3.6 虚拟变量模型 计量经济学PPT课件

合集下载

第七章 虚拟变量 虚拟变量回归模型ppt汇总 计量经济学

第七章 虚拟变量 虚拟变量回归模型ppt汇总 计量经济学
第七章 虚拟变量
• 在回归分析中,被解释变量的影响因素 除了量(或定量)的因素还有质(或定 性)的因素,这些质的因素可能 会使回 归模型中的参数发生变化,为了估计质 的因素产生的影响,在模型中就需要引 入一种特殊的变量—虚拟变量。
2020/6/16
(二)作用
• 1、可以描述和测量定性(或属性)因素 的影响;
2、多个因素各两种属性
• 如果有m个定性因素,且每个因素各有两个不同的 属性类型,则引入m个虚拟变量。
• 例2
• 研究居民住房消费函数时,考虑到城乡差异和不同 收入层次的影响将消费函数设定为:
Yt=b0+b1Xt+a1D1t+ a2D2t+ μt
Yt=居民住房消费支出
Xt=居民可支配收入
1城镇居民
2020/6/16
虚拟变量对截距的影响
y
有适龄子女
b0&#
o
图1 虚拟变量对截距的影响
x
2020/6/16
2、乘法方式引入虚拟变量
• 基本思想:以乘法方式引入虚拟解释变量
,是在所设定的计量经济模型中,将虚拟 解释变量与其他解释变量相乘作为新 的解释变量,以达到其调整模型斜率的
目的。 • 该方式引入虚拟变量主要作用:
D=
0 无适龄子女
将家庭教育费用支出函数写成:Yt=b0+b1Xt+aDt+μt 即以加法形式引入虚拟变量。
2020/6/16
子女年龄结构不同的家庭教育 费用支出函数为:
• 无适龄子女家庭的教育费用支出函数(D=0 ):Yt=b0+b1Xt+μt
• 有适龄子女家庭的教育费用支出函数(D=1 ):Yt=(b0+a)+b1Xt+μt

第四讲 虚拟变量ppt课件

第四讲 虚拟变量ppt课件

① 若定性变量含有 m 个类别,则模型中最多只能引入 m-1 个虚拟变量,例如对于季 据(有 4 个季节) ,最多只能引入 3 个虚拟变量。当引入 4 个虚拟变量时,就会导致多 注意: (1) 当定性变量含有 m 个类别时,模型不能引入 m个虚 线性。看表 8-1 数据,4 个虚拟变量定义为, 拟变量。最多只能引入 m -1个虚拟变量,否则当模型中存在
2. 测量斜率变动
以上介绍了用虚拟变量测量回归函数的截距变化。实际上,也可以用虚拟 变量考察回归函数的斜率是否发生变化。方法是在模型中加入定量变量与
虚拟变量的乘积项。设模型如下,
Yi = 0 + 1 Xi + 2 Di + 3 (Xi Di) + ui
100 Y 80
按2,3 是否为零,回归函数可有如下四种形式。
表 8-1 xt 和虚拟变量 D1、D2、D3、D4 截距项时就会产生完全多重共线性,无法估计回归参数。比 t xt D1 D2 D3 D4 如,对于季节数据引入 4个虚拟变量,数据如下表, 1995.2 1995.1 x1 1995.3 1995.2 x2 1995.4 1995.3 x3 1996.1 1995.4 x4 1996.2 1996.1 x5 1996.3 1996.2 x6 1996.4 1996.3 x7 1997.1 1996.4 x8 1997.1 … x9
Yˆ i = - 0.5667 + 0.0963 Xi
(-3.5) (11.6) R2 = 0.88, DW = 1.85
比较回归方程,前者的确定系数为0.99,后者的确定系数仅为0.88。说 明该回归模型中引入虚拟变量非常必要。
把“季节”因素引入模型
“季节”是在研究经济问题中常常遇到的定性因素。比如,酒,肉的销量 在冬季要超过其它季节,而饮料的销量又以夏季为最大。当建立这类问 题的计量模型时,就要考虑把“季节”因素引入模型。由于一年有四个 季节,所以这是一个含有四个类别的定性变量。应该向模型引入三个虚 拟变量。

虚拟变量模型.最全优质PPT

虚拟变量模型.最全优质PPT
E ( Y i|X i,D 2 i 0 ,D 3 i 1 ) (1 3 ) X i
设 Y i 为消费支出;X i 为收入;D i 为虚拟变量, 即
1,城镇居民
Di 0,农村居民 i1,2,3, ,n
上述表达式的意义在于,在收入不变的条件下,研 究城镇居民和农村居民对消Y i 费的不同影响,即判断 城乡居民在消费上是否存在显著性差异。 农村居民年平均消费:
E (Y i,|X i,D i0)12X i
1.2 二态变量的作用
引入虚拟变量的作用,在于将定性因素或属性因素 对因变量的影响数量化。 1.可以描述和测量定性(或属性)因素的影响。 2.能够正确反映经济变量之间的相互关系,提高模 型的精度;例如在分段回归中的应用。 3.便于处理异常数据。由于某些突发事件的存在, 如战争、自然灾害,使原本比较稳定的经济关系发 生一段时间的混乱,此时可以利用虚拟变量。
设变量D表示某种属性,该属性有两种类型,即当 属性存在时D取值为1;当属性不存在时D取值为0。 记为
1 具有某种属性 D0 不具有该属性
该变量D即为二态变量。二态变量又称虚拟变量、 名义变量或哑变量,是用以反映质的属性的一个人 工变量,是量化了的质变量,通常取值为0或1, 一般“1”代表某一属性存在,“0”代表某一属 性不存在, 即“是”或“否”,“男”或“女”等。
对上述模型进行回归,利用样本统计量对假 设作出判断(t检验)。只有一个定性解释变 量往往可用于检验一个属性因素对被解释变 量的影响是否显著性存在。
2.1.2 模型中有一个定量解释变量和一
个定性解释变量
设模型形式为
Y i12Xi3D iui
式中,X i 为定量变量,D i 为具有两个属性类型 的定性变量。
设模型形式为

计量经济学(第四版)3.6 虚拟变量模型

计量经济学(第四版)3.6 虚拟变量模型
– 设置多个虚拟变量,理论上正确,带来自由度损失。 – 以定性变量为研究对象,构造多元排序离散选择模型,然后
以模型结果对定性变量的各种状态赋值。但需要更多的信息 支持。
• 赋值的方法等于是对虚变量方法中的各个虚变量的参 数施加了约束,而这种约束经常被检验为错误的。
– 模型含常数项
– 模型不含常数项
讨论:定序定性变量可否按照状态赋值?
• 例如:表示居民对某种服务的满意程度,分5种状态: 非常不满意、一般不满意、无所谓、一般满意、非常 满意。在模型中按照状态分别赋值0、1、2、3、4或 者-2、-1、0、1、2。
• 被经常采用,尤其在管理学、社会学研究领域。
• 正确的方法:
三、虚拟变量的设置原则
• 每一定性变量(qualitative variable)所需的虚 拟变量个数要比该定性变量的状态类别数 (categories)少1。即如果有m种状态,只在模 型中引入m-1个虚拟变量。
• 例如,季节定性变量有春、夏、秋、冬4种状 态,只需要设置3个虚变量:
1 春季
1 夏季
• 对于一元模型,有两组样本,则有可能出现下 述四种情况中的一种:
– 1=1 ,且2=2 ,即两个回归相同,称为重合回 归(Coincident Regressions);
– 11 ,但2=2 ,即两个回归的差异仅在其截距, 称为平行回归(Parallel Regressions);
– 称1=为汇1 合,回但归2(Co2n,cu即rre两nt个R回eg归re的ss差ion异s)仅;在其斜率,
年薪 Y
2 0
男职工 女职工
工龄 X
• 将上例中的性别换成教育水平,教育水平考虑 三个层次:高中以下、高中、大学及其以上。

计量经济学课件虚拟变量

计量经济学课件虚拟变量
提高模型精度和预测能力
通过引入虚拟变量,可以更准确地刻画经济现象的非线性特征,从而提高计量经济学模型 的精度和预测能力。
拓展应用领域
虚拟变量的引入使得计量经济学模型能够应用于更多的领域,如金融、环境、社会等,进 一步拓展了计量经济学的应用范围。
未来研究方向和趋势
深入研究虚拟变量的理论 和方法
未来研究将进一步深入探讨虚 拟变量的理论和方法,包括虚 拟变量的选择、设定和估计方 法等,以更准确地刻画经济现 象。
https://
未来研究将积极推动虚拟变量 在交叉学科领域的应用,如环 境经济学、金融经济学等,以 促进不同学科之间的交流和合 作。
WENKU DESIGN
WENKU DESIGN
2023-2026
END
THANKS
感谢观看
KEEP VIEW
WENKU DESIGN
WENKU DESIGN
WENKU
REPORTING
要点二
虚拟变量的设置原则
在设置虚拟变量时,需要遵循完备性 和互斥性的原则。完备性要求虚拟变 量的取值能够覆盖所有可能的情况, 而互斥性则要求不同虚拟变量之间不 能存在重叠或交叉的情况。
要点三
虚拟变量的回归系数 解释
在线性回归模型中,虚拟变量的回归 系数表示该定性因素对因变量的影响 程度。当虚拟变量取值为1时,其对 应的回归系数表示该水平与参照水平 相比对因变量的影响;当虚拟变量取 值为0时,则表示该水平对因变量没 有影响。
参数估计与假设检验
参数估计
采用最小二乘法等估计方法,对引入虚拟变量后的模型进行参数估计,得到各 解释变量的系数估计值。
假设检验
根据研究问题和假设,构建相应的原假设和备择假设,通过t检验、F检验等方 法对参数进行假设检验,判断虚拟变量对模型的影响是否显著。

计量经济学虚拟变量模型课件

计量经济学虚拟变量模型课件

计量经济学虚拟变量模型
21
1 正常年份 D1i 0 非正常年份
式(5.2)也可表示为
1 非正常年份 D2i 0 正常年份
Y i 0 X 1 i 1 X 2 i 2 X 3 i 3 X i u i (5.3)
其中,X 1i1 ,X 2iD 1i,X 3iD 2i,显然如下等式成立。
X1i X2i X3i
计量经济学虚拟变量模型
3
例如,性别可表现为男或女;人种可表 现为白种人和非白种人;宗教信仰可表 现为教徒和非教徒;政府的经济政策可 表现为改革开放前和改革开放后,如此 等等。
Hale Waihona Puke 计量经济学虚拟变量模型4
显然,这种不同的具体形式是无法直接引 入经济计量模型中去的。但由于这类变量 通常表现为品质、属性、种类的出现或者 未出现,所以我们可以根据质量变量的这 一特征将其数量化。
Y i1 D 1 i2 D 2 i3 X i u i (5.5)
显然模型(5.5)中,解释变量D1,D2和X之间 无完全的多重共线性。可以使用普通最小二乘 法估计式(5.5)的参数。
第五章 虚拟变量模型
在经济计量模型中除了有量的因素外 还有质的因素,质的因素包括被解释变量 为质的因素和解释变量为质的因素。如果 被解释变量为质的因素,主要是逻辑回归 要涉及的内容。
计量经济学虚拟变量模型
1
第一节 虚拟变量的概念与设定
一、虚拟变量的概念 在经济计量分析中, 经常会碰到所建模
型的被解释变量不仅受诸如收入、产量 、价格、 成本、需求、投资等数量变量
(5.4)
计量经济学虚拟变量模型
22
式(5.4)表明模型(5.3)即原模型(5.2)中有 完全的多重共线性,将导致最小二乘估计无 解。我们称该情景为掉入虚拟变量陷阱。所 以,在有截距项的情况下,如果一个质的因 素有多少个特征就引入多少个虚拟变量是行 不通的。

计量经济第七章虚拟变量模型课件

计量经济第七章虚拟变量模型课件

log
P2i P1i
21
21 X i ;
log
P3i P1i
31
31 X i ;
log
P3i P2i
32
32 X i .
其中 P1i、P2i、P3i 分别表示第 个决策者做出 第1、2、3个选择的概率。
23
Yi 0 1D1i ui ,
i 1,2, ,n.
其中 Yi
为个人月支出,
D1i
=
1,已婚 0,未婚
6
• 未婚者的月期望支出为:
E Yi | D1i 0 E 0 1 0 ui 0
• 已婚者的月期望支出为:
E Yi | D1i 1 E 0 1 1 ui 0 1
0 :未婚者的月平均支出 1 :未婚者与已婚者的月平均支出差距 0 1 :已婚者的月平均支出
Zi
f
1
Pi
ln
1
Pi Pi
ln
Pi 1 Pi
0
1
X1i
+
+k X ki
17
二、二元Logit模型估计
• 1.可重复观测数据的二元Logit模型 参数估计
• P144 【相关链接】
• 2.不可重复观测数据的二元Logit模 型参数估计
• P145 【相关链接】
18
三、模型检验与拟合优度
定义:以虚拟变量为因变量的线性回 归模型称为线性概率模型。
(linear probability model,LPM) 模型的基本形式为:
Yi 0 1X1i +2 X2i k Xki ui ,
E Yi | X 0 1X1i +2 X2i k Xki ,
i 1,2, ,n.

《虚拟变量模型 》课件

《虚拟变量模型 》课件

业类型的效应,可以使用虚拟变量模型。理分类变量对连续结果的影响,能够同时分析多个分类变量的效应,有助于更好地理解数据之 间的关系。
缺点
当分类变量类别过多时,会导致虚拟变量的数量增加,从而增加模型的复杂性和计算负担。此外,虚 拟变量模型对于非线性关系的处理能力有限,可能无法准确捕捉数据之间的关系。
虚拟变量模型
目录
• 虚拟变量模型概述 • 虚拟变量模型的建立 • 虚拟变量模型的参数估计与检验 • 虚拟变量模型的应用案例 • 虚拟变量模型的局限性及未来研究方向 • 结论
01
虚拟变量模型概述
定义与特点
定义
虚拟变量模型是一种统计学方法,用于处理分类变量对连续结果的影响。它通过引入一系列二进制(或多元)虚 拟变量来代表分类变量的不同类别。
详细描述
通过引入虚拟变量,研究者可以控制和比较不同类别消费者之间的差异,例如 不同年龄、性别、收入水平的消费者在产品选择、品牌忠诚度和价格敏感度等 方面的表现。
案例二:市场细分研究
总结词
虚拟变量模型在市场细分研究中起到关 键作用,帮助企业了解不同客户群体的 需求和行为特征,从而制定更精准的市 场策略。
确定虚拟变量的数量
根据分类变量的数量,确定需要创建的虚拟变量的数量。
命名虚拟变量
为每个虚拟变量选择一个有意义的名称,以便在模型中使用。
构建虚拟变量模型
确定模型的形式
根据研究假设和问题,选择适合的模型形式 ,如线性回归、逻辑回归等。
引入虚拟变量
将选定的虚拟变量引入到模型中,并根据模 型的要求设置相应的参数。
特点
虚拟变量模型能够揭示分类变量对连续结果的影响,同时能够处理多个分类变量对结果的影响。它通过引入虚拟 变量来控制分类变量的效应,从而更好地理解数据之间的关系。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 例如,反映文程度的虚拟变量可取为:
– D=1,本科学历 – D=0,非本科学历
• 虚拟变量能否取1、0以外的数值?
2、虚拟变量模型
• 同时含有一般解释变量与虚拟变量的模型称为 虚拟变量模型或者方差分析(analysis-of variance: ANOVA)模型。
• 例如,一个以性别为虚拟变量考察企业职工薪 金的模型:
• 由变量显著性检验得到:在10%的显著性水平下,Di和 DiXi1是显著的,而DiXi2不显著。因此: – 2013年农村居民的平均消费支出要比城镇居民少 1573.9元;
– 在其他条件不变的情况下,农村居民与城镇居民的工 资收入都增加100元时,农村居民要比城镇居民多支出 19元用于生活消费;
– 农村居民与城镇居民在其他收入方面有相同的增加量 时,两者增加的消费支出没有显著差异。
错误模型
Y (X,D)α β μ
1 X11 X k1 1 0 0 0
1 X12 X k2 0 1 0 0
(X, D) 1 X13
X k3
0
0
1
0
1 X14 X k4 0 0 0 1
1 X16 X k6 1 0 0 0
解释变 量完全 共线性
• 如果在服装需求函数模型中必须包含3个定性 变量:季节(4种状态)、性别(2种状态)、 职业(5种状态),应该设置多少虚变量?
1 秋季
D1 0 其它 D2 0 其它 D3 0 其它
• 如果设置第4个虚变量,则出现“虚拟变量陷井” (Dummy Variable Trap)。为什么?
• 例如:包含季节变量的正确模型:
Yt 0 1 X 1t k X kt 1D1t 2 D2t 3 D3t t
Yt 0 1 X1t k X kt 1D1t 2 D2t 3 D3t 4 D4t t
男职工本科以上学历的平均薪金: E(Yi | X i , D1 1, D2 1) (0 2 3 ) 1 X i
2、乘法方式
• 加法方式引入虚拟变量,考察:截距的不同。 • 许多情况下,斜率发生变化,或斜率、截距同时
发生变化。
• 斜率的变化可通过以乘法的方式引入虚拟变量来 测度。
• 例如,根据消费理论,收入决定消费。但是, 农村居民和城镇居民的边际消费倾向往往是不 同的。这种消费倾向的不同可通过在消费函数 中引入虚拟变量来考察。
– 模型含常数项
– 模型不含常数项
讨论:定序定性变量可否按照状态赋值?
• 例如:表示居民对某种服务的满意程度,分5种状态: 非常不满意、一般不满意、无所谓、一般满意、非常 满意。在模型中按照状态分别赋值0、1、2、3、4或 者-2、-1、0、1、2。
• 被经常采用,尤其在管理学、社会学研究领域。
• 正确的方法:
高中以下
E(Yi | X i , D1 1, D2 0) (0 2 ) 1 X i E(Yi | X i , D1 0, D2 1) (0 3 ) 1 X i
高中 大学及以上
• 在上例中同时引入性别和教育水平:
1 男 D1 0 女
1 大学及以上 D2 0 大学以下
Yi 0 1 X i 2 D1 3 D2 i

回1归(1,D且issi2mila2r
,即两个回归完全不同,称为相异 Regressions)。
4、例题
• 判断中国农村居民与城镇居民的消费行为是否 有显著差异。
– 被解释变量:居民家庭人均生活消费支出Y – 解释变量:居民家庭人均工资收入X1、其他收入
X2 – 样本:2013年31个地区农村居民与城镇居民人均数
年薪 Y
2 0
男职工 女职工
工龄 X
• 将上例中的性别换成教育水平,教育水平考虑 三个层次:高中以下、高中、大学及其以上。
1 高中 D1 0 其他
1 D2 0
大学及其以上 其他
Yi 0 1 X i 2 D1 3 D2 i
E(Yi | X i , D1 0, D2 0) 0 1 X i
• 对于一元模型,有两组样本,则有可能出现下 述四种情况中的一种:
– 1=1 ,且2=2 ,即两个回归相同,称为重合回 归(Coincident Regressions);
– 11 ,但2=2 ,即两个回归的差异仅在其截距, 称为平行回归(Parallel Regressions);
– 称1=为汇1 合,回但归2(Co2n,cu即rre两nt个R回eg归re的ss差ion异s)仅;在其斜率,
模型的精度,需要将它们“量化”。 • 这种“量化”通常是通过引入“虚拟变量”来完
成的。根据这些因素的属性类型,构造只取“0” 或“1”的人工变量,通常称为虚拟变量,记为D。 • 虚拟变量只作为解释变量。
• 一般地,在虚拟变量的设置中:
– 基础类型、肯定类型取值为1; – 比较类型,否定类型取值为0。
女职工本科以下学历的平均薪金:
E(Yi | X i , D1 0, D2 0) 0 1 X i
男职工本科以下学历的平均薪金: E(Yi | X i , D1 1, D2 0) (0 2 ) 1 X i
女职工本科以上学历的平均薪金: E(Yi | X i , D1 0, D2 1) (0 3 ) 1 X i
E(Yi | X i , Di 1) ( 0 2 ) 1 X i E(Yi | X i , Di 0) 0 1 X i
– 假定2>0,则两个函数有相同的斜率,但有不同的截距。 意即,男女职工平均薪金对工龄的变化率是一样的,但 两者的平均薪金水平相差2。
– 可以通过对2的统计显著性进行检验,以判断企业男女 职工的平均薪金水平是否有显著差异。
1 Di 0
农村居民 城镇居民
Ci 0 1 X i 2 Di X i i
农村居民: 城镇居民:
E(Ci | X i , Di 1) 0 (1 2 )X i E(Ci | X i , Di 0) 0 1 X i
3、同时引入加法与乘法形式的虚拟变量
• 当截距与斜率发生变化时,则需要同时引入加 法与乘法形式的虚拟变量。
– 设置多个虚拟变量,理论上正确,带来自由度损失。 – 以定性变量为研究对象,构造多元排序离散选择模型,然后
以模型结果对定性变量的各种状态赋值。但需要更多的信息 支持。
• 赋值的方法等于是对虚变量方法中的各个虚变量的参 数施加了约束,而这种约束经常被检验为错误的。
Yi 0 1 X i 2 Di i
其中:Yi为企业职工的薪金;Xi为工龄; Di=1, 若是男性,Di=0,若是女性。
二、虚拟变量的引入
1、加法方式
• 虚拟变量作为解释变量引入模型有两种基本方 式:加法方式和乘法方式。
• 上述企业职工薪金模型中性别虚拟变量ቤተ መጻሕፍቲ ባይዱ引入 采取了加法方式。
– 在该模型中,如果仍假定E(i)=0,则企业男、女职 工的平均薪金为:
三、虚拟变量的设置原则
• 每一定性变量(qualitative variable)所需的虚 拟变量个数要比该定性变量的状态类别数 (categories)少1。即如果有m种状态,只在模 型中引入m-1个虚拟变量。
• 例如,季节定性变量有春、夏、秋、冬4种状 态,只需要设置3个虚变量:
1 春季
1 夏季

– 虚拟变量Di:农村居民取值1,城镇居民取值0
总体回归模型
样本回归函数
Yi 0 0 Di 1 X i1 1 (Di X i1 ) 2 X i2 2 (Di X i2 ) i
Yˆi 2599.11573.9Di 0.486Xi1 0.190Di Xi1 0.602Xi2 0.006Di Xi2
§3.6 含有虚拟变量的多元线性回归 模型
一、含有虚拟变量的模型 一、虚拟变量的引入 二、虚拟变量的设置原则
一、含有虚拟变量的模型
1、虚拟变量(dummy variables)
• 许多经济变量是可以定量度量。 • 一些影响经济变量的因素是无法定量度量。 • 为了在模型中能够反映这些因素的影响,并提高
相关文档
最新文档