来比较,成绩较好的是乙;③成绩相对较稳定的是:甲.故答案为:乙 乙 甲。
【单元卷】浙教版八年级数学下册:第3章 数据分析初步 单元质量检测卷(二)含答案与解析
浙教版八年级数学下册单元质量检测卷(二)第3章数据分析初步姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分120分,考试时间90分钟,试题共27题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.在AI计算机比赛预赛中,11名参赛者得分各不相同,按得分取前5名进入决赛.若佳佳知道自己的得分,要判断自己能否进入决赛,她只需知道11名参赛者得分的()A.方差B.平均数C.众数D.中位数2.有一组数据:15,14,16,16,18,17,19,21,20.这组数据的中位数是()A.16 B.17 C.18 D.193.某校篮球队有12名队员,队员的年龄情况统计如下:年龄/岁13 14 15 16人数 2 4 3 3则这12名队员年龄的中位数和众数分别是()A.14,15 B.14.5,14 C.14,14 D.14.5,154.下列说法错误的是()A.随机事件发生的概率大于或等于0,小于或等于1B.可以通过大量重复试验,用一个随机事件发生的频率去估计它的概率C.必然事件发生的概率为1D.一组数据的中位数,就是这组数据中间的一个数或者中间两个数的平均数5.如图是嘉淇同学完成的作业,则他做错的题数是()A.0个B.1个C.2个D.3个6.运算能力是一项重要的数学能力,王老师为帮助学生诊断和改进运算中的问题,对全班学生进行了三次运算测试,下面的气泡图中,描述了其中5位同学的测试成绩(气泡圆的圆心横、纵坐标分别表示第一次和第二次测试成绩,气泡的大小表示三次成绩的平均分的高低,气泡越大平均分越高.)以下说法中:①甲同学的第一次测试成绩高于乙同学的第一次测试成绩;②这5五位同学中,第一次测试成绩比第二次测试成绩高的有2人;③这5位同学的前两次测试成绩之和均超过了100分;④甲同学的第三次测试成绩高于乙同学.其中合理的是()A.①③B.③④C.②③D.①④7.某单位招录考试计算成绩是:综合成绩=笔试成绩×60%+面试成绩×40%,若小明的笔试成绩是82分,小芳的笔试成绩是85分,若小明的综合成绩要超过小芳,则小明的面试成绩至少比小芳多()A.6分B.5分C.4分D.3分8.某公司为了解销售人员某季度商品的销售情况,随机抽取部分销售人员该季度的销售数量,并把所得数据整理后绘制成统计表进行分析.组别销售数量(件)频数频率A20≤x<40 2 0.04B40≤x<60 6 0.12C60≤x<80 13 bD80≤x<100 a0.48E100≤x<120 5 0.10合计50 1下面有三个推断:①表中a的值为24;②表中b的值为0.13;③这50名销售人员该季度销售数量的中位数在D组.所有合理推断的序号是()A.①②B.①③C.②③D.①②③9.对于三个数a,b,c,用M{a,b,c}表示这三个数的平均数,用max{a,b,c}表示这三个数中最大的数,例如:M;max{﹣1,2,3}=3,max若M{4,x2,x+2}=max{4,x2,x+2};则x的值为()A.2或B.2或﹣3 C.2 D.﹣310.下列说法正确的是()A.了解全国中学生最喜爱哪位歌手,适合全面调查.B.甲乙两种麦种,连续3年的平均亩产量相同,它们的方差为:S甲2=5,S乙2=0.5,则甲麦种产量比较稳.C.某次朗读比赛中预设半数晋级,某同学想知道自己是否晋级,除知道自己的成绩外,还需要知道平均成绩.D.一组数据:3,2,5,5,4,6的众数是5.二、填空题(本大题共8小题,每小题4分,共32分.不需写出解答过程,请把答案直接填写在横线上)11.若一组数据:2,2,3,5,5,7.则这组数据的平均数是.12.小宁的数学期末总评成绩由平时、期中期末考试成绩按权重比2:3:5组成如果小宁本学期三项成绩依次为110分、105分、115分,则小宁本学期的数学期末总评成绩是分.13.某次射击训练中,一小组的成绩如下表所示:环数7 8 9人数 3 4已知该小组的平均成绩为8环,那么成绩为9环的人数是.14.某公司要招聘一名新的大学生,公司对入围的甲、乙两名候选人进行了三项测试,成绩如表所示,根据实际需要,规定能力、技能、学业三项测试得分按5:3:2的比例确定个人的测试成绩,得分最高者被录取,此时将被录取(填“甲”或“乙”).得分/项目能力技能学业甲88 84 64乙87 80 7715.已知一组数据1,7,10,8,x,6,0,3,若=5,则x应等于.16.如图,是甲、乙两人10次射击成绩(环数)的条形统计图,则甲、乙两人中成绩较稳定的是.17.新学期,某校欲招聘数学教师一名,对两名候选老师进行了两项基本素质的测试,他们的测试成绩如表所示.根据教学能力的实际需要,学校将笔试、面试的得分按2:3的比例计算两人的总成绩,那么(填“李老师”或“王老师”)将被录用.测试项目测试成绩李老师王老师笔试90 95面试85 8018.对于三个数a,b,c,我们规定用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中最小的数.例如:M{﹣1,2,3}==,min{﹣1,2,3}=﹣1,如果M{3,2x+1,4x﹣1}=min{2,﹣x+3,5x},那么x=.三、解答题(本大题共7小题,共58分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.为提高农民收入,村民自愿投资办起了养鸡场.办场时买来1000只小鸡,经过一段时间饲养可以出售了.下表是这些鸡出售时质量的统计数据:质量/kg 1.0 1.2 1.5 1.8 2频数112 230 320 240 98 (1)出售时这些鸡的平均质量是多少(结果保留小数点后一位)?(2)质量在哪个值的鸡最多?(3)中间的质量是多少?20.某校为了了解初中学生每天的睡眠时间(单位为小时),随机调查了该校的部分初中学生,根据调查结果,绘制出如图统计图.请根据相关信息,解答下列问题:(1)本次接受调查的初中学生人数为人,扇形统计图中的m=,条形统计图中的n=;(2)所调查的初中学生每天睡眠时间的众数是,方差是;(3)该校共有1600名初中学生,根据样本数据,估计该校初中学生每天睡眠时间不足8小时的人数.21.为了了解我校学生在家做家务劳动的情况,学校随机调查了部分同学的劳动时间,并用得到的数据绘制了不完整的统计图,根据图中信息回答下列问题.(1)求本次调查学生的人数;(2)将条形统计图补充完整;(3)抽查的学生中做家务劳动时间的众数是小时,中位数是小时;(4)如果全校共有学生3000人,请你估计全校大约有多少同学做家务劳动时间是2小时.22.中华文化源远流长,文学方面,《西游记》、《三国演义》、《水浒传》、《红楼梦》是我国古代长篇小说中的典型代表,被称为“四大古典名著”.某中学为了了解学生对四大古典名著的阅读情况,就“四大古典名著你读完了几部”的问题在全校学生中进行了抽样调查,根据调查结果绘制成如图尚不完整的统计图.请根据以上信息,解决下列问题:(1)本次调查所得数据的众数是部,中位数是部;(2)扇形统计图中“4部”所在扇形的圆心角为度;(3)请将条形统计图补充完整;(4)没有读过四大古典名著的两名学生准备从中各自随机选择一部来阅读,请用列表或画树状图的方法求他们恰好选中同一名著的概率.23.钟南山院士谈到防护新型冠状病毒肺炎时说:“我们需要重视防护,尽量呆在家,勤洗手,多运动,多看书,少熬夜.”重庆实验外国语学校为鼓励学生抗疫期间在家阅读,组织八年级全体同学参加了疫期居家海量读书活动,随机抽查了部分同学读书本数的情况统计如图所示.(1)本次共抽查学生人,并将条形统计图补充完整;(2)读书本数的众数是本,中位数是本.(3)在八年级2000名学生中,读书15本及以上(含15本)的学生估计有多少人?(4)在八年级六班共有50名学生,其中读书达到25本的有两位男生和两位女生,老师要从这四位同学中随机邀请两位同学分享读书心得,试通过画树状图或列表的方法求恰好是两位男生分享心得的概率.24.为加强中学生体育锻炼,学校组织了九年级300名学生进行了体质监测,现随机抽取了部分同学的成绩(百分制).制成如图不完整的统计图表:表一成绩x X<60 60≤x<70 70≤x<80 80≤x<90 90≤x<100人数 1 2 a8 4表二统计量平均数中位数众数成绩79.7 b72根据以上信息回答下列问题:(1)若抽取的学生成绩处在80≤x<90这一组的数据如下:88 87 81 80 82 88 84 86 根据以上数据将表一和表二补充完整:a;b;(2)在扇形统计图中,表示问卷成绩在70≤x<80这一组的扇形圆心角度数为;(3)若成绩在80分以上为体质达标,请你估计该校九年级一共有多少名学生的体质达标?25.某学校为了解学生的体能情况,组织了体育测试,测试项目有A“立定跳远”、B“掷实心球”、C“耐久跑”、D“快速跑”四个.规定:每名学生测试三项,其中A、B为必测项目,第三项C、D中随机抽取,每项10分,满分30分.(1)请用列表或树状图,求甲、乙两同学测试的三个项目完全相同的概率;(2)据统计,九(1)班有8名女生抽到了C“耐久跑”项目,她们的成绩如下:7,6,8,9,10,5,8,7①这组成绩的中位数是,平均数是;②该班女生丙因病错过了测试,补测抽到了C“耐久跑”项目,加上丙同学的成绩后,发现这组成绩的众数与中位数相等,但平均数比①中的平均数大,则丙同学“耐久跑”的成绩为;(3)九(1)班有50名学生,下表是单项目成绩统计,请计算出该班此次体能测试的平均成绩项目A立定跳远B掷实心球C耐久跑D快速跑测试人数(人)50 50 20 30单项平均成绩(分)9 8 7 8参考答案与解析一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.在AI计算机比赛预赛中,11名参赛者得分各不相同,按得分取前5名进入决赛.若佳佳知道自己的得分,要判断自己能否进入决赛,她只需知道11名参赛者得分的()A.方差B.平均数C.众数D.中位数【答案】D【分析】由于参赛选手取前5名进入决赛,共有11名选手参赛,根据中位数的意义分析即可.【解答】解:由于总共有11个人,且他们的分数各不相同,第6名的成绩是中位数,要判断是否进入前5名,故应知道自己的成绩和中位数.故选:D.【知识点】统计量的选择、中位数、众数、算术平均数、方差2.有一组数据:15,14,16,16,18,17,19,21,20.这组数据的中位数是()A.16 B.17 C.18 D.19【答案】B【分析】根据中位数的意义,将数从小到大排列,处在中间位置的数即可.【解答】解:从小到大排列得,14,15,16,16,17,18,19,20,21处在中间位置的一个数是17,因此中位数是17,故选:B.【知识点】中位数3.某校篮球队有12名队员,队员的年龄情况统计如下:年龄/岁13 14 15 16人数 2 4 3 3则这12名队员年龄的中位数和众数分别是()A.14,15 B.14.5,14 C.14,14 D.14.5,15【答案】B【分析】众数就是出现次数最多的数,而中位数就是大小处于中间位置的数,根据定义即可求解.【解答】解:这12名队员年龄的中位数=14.5(岁),众数为14岁,故选:B.【知识点】中位数、众数4.下列说法错误的是()A.随机事件发生的概率大于或等于0,小于或等于1B.可以通过大量重复试验,用一个随机事件发生的频率去估计它的概率C.必然事件发生的概率为1D.一组数据的中位数,就是这组数据中间的一个数或者中间两个数的平均数【答案】A【分析】根据概率的意义及中位数的定义分别判断后即可确定正确的选项.【解答】解:A、随机事件发生的概率大于0,小于1,故原命题错误,符合题意;B、可以通过大量重复试验,用一个随机事件发生的频率去估计它的概率,说法正确,不符合题意;C、必然事件发生的概率为1,正确,不符合题意;D、一组数据的中位数,就是这组数据中间的一个数或者中间两个数的平均数,正确,不符合题意,故选:A.【知识点】概率的意义、中位数、算术平均数、利用频率估计概率5.如图是嘉淇同学完成的作业,则他做错的题数是()A.0个B.1个C.2个D.3个【答案】C【分析】各个题目中的各个小题的说法可以判断是否正确,从而可以解答本题.【解答】解:a、b互为相反数⇔a+b=0,故①中嘉淇的判断正确;a、b互为倒数⇔ab=1,故②中嘉淇的判断正确;(﹣2a)2=4a2,故③中嘉淇的判断正确;1、2、x、5的中位数是3,则x=4,故④中嘉淇的判断错误;若|a|=|b|,则a=b是假命题,故⑤中嘉淇的判断错误;故选:C.【知识点】绝对值、中位数、倒数、相反数、幂的乘方与积的乘方6.运算能力是一项重要的数学能力,王老师为帮助学生诊断和改进运算中的问题,对全班学生进行了三次运算测试,下面的气泡图中,描述了其中5位同学的测试成绩(气泡圆的圆心横、纵坐标分别表示第一次和第二次测试成绩,气泡的大小表示三次成绩的平均分的高低,气泡越大平均分越高.)以下说法中:①甲同学的第一次测试成绩高于乙同学的第一次测试成绩;②这5五位同学中,第一次测试成绩比第二次测试成绩高的有2人;③这5位同学的前两次测试成绩之和均超过了100分;④甲同学的第三次测试成绩高于乙同学.其中合理的是()A.①③B.③④C.②③D.①④【答案】B【分析】根据气泡圆的圆心横、纵坐标分别表示第一次和第二次测试成绩,气泡的大小表示三次成绩的平均分的高低,气泡越大平均分越高,由此一一判断即可解决问题.【解答】解:由题意甲的气泡圆的圆心横坐标小于乙的气泡圆的圆心横坐标,∴甲同学的第一次测试成绩低于乙同学的第一次测试成绩,故①错误.观察图象可知,这5五位同学中,第一次测试成绩比第二次测试成绩高的有3人,故②错误.观察图象可知,这5位同学的前两次测试成绩之和均超过了100分,故③正确.观察图象可知,甲的第一次,第二次的成绩的和小于乙的第一次,第二次的成绩的和,而甲的平均成绩高于乙的平均成绩,所以甲的第三次的成绩高于乙的第三次成绩,故④正确.故选:B.【知识点】算术平均数、其他统计图7.某单位招录考试计算成绩是:综合成绩=笔试成绩×60%+面试成绩×40%,若小明的笔试成绩是82分,小芳的笔试成绩是85分,若小明的综合成绩要超过小芳,则小明的面试成绩至少比小芳多()A.6分B.5分C.4分D.3分【答案】B【分析】设两个人的面试成绩,根据加权平均数的计算方法,列出不等式,求出面试成绩的差的取值范围即可.【解答】解:设小明的面试成绩为x,小芳的面试成绩为y,则82×60%+40%x>85×60%+40%y,∴0.4x﹣0.4y>(85﹣82)×0.6∴x﹣y>4.5,即小明的面试成绩至少比小芳多5分.故选:B.【知识点】加权平均数、一元一次不等式的应用8.某公司为了解销售人员某季度商品的销售情况,随机抽取部分销售人员该季度的销售数量,并把所得数据整理后绘制成统计表进行分析.组别销售数量(件)频数频率A20≤x<40 2 0.04B40≤x<60 6 0.12C60≤x<80 13 bD80≤x<100 a0.48E100≤x<120 5 0.10合计50 1下面有三个推断:①表中a的值为24;②表中b的值为0.13;③这50名销售人员该季度销售数量的中位数在D组.所有合理推断的序号是()A.①②B.①③C.②③D.①②③【答案】B【分析】①用50减去各个组别的频数即可求解;②用1减去各个组别的频率即可求解;③根据中位数的定义即可求解.【解答】解:①a=50﹣2﹣6﹣13﹣5=24,是合理推断;②b=1﹣0.04﹣0.12﹣0.48﹣0.10=0.26,不是合理推断;③按照从小到大的顺序排列,第25和第26个数据都在D组,故这50名销售人员该季度销售数量的中位数在D组,是合理推断.故选:B.【知识点】中位数、频数(率)分布表9.对于三个数a,b,c,用M{a,b,c}表示这三个数的平均数,用max{a,b,c}表示这三个数中最大的数,例如:M;max{﹣1,2,3}=3,max若M{4,x2,x+2}=max{4,x2,x+2};则x的值为()A.2或B.2或﹣3 C.2 D.﹣3【答案】C【分析】本题直接按照定义计算应该可以求得结果,但是计算较为麻烦,故从选择题的角度出发,可以采用代值验证,并结合排除法来求解.【解答】解:观察选项,发现3个有2,故先令x=2,则M{4,x2,x+2}==4,max{4,x2,x+2}=max{4,4,4}=4故x=2符合题意,排除D;令x=,则M{4,x2,x+2}==<4故x=不符合题意,排除A;令x=﹣3,则M{4,x2,x+2}==4,max{4,x2,x+2}=max{4,9,﹣1}=94<9,故x=﹣3不符合题意,排除B;综上,故选:C.【知识点】算术平均数10.下列说法正确的是()A.了解全国中学生最喜爱哪位歌手,适合全面调查.B.甲乙两种麦种,连续3年的平均亩产量相同,它们的方差为:S甲2=5,S乙2=0.5,则甲麦种产量比较稳.C.某次朗读比赛中预设半数晋级,某同学想知道自己是否晋级,除知道自己的成绩外,还需要知道平均成绩.D.一组数据:3,2,5,5,4,6的众数是5.【答案】D【分析】根据全面调查、方差、平均数和众数的概念判断即可.【解答】解:A:了解全国中学生最喜爱的歌手情况时,调查对象是全国中学生,人数太多,应选用抽样调查的调查方式,A项错误;B:甲乙两种麦种连续3年的平均亩产量的方差为:,,因方差越小越稳定,则乙麦种产量比较稳,故B项错误;C:某次朗读比赛中预设半数晋级,某同学想知道自己是否晋级,除知道自己的成绩外,还需要知道这次成绩的中位数,C项错误;D:.一组数据:3,2,5,5,4,6的众数是5.正确.故选:D.【知识点】全面调查与抽样调查、众数、方差二、填空题(本大题共8小题,每小题4分,共32分.不需写出解答过程,请把答案直接填写在横线上)11.若一组数据:2,2,3,5,5,7.则这组数据的平均数是.【答案】4【分析】根据算术平均数的计算公式列出算式,再进行计算即可得出答案.【解答】解:根据题意得:(2+2+3+5+5+7)÷6=4,则这组数据的平均数是4.故答案为:4.【知识点】算术平均数12.小宁的数学期末总评成绩由平时、期中期末考试成绩按权重比2:3:5组成如果小宁本学期三项成绩依次为110分、105分、115分,则小宁本学期的数学期末总评成绩是分.【答案】111【分析】根据题意和题目中的数据,利用加权平均数的计算方法,可以计算出小宁本学期的数学期末总评成绩.【解答】解:由题意可得,=111(分),即小宁本学期的数学期末总评成绩是111分,故答案为:111.【知识点】加权平均数13.某次射击训练中,一小组的成绩如下表所示:环数7 8 9人数 3 4已知该小组的平均成绩为8环,那么成绩为9环的人数是.【答案】3【分析】先设成绩为9环的人数是x,根据加权平均数的计算公式列出方程,求出x的值即可.【解答】解:设成绩为9环的人数是x,根据题意得:(7×3+8×4+9x)÷(3+4+x)=8,解得:x=3,则成绩为9环的人数是3.故答案为:3.【知识点】加权平均数14.某公司要招聘一名新的大学生,公司对入围的甲、乙两名候选人进行了三项测试,成绩如表所示,根据实际需要,规定能力、技能、学业三项测试得分按5:3:2的比例确定个人的测试成绩,得分最高者被录取,此时将被录取(填“甲”或“乙”).得分/项目能力技能学业甲88 84 64乙87 80 77【答案】乙【分析】根据题意和表格中的数据可以分别求得甲乙两位选手的成绩,从而可以解答本题.【解答】解:由题意和图表可得,甲的平均成绩==82,乙的平均成绩==82.9,∵82<82.9,∴故乙将被录取,故答案为:乙.【知识点】加权平均数15.已知一组数据1,7,10,8,x,6,0,3,若=5,则x应等于.【答案】5【分析】本题需先根据已知条件和算术平均数的定义列出式子,解出得数即可求出答案.【解答】解:根据题意得:(1+7+10+8+x+6+0+3)÷8=5,35+x=40,x=5.故答案为:5.【知识点】算术平均数16.如图,是甲、乙两人10次射击成绩(环数)的条形统计图,则甲、乙两人中成绩较稳定的是.【答案】乙【分析】根据条形统计图中提供的数据分别计算甲、乙两组的平均数、方差,通过方差的大小比较,得出稳定性.【解答】解:甲==9环,=[(8﹣9)2×4+(9﹣9)2×2+(10﹣9)2×4]=1.6,乙==9环,=[(8﹣9)2×3+(9﹣9)2×4+(10﹣9)2×3]=1.2,∵1.6>1.2,∴乙比较稳定.故答案为:乙.【知识点】条形统计图、方差17.新学期,某校欲招聘数学教师一名,对两名候选老师进行了两项基本素质的测试,他们的测试成绩如表所示.根据教学能力的实际需要,学校将笔试、面试的得分按2:3的比例计算两人的总成绩,那么(填“李老师”或“王老师”)将被录用.测试项目测试成绩李老师王老师笔试90 95面试85 80【答案】李老师【分析】利用加权平均数的计算方法求出李老师、王老师的最后总成绩,比较得出答案.【解答】解:李老师总成绩为:90×+85×=87,王老师的成绩为:95×+80×=86,∵87>86,∴李老师成绩较好,故答案为:李老师.【知识点】加权平均数18.对于三个数a,b,c,我们规定用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中最小的数.例如:M{﹣1,2,3}==,min{﹣1,2,3}=﹣1,如果M{3,2x+1,4x﹣1}=min{2,﹣x+3,5x},那么x=.【分析】依据M{3,2x+1,4x﹣1}=min{2,﹣x+3,5x},分三种情况讨论,即可得到x的值.【解答】解:M{3,2x+1,4x﹣1}=min{2,﹣x+3,5x},①若(3+2x+1+4x﹣1)=2,则x=,(符合题意)②若(3+2x+1+4x﹣1)=﹣x+3,则x=,(﹣x+3不是三个数中最小的数,不符合题意)③若(3+2x+1+4x﹣1)=5x,则x=,(符合题意)故答案为:或.【知识点】算术平均数、解一元一次方程三、解答题(本大题共7小题,共58分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.为提高农民收入,村民自愿投资办起了养鸡场.办场时买来1000只小鸡,经过一段时间饲养可以出售了.下表是这些鸡出售时质量的统计数据:质量/kg 1.0 1.2 1.5 1.8 2频数112 230 320 240 98 (1)出售时这些鸡的平均质量是多少(结果保留小数点后一位)?(2)质量在哪个值的鸡最多?(3)中间的质量是多少?【分析】(1)根据加权平均数的定义求解即可;(2)根据众数的定义即可得到结论.(3)根据中位数的定义求解.【解答】解:(1)出售时这些鸡的平均质量是:(112×1.0+230×1.2+320×1.5+240×1.8+98×2)≈1.5(kg);(2)质量在1.5kg的鸡最多;(3)∵共有1000个数,∴从小到大排列后第500与501个的平均数为中位数,∴中位数=(1.5+1.5)÷2=1.5(kg);∴中间的质量是1.5kg.【知识点】加权平均数、频数(率)分布表20.某校为了了解初中学生每天的睡眠时间(单位为小时),随机调查了该校的部分初中学生,根据调查结果,绘制出如图统计图.请根据相关信息,解答下列问题:(1)本次接受调查的初中学生人数为人,扇形统计图中的m=,条形统计图中的n=;(2)所调查的初中学生每天睡眠时间的众数是,方差是;(3)该校共有1600名初中学生,根据样本数据,估计该校初中学生每天睡眠时间不足8小时的人数.【答案】【第1空】40【第2空】25【第3空】15【第4空】7h【第5空】1.15【分析】(1)根据5h的人数和所占的百分比,可以求得本次接受调查的初中学生人数,然后即可计算出m 和n的值;(2)根据统计图中的数据,可以得到众数,计算出方差;(3)根据题目中的数据,可以计算出该校初中学生每天睡眠时间不足8小时的人数.【解答】解:(1)本次接受调查的初中学生有:4÷10%=40(人),m%=10÷40×100%=25%,n=40×37.5%=15,故答案为:40,25,15;(2)由条形统计图可得,众数是7h,×(5×4+6×8+7×15+8×10+9×3)=7,s2=[(5﹣7)2×4+(6﹣7)2×8+(7﹣7)2×15+(8﹣7)2×10+(9﹣7)2×3]=1.15,故答案为:7h,1.15;(3)1600×=1080(人),即该校初中学生每天睡眠时间不足8小时的有1080人.【知识点】众数、用样本估计总体、扇形统计图、条形统计图、方差21.为了了解我校学生在家做家务劳动的情况,学校随机调查了部分同学的劳动时间,并用得到的数据绘制了不完整的统计图,根据图中信息回答下列问题.(1)求本次调查学生的人数;(2)将条形统计图补充完整;(3)抽查的学生中做家务劳动时间的众数是小时,中位数是小时;(4)如果全校共有学生3000人,请你估计全校大约有多少同学做家务劳动时间是2小时.【答案】【第1空】1.5【第2空】1.5【分析】(1)从两个统计图中得到家务劳动1小时的学生有30人,占调查人数的30%,可求出调查人数;(2)求出家务劳动1.5小时的学生人数即可补全条形统计图,(3)根据中位数、众数的意义和求法,分别找出出现次数最多的数,处在中间位置的两个数的平均数,(4)用样本中家务劳动在2个小时的占比,估计总体的占比,根据总人数求出全校家务劳动在2小时的学生人数.【解答】解:(1)30÷30%=100(人),答:本次抽样调查学的人数是100人;(2)做家务的时间是1.5小时的学生有:100﹣12﹣30﹣18=40(人),补全条形统计图如图所示:(3)家务劳动时间在1.5小时的人数最多,由40人,因此众数1.5小时,将家务劳动时间从小到大排列处在第50、51位的数都是1.5小时,因此中位数1.5小时,故答案为:1.5,1.5;(4)根据题意得:3000×=540(人),答:全校大约有540名同学做家务劳动时间是2小时.【知识点】条形统计图、众数、用样本估计总体、中位数22.中华文化源远流长,文学方面,《西游记》、《三国演义》、《水浒传》、《红楼梦》是我国古代长篇小说中的典型代表,被称为“四大古典名著”.某中学为了了解学生对四大古典名著的阅读情况,就“四大古典名著你读完了几部”的问题在全校学生中进行了抽样调查,根据调查结果绘制成如图尚不完整的统计图.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙教新版八年级(下)数学第3章数据分析初步单元测试卷一.选择题(共10小题)1.某校开展了“空中云班会”的满意度调查,其中九年级各班满意的人数分别为27,28,28,29,29,30.下列关于这组数据描述正确的是()A.中位数是29B.众数是28C.平均数为28.5D.方差是22.老师要分析小刚的5次数学模拟考试成绩是否稳定,她需要统计小刚这5次成绩的()A.平均数B.方差或标准差C.众数D.中位数3.据调查,某班40名学生所穿校服尺码统计如表:尺码150155160165170175180频数18615442则该班40名学生所穿校服尺码的众数是()A.4B.15C.170D.1654.若1,4,m,7,8的平均数是5,则1,4,m+10,7,8的平均数是()A.5B.6C.7D.85.某校为了解学生在校一周体育锻炼时间,随机调查了35名学生,调查结果列表如下:锻炼时间/h5678人数615104则这35名学生在校一周体育锻炼时间的中位数和众数分别为()A.6h,6h B.6h,15h C.6.5h,6h D.6.5h,15h6.烹饪大赛的菜品的评价按味道,外形,色泽三个方面进行评价(评价的满分均为100分),三个方面的重要性之比依次为7:2:1.某位厨师的菜所得的分数依次为92分、88分、80分,那么这位厨师的最后得分是()A.90分B.87分C.89分D.86分7.某商店选用20元/千克的A型糖x千克,12元/千克的B型糖5千克,混合成什锦糖后出售,这种什锦糖平均每千克的售价为15元/千克,则x的值为()A.3B.4C.5D.68.某工厂生产质量为1克,5克,10克,25克四种规格的球,现从中取x个球装到一个空箱子里,这时箱子里球的平均质量为20克,若再放入一个25克的球,则箱子里球的平均质量变为21克,则x的值为()A.3B.4C.5D.69.小红同学对数据24,48,23,24,5■,52进行统计分析,发现其中一个两位数的个位数字被墨水涂污看不到了,则计算结果与被涂污数字无关的是()A.平均数B.中位数C.方差D.众数10.某中学篮球队12名队员的年龄如表所示:年龄(岁)13141516人数1542关于这12名队员的年龄,下列说法错误的是()A.众数是14岁B.最大值与最小值的差是3岁C.中位数是14.5岁D.平均数是14.8岁二.填空题(共10小题)11.数据3,4,5,1,3,6,3,3的众数是.12.今年3月份某周,我市每天的最高气温(单位:℃)12,11,10,15,16,15,12,若这组数据的中位数是.13.若一组数据1,2,3,x的平均数是2,则这组数据的方差是.14.如表是某所学校一个学习小组一次数学测验的成绩统计表,已知该小组本次数学测验的平均分是86分,那么表中的x的值是.分数708090100人数13x115.现有相同个数的甲、乙两组数据,经计算得:x甲=x乙,且S甲2=0.35,S乙2=0.25,比较这两组数据的稳定性,组比较稳定.16.已知一组数据x1,x2,x3的平均数和方差分别为5和2,则数据x1+1,x2+1,x3+1的平均数是,标准差是.17.某景区在“春节”假期间,每天接待的游客人数统计如下:(单位:万人)农历十二月三十正月初一正月初二正月初三正月初四正月初五正月初六人数 1.2 2.32 2.3 1.2 2.30.6表中表示人数的一组数据中,众数和中位数分别是和.18.小明本学期平时测验,期中考试和期末考试的数学成绩分别是135分、135分、122分.如果这3项成绩分别按30%、30%、40%的比例计算,那么小明本学期的数学平均分是.19.10位裁判给一位运动员打分,每个人给的分数都是整数,去掉一个最高分,再去掉一个最低分,其余得分的平均数为该运动员的得分.若用四舍五入取近似值的方法精确到十分位,该运动员得9.4分,如果精确到百分位,该运动员得分应当是分.20.已知一组数据x1,x2,x3,x4,x5的平均数是2,那么另一组数据3x1﹣2,3x2﹣2,3x3﹣2,3x4﹣2,3x5﹣2的平均数是.三.解答题(共8小题)21.为了从甲、乙两名选手中选拔一个参加射击比赛,现对他们进行一次测验,两个人在相同条件下各射靶10次,两人成绩如下(单位:环):甲:2,4,6,8,7,7,8,9,9,10乙:9,6,7,6,2,7,7,a,8,9(1)求甲的平均数;(2)已知=7,求乙的中位数;(3)已知S甲2=5.4,请通过计算说明谁的成绩较稳定?22.甲、乙两位同学参加数学综合素质测试,各项成绩如下(单位:分)数与代数空间与图形统计与概率综合与实践学生甲90948690学生乙94829391(1)分别计算甲、乙成绩的平均数和方差;(2)如果数与代数、空间与图形、统计与概率、综合与实践的成绩按3:3:2:2计算,那么甲、乙的数学综合素质成绩分别为多少分?23.在“2019慈善一日捐”活动中,某校八年级(1)班40名同学的捐款情况如下表:捐款金(元)203050A80100人数(人)2816x47根据表中提供的信息回答下列问题:(1)x的值为,捐款金额的众数为元,中位数为元;(2)已知全班平均每人捐款57元,求a的值.24.停课不停学,疫情期间,九(1)班30位同学参加运动线上打卡,张老师为了鼓励同学们积极锻炼,统计了这30人15天的打卡次数如下:打卡次数4567891011131415人数11236511145(1)求所有同学打卡次数的平均数,并直接写出中位数和众数;(2)为了调动同学们锻炼的积极性,张老师决定制定一个打卡奖励标准,凡打卡次数达到或超过这个标准的同学将获得奖励﹒请你根据(1)中所求的统计量,帮助张老师制定一个较为合理的打卡奖励标准,并说明理由﹒25.某工厂甲、乙两名工人参加操作技能培训.现分别从他们在培训期间参加的若干次测试成绩中随机抽取8次,数据如下(单位:分)甲9582888193798478乙8375808090859295(1)请你计算这两组数据的平均数、中位数;(2)现要从中选派一人参加操作技能比赛,从统计学的角度考虑,你认为选派哪名工人参加合适?请说明理由.26.某校八年级(1)班甲、乙两男生在5次引体向上测试中有效次数如下:甲:8,8,7,8,9;乙:5,9,7,10,9;甲乙两同学引体向上的平均数、众数、中位数、方差如下:平均数众数中位数方差甲8b80.4乙a9c 3.2根据以上信息,回答下列问题:(1)表格是a=,b=,c=.(填数值)(2)体育老师根据这5次的成绩,决定选择甲同学代表班级参加年级引体向上比赛,选择甲的理由是.班主任李老师根据去年比赛的成绩(至少9次才能获奖),决定选择乙同学代表班级参加年级引体向上比赛,选择乙的理由是.(3)如果乙同学再做一次引体向上,有效次数为8,那么乙同学6次引体向上成绩的平均数,中位数,方差.(填“变大”、“变小”或“不变”)27.某中学开展“唱红歌”比赛活动,九年级(1)、(2)班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩如图所示.(1)根据图示填写下表;班级平均数(分)中位数(分)众数(分)九(1)85九(2)85100(2)结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好;(3)计算两班复赛成绩的方差.28.为了了解学生关注热点新闻的情况,“两会”期间,小明对班级同学一周内收看“两会”新闻的次数情况作了调查,调查结果统计如图所示(其中男生收看3次的人数没有标出).根据上述信息,解答下列各题:(1)该班级女生人数是,女生收看“两会”新闻次数的中位数是;(2)对于某个群体,我们把一周内收看某热点新闻次数不低于3次的人数占其所在群体总人数的百分比叫做该群体对某热点新闻的“关注指数”.如果该班级男生对“两会”新闻的“关注指数”比女生低5%,试求该班级男生人数;(3)为进一步分析该班级男、女生收看“两会”新闻次数的特点,小明给出了男生的部分统计量(如表).统计量平均数(次)中位数(次)众数(次)方差…该班级男生3342…根据你所学过的统计知识,适当计算女生的有关统计量,进而比较该班级男、女生收看“两会”新闻次数的波动大小.参考答案一.选择题(共10小题)1.某校开展了“空中云班会”的满意度调查,其中九年级各班满意的人数分别为27,28,28,29,29,30.下列关于这组数据描述正确的是()A.中位数是29B.众数是28C.平均数为28.5D.方差是2【解答】解:A、中位数是,选项错误;B、众数是28和29,选项错误;C、平均数为,选项正确;D、方差为≈0.58,选项错误;故选:C.2.老师要分析小刚的5次数学模拟考试成绩是否稳定,她需要统计小刚这5次成绩的()A.平均数B.方差或标准差C.众数D.中位数【解答】解:根据方差和标准差的意义可知:老师要分析小刚的5次数学模拟考试成绩是否稳定,她需要统计小刚这5次成绩的方差和标准差.故选:B.3.据调查,某班40名学生所穿校服尺码统计如表:尺码150155160165170175180频数18615442则该班40名学生所穿校服尺码的众数是()A.4B.15C.170D.165【解答】解:因为165号码是频数是15,所以该班40名学生所穿校服尺码的众数是165,4.若1,4,m,7,8的平均数是5,则1,4,m+10,7,8的平均数是()A.5B.6C.7D.8【解答】解:∵1,4,m,7,8的平均数是5,∴1+4+m+7+8=5×5,解得:m=5,则所求数据为1,4,7,8,15,其平均数为=7,故选:C.5.某校为了解学生在校一周体育锻炼时间,随机调查了35名学生,调查结果列表如下:锻炼时间/h5678人数615104则这35名学生在校一周体育锻炼时间的中位数和众数分别为()A.6h,6h B.6h,15h C.6.5h,6h D.6.5h,15h【解答】解:这组数据的众数为6h,中位数为第18个数据,即中位数为6h,故选:A.6.烹饪大赛的菜品的评价按味道,外形,色泽三个方面进行评价(评价的满分均为100分),三个方面的重要性之比依次为7:2:1.某位厨师的菜所得的分数依次为92分、88分、80分,那么这位厨师的最后得分是()A.90分B.87分C.89分D.86分【解答】解:这位厨师的最后得分为:=90(分).故选:A.7.某商店选用20元/千克的A型糖x千克,12元/千克的B型糖5千克,混合成什锦糖后出售,这种什锦糖平均每千克的售价为15元/千克,则x的值为()A.3B.4C.5D.6【解答】解:由题意得,=15,解得,x=3,8.某工厂生产质量为1克,5克,10克,25克四种规格的球,现从中取x个球装到一个空箱子里,这时箱子里球的平均质量为20克,若再放入一个25克的球,则箱子里球的平均质量变为21克,则x的值为()A.3B.4C.5D.6【解答】解:根据题意,得:=21,解得x=4,经检验:x=4是原分式方程的解,故选:B.9.小红同学对数据24,48,23,24,5■,52进行统计分析,发现其中一个两位数的个位数字被墨水涂污看不到了,则计算结果与被涂污数字无关的是()A.平均数B.中位数C.方差D.众数【解答】解:这组数据的平均数、方差和众数都与被涂污数字有关,而这组数据的中位数为24与48的平均数,与被涂污数字无关.故选:B.10.某中学篮球队12名队员的年龄如表所示:年龄(岁)13141516人数1542关于这12名队员的年龄,下列说法错误的是()A.众数是14岁B.最大值与最小值的差是3岁C.中位数是14.5岁D.平均数是14.8岁【解答】解:这12名队员的众数是14岁,最大值与最小值的差是16﹣13=3(岁),中位数是(14+15)÷2=14.5(岁),平均数是≈14.6(岁).故说法错误的是选项D.故选:D.二.填空题(共10小题)11.数据3,4,5,1,3,6,3,3的众数是3.【解答】解:数据3,4,5,1,3,6,3,3的众数是3,故答案为:3.12.今年3月份某周,我市每天的最高气温(单位:℃)12,11,10,15,16,15,12,若这组数据的中位数是12℃.【解答】解:将这组数据重新排列为:10,11,12,12,15,15,16,∴这组数据的中位数为12℃,故答案为:12℃.13.若一组数据1,2,3,x的平均数是2,则这组数据的方差是.【解答】解:∵数据1,2,3,x的平均数是2,∴(1+2+3+x)÷4=2,∴x=2,∴这组数据的方差是:[(1﹣2)2+(2﹣2)2+(3﹣2)2+(2﹣2)2]=;故答案为:.14.如表是某所学校一个学习小组一次数学测验的成绩统计表,已知该小组本次数学测验的平均分是86分,那么表中的x的值是5.分数708090100人数13x1【解答】解:由题意和图表我们可列出方程70+80×3+90x+100=86×(1+3+x+1)解得x=5.故答案为:5.15.现有相同个数的甲、乙两组数据,经计算得:x甲=x乙,且S甲2=0.35,S乙2=0.25,比较这两组数据的稳定性,乙组比较稳定.【解答】解:∵S甲2>S乙2,∴乙比较稳定,故答案为:乙16.已知一组数据x1,x2,x3的平均数和方差分别为5和2,则数据x1+1,x2+1,x3+1的平均数是6,标准差是.【解答】解:由题意得,x1+x2+x3=5×3=15,[(x1﹣5)2+(x2﹣5)2+(x3﹣5)2]=2,∴(x1+1+x2+1+x3+1)÷3=(x1+x2+x3)+1=5+1=6,∴S2=[(x1+1﹣6)2+(x2+1﹣6)2+(x3+1﹣5)2]=[(x1﹣5)2+(x2﹣5)2+(x3﹣5)2]=2,∴S=因此可得,数据x1+1,x2+1,x3+1的平均数是5+1=6,标准差差为,故答案为:6,.17.某景区在“春节”假期间,每天接待的游客人数统计如下:(单位:万人)农历十二月三十正月初一正月初二正月初三正月初四正月初五正月初六人数 1.2 2.32 2.3 1.2 2.30.6表中表示人数的一组数据中,众数和中位数分别是 2.3和2.【解答】解:将这组数据重新排列为0.6,1.2,1.2,2,2.3,2.3,2.3,∴这组数据的众数为2.3,中位数为2,故答案为:2.3,2.18.小明本学期平时测验,期中考试和期末考试的数学成绩分别是135分、135分、122分.如果这3项成绩分别按30%、30%、40%的比例计算,那么小明本学期的数学平均分是129.8.【解答】解:小明本学期的数学学习成绩=135×30%+135×30%+122×40%=129.8(分).故答案为:129.8.19.10位裁判给一位运动员打分,每个人给的分数都是整数,去掉一个最高分,再去掉一个最低分,其余得分的平均数为该运动员的得分.若用四舍五入取近似值的方法精确到十分位,该运动员得9.4分,如果精确到百分位,该运动员得分应当是9.38分.【解答】解:用四舍五入取近似值的方法精确到一位小数能得到9.4的数值范围是:(大于等于9.35和小于9.45之间)∴10个裁判去掉最高和最低得分后,实际取值就是8个人的分数.∴该运动员的有效总得分在大于或等于9.35×8=74.8分和小于9.45×8=75.6之间.∵每个裁判给的分数都是整数,∴得分总和也是整数,在74.8和75.6之间只有75是整数,∴该运动员的有效总得分是75分.∴得分为:75÷8≈9.375,精确到两位小数就是9.38.故答案是:9.38.20.已知一组数据x1,x2,x3,x4,x5的平均数是2,那么另一组数据3x1﹣2,3x2﹣2,3x3﹣2,3x4﹣2,3x5﹣2的平均数是4.【解答】解:一组数据x1,x2,x3,x4,x5的平均数是2,有(x1+x2+x3+x4+x5)=2,那么另一组数据3x1﹣2,3x2﹣2,3x3﹣2,3x4﹣2,3x5﹣2的平均数是(3x1﹣2+3x2﹣2+3x3﹣2+3x4﹣2+3x5﹣2)=4.故答案为:4.三.解答题(共8小题)21.为了从甲、乙两名选手中选拔一个参加射击比赛,现对他们进行一次测验,两个人在相同条件下各射靶10次,两人成绩如下(单位:环):甲:2,4,6,8,7,7,8,9,9,10乙:9,6,7,6,2,7,7,a,8,9(1)求甲的平均数;(2)已知=7,求乙的中位数;(3)已知S甲2=5.4,请通过计算说明谁的成绩较稳定?【解答】解:(1)==7环,(2)a=7×10﹣(9×2+8+7×3+6×2+2)=9,将这组数据从小到大排列为:2,6,6,7,7,7,8,9,9,9,处在第5、6位的两个数都是7,因此中位数是7环,(3)S乙2=[(2﹣7)2+(6﹣7)2×2+(8﹣7)2+(9﹣7)2×3]=4,∵5.4>4,∴乙比较稳定,答:甲的平均数为7环,乙的中位数是7环,乙比较稳定.22.甲、乙两位同学参加数学综合素质测试,各项成绩如下(单位:分)数与代数空间与图形统计与概率综合与实践学生甲90948690学生乙94829391(1)分别计算甲、乙成绩的平均数和方差;(2)如果数与代数、空间与图形、统计与概率、综合与实践的成绩按3:3:2:2计算,那么甲、乙的数学综合素质成绩分别为多少分?【解答】解:(1)甲的平均数为×(90+94+86+90)=90(分),则甲方差为×[(90﹣90)2×2+(94﹣90)2+(86﹣90)2]=8;乙的平均成绩为×(94+82+93+91)=90(分)则乙的方差为×[(94﹣90)2+(82﹣90)2+(93﹣90)2+(91﹣90)2]=22.5;(2)甲的综合成绩为×(90×3+94×3+86×2+90×2)=90.4(分),乙的综合成绩为×(94×3+82×3+93×2+91×2)=89.6(分).23.在“2019慈善一日捐”活动中,某校八年级(1)班40名同学的捐款情况如下表:捐款金(元)203050A80100人数(人)2816x47根据表中提供的信息回答下列问题:(1)x的值为3,捐款金额的众数为50元,中位数为50元;(2)已知全班平均每人捐款57元,求a的值.【解答】解:(1)x=40﹣2﹣8﹣16﹣4﹣7=3,捐款数共有40个数,处在第20、21位的两个数都是50元,因此中位数是50元,捐款50元的有16人,50元出现次数最多,因此众数是50元,故答案为:3,50,50,(2)由题意得:20×2+30×8+50×16+3a+80×4+100×7=57×40,解得:a=60,答:a的值为60元.24.停课不停学,疫情期间,九(1)班30位同学参加运动线上打卡,张老师为了鼓励同学们积极锻炼,统计了这30人15天的打卡次数如下:打卡次数4567891011131415人数11236511145(1)求所有同学打卡次数的平均数,并直接写出中位数和众数;(2)为了调动同学们锻炼的积极性,张老师决定制定一个打卡奖励标准,凡打卡次数达到或超过这个标准的同学将获得奖励﹒请你根据(1)中所求的统计量,帮助张老师制定一个较为合理的打卡奖励标准,并说明理由﹒【解答】解:(1)平均数为(4×1+5×1+6×2+7×3+8×6+9×5+10×1+11×1+13×1+14×4+15×5)÷30=10;共30人,所有同学打卡次数从小到大排列第15个、第16个数都为9次,中位数为9次;8出现了6次,次数最多,众数为8次;(2)为了调动同学们锻炼的积极性,打卡奖励标准可以定为所有同学打卡次数的中位数.因为共有30人,9次以上(含9次)的有17人,超过总数的一半.25.某工厂甲、乙两名工人参加操作技能培训.现分别从他们在培训期间参加的若干次测试成绩中随机抽取8次,数据如下(单位:分)甲9582888193798478乙8375808090859295(1)请你计算这两组数据的平均数、中位数;(2)现要从中选派一人参加操作技能比赛,从统计学的角度考虑,你认为选派哪名工人参加合适?请说明理由.【解答】解:(分),(分).将甲工人成绩从小到大排序处在第4、5位的平均数为(82+84)÷2=83分,因此甲的中位数是83分,将乙工人成绩从小到大排序处在第4、5位的平均数为(83+85)÷2=84分,因此乙的中位数是84分,答:甲、乙两组数据的平均数都是85分,中位数分别为83分、84分.(2),.①从平均数看,甲、乙均为85分,平均水平相同;②从中位数看,乙的中位数大于甲,乙的成绩好于甲;③从方差来看,因为,所以甲的成绩较稳定;④从数据特点看,获得85分以上(含85分)的次数,甲有3次,而乙有4次,故乙的成绩好些;⑤从数据的变化趋势看,乙后几次的成绩均高于甲,且呈上升趋势,因此乙更具潜力.综上分析可知,甲的成绩虽然比乙稳定,但从中位数、获得好成绩的次数及发展势头等方面分析,乙具有明显优势,所以应派乙参赛更有望取得成绩.26.某校八年级(1)班甲、乙两男生在5次引体向上测试中有效次数如下:甲:8,8,7,8,9;乙:5,9,7,10,9;甲乙两同学引体向上的平均数、众数、中位数、方差如下:平均数众数中位数方差甲8b80.4乙a9c 3.2根据以上信息,回答下列问题:(1)表格是a=8,b=8,c=9.(填数值)(2)体育老师根据这5次的成绩,决定选择甲同学代表班级参加年级引体向上比赛,选择甲的理由是甲的方差较小,比较稳定.班主任李老师根据去年比赛的成绩(至少9次才能获奖),决定选择乙同学代表班级参加年级引体向上比赛,选择乙的理由是乙的中位数是9,众数是9,获奖次数较多.(3)如果乙同学再做一次引体向上,有效次数为8,那么乙同学6次引体向上成绩的平均数不变,中位数变小,方差变小.(填“变大”、“变小”或“不变”)【解答】解:(1)甲的成绩中,8出现的次数最多,因此甲的众数是8,即b=8,(5+9+7+9+10)÷5=8.即a=8,将乙的成绩从小到大排列为5,7,9,9,10,处在第3位的数是9,因此中位数是9,即c=9,故答案为:8,8,9.(2)甲的方差较小,比较稳定,乙的中位数是9,众数是9,获奖次数较多,(3)原平均数是8,增加一次是8,因此6次的平均数还是8,不变,六次成绩排序为5,7,8,9,9,10,中位数是8.5,比原来变小,方差变小,故答案为:不变,变小,变小.27.某中学开展“唱红歌”比赛活动,九年级(1)、(2)班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩如图所示.(1)根据图示填写下表;班级平均数(分)中位数(分)众数(分)九(1)85九(2)85100(2)结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好;(3)计算两班复赛成绩的方差.【解答】解:(1)由图可知九(1)班5名选手的复赛成绩为:75、80、85、85、100,九(2)班5名选手的复赛成绩为:70、100、100、75、80,∴九(1)的平均数为(75+80+85+85+100)÷5=85,九(1)的中位数为85,九(1)的众数为85,把九(2)的成绩按从小到大的顺序排列为:70、75、80、100、100,∴九(2)班的中位数是80;班级平均数(分)中位数(分)众数(分)九(1)858585九(2)8580100(2)九(1)班成绩好些.因为九(1)班的中位数高,所以九(1)班成绩好些.(回答合理即可给分)(3),.28.为了了解学生关注热点新闻的情况,“两会”期间,小明对班级同学一周内收看“两会”新闻的次数情况作了调查,调查结果统计如图所示(其中男生收看3次的人数没有标出).根据上述信息,解答下列各题:(1)该班级女生人数是20,女生收看“两会”新闻次数的中位数是3;(2)对于某个群体,我们把一周内收看某热点新闻次数不低于3次的人数占其所在群体总人数的百分比叫做该群体对某热点新闻的“关注指数”.如果该班级男生对“两会”新闻的“关注指数”比女生低5%,试求该班级男生人数;(3)为进一步分析该班级男、女生收看“两会”新闻次数的特点,小明给出了男生的部分统计量(如表).统计量平均数(次)中位数(次)众数(次)方差…该班级男生3342…根据你所学过的统计知识,适当计算女生的有关统计量,进而比较该班级男、女生收看“两会”新闻次数的波动大小.【解答】解:(1)20,3;(2)由题意:该班女生对“两会”新闻的“关注指数”为所以,男生对“两会”新闻的“关注指数”为60%设该班的男生有x人则,解得:x=25答:该班级男生有25人.(3)该班级女生收看“两会”新闻次数的平均数为,女生收看“两会”新闻次数的方差为:因为2>,所以男生比女生的波动幅度大.。