2015-2016年江苏省南京市汇文中学九年级(上)期中数学试卷和答案
【5套打包】南京市初三九年级数学上期中考试单元综合练习卷及答案

新九年级(上)数学期中考试一试题( 含答案 )(1)一、选择题(本大题共 10 小题,共 30.0 分)1.以下运算中,结果正确的选项是()A.B. C.D.2.若是对于 x . y 的方程 2x-y+2a=0 的一个解,则常数 a 为()A. 1B. 2C. 3D. 43.以下由左到右侧的变形中,是因式分解的是()A.B.C.D.4. 如图,直线 a ∥b , ∠1=120 °,则 ∠2 的度数是()A. B. C. D.5.m n m n 的值为()已知 a =6 , a =3,则 a 2 -3A.B.C. 2D. 96.以下代数式变形中,是因式分解的是()A. B.C.D.7.已知 4y 2 +my+9 是完好平方式,则 m 为()A. 6B.C.D. 128.3)整除.80 -80 能被(A. 76B. 78C. 79D. 829.假如 x=3m +1 ,y=2+9 m ,那么用 x 的代数式表示y 为()A.B.C.D.10. 已知对于 x , y 的方程组,则以下结论中正确的选项是( )① 当 a=5 时,方程组的解是;② 当 x ,y 的值互为相反数时, a=20 ;③ 不存在一个实数 a 使得 x=y ;2a-3y7,则 a=2.④ 若 2 =2A.B.C.D.二、填空题(本大题共 6 小题,共24.0 分)11. 在方程 4x-2y=7 中,假如用含有 x 的式子表示 y ,则 y=______. 12. 将方程 3x+2 y=7 变形成用含 y 的代数式表示 x ,获得 ______ .13. 若要( a-1) a-4 =1 成立,则 a=______.14.如图,将△ABC 平移到△A′B′C′的地点(点 B′在 AC 边上),若∠B=55 °,∠C=100 °,则∠AB′A′的度数为 ______ °.15.有若干张以下图的正方形 A 类、 B 类卡片和长方形 C 类卡片,假如要拼成一个长为( 2a+b),宽为( a+2 b)的大长方形,则需要 C 类卡片 ______张.16.若x+y+z=2,x2-(y+z)2=8时,x-y-z=______.三、计算题(本大题共 2 小题,共20.0 分)17.计算:(1)( 8a3b-5a2b2)÷4ab(2)( 2x+y)2-( 2x+3y)( 2x-3y)18.我县某包装生产公司承接了一批上海世博会的礼物盒制作业务,为了保证质量,该公司进行试生产.他们购得规格是170cm×40cm 的标准板材作为原资料,每张标准板材再按照裁法一或裁法二裁下 A 型与 B 型两种板材.如图 1 所示,(单位:cm)( 1)列出方程(组),求出图甲中 a 与 b 的值.( 2)在试生产阶段,若将30 张标准板材用裁法一裁剪, 4 张标准板材用裁法二裁剪,再将获得的 A 型与 B 型板材做侧面和底面,做成图 2 的竖式与横式两种无盖礼物盒.①两种裁法共产生 A 型板材 ______张, B 型板材 ______张;② 设做成的竖式无盖礼物盒x 个,横式无盖礼物盒的y 个,依据题意达成表格:竖式无盖(个)横式无盖(个)礼物盒板材x yA 型(张)4x3yB 型(张)x③做成的竖式和横式两种无盖礼物盒总数最多是______个;此时,横式无盖礼物盒可以做 ______个.(在横线上直接写出答案,无需书写过程)四、解答题(本大题共 5 小题,共36.0 分)19.化简:(1)( 2a2)4÷3a2(2)( 1+a)( 1-a) +a( a-3)20.先化简,再求值:(2x+3)( 2x-3) -( x-2)2-3x( x-1),此中x=2.21.已知 a-b=7, ab=-12 .(1)求 a2b-ab2的值;(2)求 a2+b2的值;(3)求 a+b 的值.22.如图 a 是长方形纸带,∠DEF =20°,将纸带沿 EF 折叠成图 b,再沿 BF 折叠成图 c,则图 c中的∠CFE 的度数.23.已知:如图, AB∥CD , BD 均分∠ABC,CE 均分∠DCF ,∠ACE=90°.(1)请问 BD 和 CE 能否平行?请你说明原因.(2)AC 和 BD 的地点关系如何?请说明判断的原因.答案和分析1.【答案】 A【分析】解:A 、x 3?x 3=x6,本选项正确;B 、3x 2+2x 2=5x 2,本选项错误 ;23 6选项错误;C 、(x )=x ,本 222D 、(x+y )=x +2xy+y ,本选项错误 ,应选:A .A 、利用同底数幂的乘法法 则计算获得结果,即可做出判断;B 、归并同类项获得结果,即可做出判断;C 、利用幂的乘方运算法 则计算获得结果,即可做出判断;D 、利用完好平方公式睁开获得 结果,即可做出判断.本题考察了完好平方公式,归并同 类项,同底数幂的乘法,以及 幂的乘方,娴熟掌握公式及法 则是解本题的重点.2.【答案】 B【分析】解:将x=-1,y=2 代入方程 2x-y+2a=0 得:-2-2+2a=0, 解得:a=2.应选:B .将 x=-1,y=2 代入方程中 计算,即可求出 a 的值 .本题考察了二元一次方程 组的解,方程组的解即 为能使方程 组中双方程成立的未知数的 值.3.【答案】 D【分析】解:A 、(x+2)(x-2)=x 2-4,是多项式乘法,故此选项错误 ;B 、x 2-1=(x+1)(x-1),故此选项错误 ;C 、x 2-4+3x=(x+4)(x-1),故此选项错误 ;2D 、x -4=(x+2)(x-2),正确.直接利用因式分解的意 义分别判断得出答案.本题主要考察了因式分解的意 义,正确掌握定义是解题重点.4.【答案】 C【分析】解:∵a ∥b ∴∠3=∠2,∵∠3=180 °-∠1,∠1=120 °, ∴∠2=∠3=180 °-120 =60° °,应选 C .如图依据平行 线的性质能够 ∠2=∠3,依据邻补角的定义求出 ∠3 即可.本题考察平行线的性质,利用两直线平行同位角相等是解 题的重点,记着平行 线的性质,注意灵巧应用,属于中考常考题型.【答案】 A5.【分析】a m n解:∵ =6 ,a =3,m 2n 3∴原式 =(a )),÷(a =36÷27= 应选:A .原式利用同底数 幂的除法法 则及幂的乘方运算法 则变形,将已知等式代入 计算即可求出 值.本题考察了同底数 幂的除法,以及幂的乘方与 积的乘方,娴熟掌握运算法 则是解本题的重点.6.【答案】 D【分析】解:A 、是整式的乘法,故 A 错误;B 、左边不等于右 边,故B 错误;C 、没把一个多项式转变成几个整式乘 积的形式,故 C 错误;D 、把一个多项式转变成几个整式乘 积的形式,故 D 正确;应选:D .依据因式分解是把一个多 项式转变成几个整式乘 积的形式,可得答案.本题考察了因式分解的意 义,把一个多项式转变成几个整式乘 积的形式是解 题重点.7.【答案】 C【分析】2解:∵4y +my+9 是完好平方式,应选:C .原式利用完好平方公式的 构造特点求出 m 的值即可.本题考察了完好平方式,娴熟掌握完好平方公式是解本 题的重点.8.【答案】 C【分析】解:∵803-80=80 ×(802-1)=80×(80+1)×(80-1)=80×81×79.∴803-80 能被 79 整除.应选:C .先提取公因式80,再依据平方查公式进行二次分解,即可得803-80=80 ×81×79,既而求得答案.本题考察了提公因式法,公式法分解因式.注意提取公因式后,利用平方差公式进行二次分解是关 键.9.【答案】 C【分析】解:x=3m +1,y=2+9m,3m=x-1,m 2y=2+(3 ),2y=(x-1 )+2, 应选:C .依据移项,可得3m 的形式,依据幂的运算,把 3m代入,可得答案.本题考察了幂的乘方与 积的乘方,先化成要求的形式,把 3m代入得出答案.10.【答案】 D【分析】解: 把 a=5 代入方程 组得:,解得:选项错误 ;,本由 x 与 y 互为相反数,获得 x+y=0 ,即y=-x ,代入方程 组得:,选项 正确;解得:a=20,本若 x=y ,则有 ,可得 a=a-5,矛盾,故不存在一个实数 a 使得 x=y ,本选项正确;方程组解得:,由题意得:2a-3y=7,把 x=25-a ,y=15-a 代入得:2a-45+3a=7,解得:a= ,本选项错误 ,则正确的选项有,应选:D .把 a=5代入方程组求出解,即可做出判断;依据题意获得 x+y=0 ,代入方程组求出 a 的值,即可做出判断;若是 x=y,获得 a 无解,本选项正确;依据题中等式获得 2a-3y=7,代入方程组求出 a 的值,即可做出判断.本题考察了二元一次方程组的解,方程组的解即为能使方程组中双方程都成立的未知数的值.11.【答案】【分析】解:4x-2y=7,解得:y=.故答案为:将 x 看做已知数求出y 即可.本题考察认识二元一次方程,解题的重点是将 x 看做已知数求出y.12.【答案】x=【分析】解:由题意可知:x=故答案为:x=依据等式的性质即可求出答案.本题考察等式的性质,解题的重点是娴熟运用等式的性质,本题属于基础题型.13.【答案】4,2,0【分析】a-4解:a-4=0,即a=4 时,(a-1) =1,a-1=1a=2时a-1 a-4当,即,()=1.时a-4当 a-1=-1,即a=0 ,(a-1) =1故 a=4,2,0.故答案为:4,2,0.依据任何非 0 的数的 0 次幂等于 1,以及 1 的任何次 幂等于 1、-1 的偶次幂等于 1即可求解.本题考察了整数指数 幂的意义,正确进行议论是重点.14.【答案】 25【分析】解:∵∠B=55°,∠C=100°,∴∠A=180 °-∠B- ∠C=180 °-55 °-100 =25° °, ∵△ABC 平移获得 △A ′ B ′,C ′ ∴AB ∥A ′ B ,′∴∠AB ′ A ′=∠A=25 °.故答案为:25.依据三角形的内角和定理求出 ∠A ,再依据平移的性 质可得 AB ∥A ′B ,′而后依据两直线平行,内错角相等可得 ∠AB ′A ′=∠A .本题考察了平移的性 质,三角形的内角和定理,平行 线的性质,熟记平移的性 质获得 AB ∥A ′B 是′解题的重点.15.【答案】 5【分析】解:长方形的面 积=(2a+b )(a+2b )=2a 2+5ab+b 2,因此要拼成一个 长为(2a+b ),宽为(a+2b )的大长方形,则需要 A 类卡片 2 张,B 类卡片 1张,C 类卡片 5 张.故答案为 5.计算长方形的面 积获得(2a+b )(a+2b ),再利用多项式乘多 项式睁开后归并,而后确立 ab 的系数即可获得需要 C 类卡片的张数.本题考察了多项式乘多 项式相乘:多项式与多项式相乘,先用一个多 项式的每一项乘此外一个多 项式的每一 项,再把所得的积相加.16.【答案】 4【分析】解:∵x 2 ( 2,)- y+z =8 ∴(x-y-z )(x+y+z )=8, ∵x+y+z=2,∴x-y-z=8 2=4÷,故答案为:4.第一把 x 2 ( 2 的左边 分解因式,再把 x+y+z=2 代入即可获得答案.)- y+z =8此 题主要考 查了因式分解的 应键 练掌握平方差公式分解因式.平方差用,关 是熟公式:a 2-b 2=(a+b )(a-b ).217.【答案】 解:( 1)原式 =2a - ab ;( 2)原式 =4 x 2+4xy+y 2-4x 2+9y 2=10y 2+4xy .【分析】(1)原式利用多项式除以单项式法例计算即可求出 值;(2)原式利用完好平方公式,以及平方差公式 计算,去括号归并即可获得 结果.本题考察了整式的混淆运算,熟 练掌握运算法 则是解本题的重点.18.38 20 16或 17或 18【答案】 64 【分析】题,解:(1)由 意得: 解得:,答:图甲中 a 与 b 的值分别为:60、40.(2)由图示裁法一 产生 A 型板材为:2×30=60,裁法二产生 A 型板材为:1×4=4,因此两种裁法共 产生 A 型板材为 60+4=64(张),由图示裁法一 产生 B 型板材为:1×30=30,裁法二产生 A 型板材为,2×4=8,因此两种裁法共 产生 B 型板材为 30+8=38(张),故答案为:64,38.由已知和 图示得:横式无盖礼物盒的 y 个,每个礼物盒用 2张 B 型板材,因此用B 型板材 2y 张 .竖 横式无盖(个)礼物盒板 材式无盖(个)x y 张4x 3y A 型()B 型(张)x2y由上表可知横式无盖样式共 5y 个面,用 A 型 3y 张,则 B 型需要 2y 张 .则做两款盒子共需要 A 型 4x+3y 张,B 型 x+2y 张.则 4x+3y ≤64;x+2y ≤38.两式相加得 5x+5y ≤102.则 x+y ≤20.4.因此最多做 20 个.两式相减得 3x+y ≤26.则 2x ≤5.6,解得 x ≤2.8.则 y ≤18.则横式可做 16,17 或 18 个.故答案为:20,16 或 17 或 18.(1)由图示列出对于 a 、b 的二元一次方程 组求解.(2)依据已知和图示计算出两种裁法共产生 A 型板材和 B 型板材的 张数,相同由图示达成表格,并达成 计算.本题考察的知识点是二元一次方程 组的应用,重点是依据已知先列出二元一次方程组求出 a 、b 的值,再是依据图示解答.4 82.19.【答案】 解:( 1)原式 =2 a ÷3a =22(2)原式 =1- a +a -3a=1-3a .(1)依据单项式的幂的乘方法 则和除法法 则进行计算.(2)依据多项式的乘法法 则以及单项式乘多项式的法例进行计算.本题考察单项 式的乘方法 则、单项式除以 单项式的法 则、乘法公式等知 识,正确运用法例是解题的重点.20.【答案】 解:( 2x+3)( 2x-3) -( x-2) 2-3x ( x-1)2 2 2=4x -9- x +4x-4-3x +3x =7x-13,当 x=2 时,原式 =7×2-13=1.【分析】利用平方差及完好平方公式化 简,再把x=2 代入求解即可.本题主要考察了整式的化 简求值,解题的重点是正确的化 简.21.【答案】 解:( 1) ∵a-b=7, ab=-12 ,2 2∴ab-ab =ab (a-b ) =-12 ×7=-84;( 2) ∵a-b=7 , ab=-12 ,2∴(a-b ) =49 ,22∴a +b -2ab=49,( 3) ∵a 2+b 2=25 ,2∴(a+b ) =25+2ab=25-24=1 ,【分析】(1)直接提取公因式 ab ,从而分解因式得出答案;(2)直接利用完好平方公式从而求出答案;(3)直接利用(2)中所求,联合完好平方公式求出答案.本题主要考 查了完好平方公式以及提取公因式法分解因式,正确应用完好平方公式是解 题重点.22.【答案】 解: ∵AD ∥BC ,∴∠DEF =∠EFB=20 °,在图 b 中 ∠GFC =180°-2∠EFG =140°, 在图 c 中 ∠CFE =∠GFC -∠EFG=120°.【分析】由平行线的性质知∠DEF=∠EFB=20°,从而获得图 b 中∠GFC=140°,依照图 c 中的∠CFE=∠GFC-∠EFG 进行计算.本题考察图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,依据轴对称的性新人教版九年级(上)期中模拟数学试卷(含答案)一、选择题(本大题共14 小题,每题 3 分,共 42 分)1.“瓦当”是中国古建筑装修檐头的附件,是中国独有的文化艺术遗产,下边“瓦当”图案中既是轴对称图形又是中心对称图形的是()A B C D2.若x0 是对于x的一元二次方程(k 1)x23x k 2 10 (k为系数)的根,则k 的值为()A.k =1B.k =-1C.k≠1D.k =±13.某县为解决大班额问题,对学校进行扩建,计划用三年时间对全县学校进行扩建和改造, 2016 年县政府已投资 5 亿元人民币,若每年投资的均匀增加率相同,估计2018年投资 7.2 亿元人民币,那么每年投资的均匀增加率为()A.20%、﹣ 220%B.40%C.﹣ 220%D. 20%4.以下对于圆的表达正确的有()①圆内接四边形的对角互补;②相等的圆周角所对的弧相等;③正多边形内切圆的半径与正多边形的半径相等;④圆内接平行四边形是矩形.A.1 个B.2 个C.3 个D.4 个5. 二次函数y2x28x 1的最小值是()A.7B.- 7C. 9D.-96.如图,在平面直角坐标系中,△ABC的极点都在方格线的格点上,将△ABC绕点P顺时针方向旋转90°,获得△A′B′,C则′点 P 的坐标为()A.(0, 4)B.( 1, 1)C.( 1,2)D.( 2, 1)第6题图7.抛物线y ax 2bx c上部分点的横坐标x ,纵坐标y的对应值以下表:x-2- 1012y0小聪察看上表,得出下边结论:46① 抛物线与64x 轴的一个交点为(3,0);②函数y ax2bx c 的最大值为6;③ 抛物线的对称轴是直线x1;④ 在对称轴左边,y随2x 增大而增大.此中正确有()A.①②B.①③C.①②③D.①③④8.如图,正方形ABCD的对角线订交于点O,点 O 又是正方形A1B1C1 O 的一个极点,且这两个正方形的边长都为2.若正方形A1B1C1O 绕点 O 转动,则两个正方形重叠部分的面积为()A.1B.4C.16D. 29.若二次函数y x2bx 的图象的对称轴是经过(1, 0)且平行于y 轴的直线,则关于 x 的方程x2bx 3 的解是()A.x11, x23B.x11,x23C.x11, x23D.x11, x2310.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图,已知EF=CD=4cm,则球的半径长是()A.2cm B.2.5cm C. 3cm D. 4cm11.如图, P 为⊙ O 外一点, PA、PB 分别切⊙ O 于点 A、 B, CD 切⊙ O 于点 E,分别交PA、 PB于点 C、 D,若 PA=6,则△PCD的周长为()A.8B.6C. 12D. 1012.如图,不论x为什么值,y ax2bx c 恒为正的条件是()A.a0, b24ac0B.a0, b24ac0C.a0, b24ac0D.a0,b24ac0第 8题图第10题图第11题图第12题图13.如图,⊙ M 的半径为2,圆心PA⊥ PB,且 PA、 PB与 x 轴分别交于M 的坐标为( 3, 4),点A、 B 两点,若点 A、点P 是⊙ M 上的随意一点,B 对于原点 O 对称,则AB的最小值为()A.3B.4C. 6D. 814.如图,正三角形EFG内接于⊙ O,其边长为 2 6 ,则⊙O的内接正方形ABCD的边长为()A.6B.5 6C. 4D. 5 3第 13题图第14题图二、填空题(共 1 大题, 5 小题,每题 3 分,共 15 分)15.(1)对于x的方程kx2- (2k1)x k 2 0 有实数根,则k 的取值范围是(2)如图, AB 是⊙ O 的直径, C、 D 是⊙ O 上的点,且 OC∥ BD, AD 分别与 BC、 OC订交于点 E、 F,则以下结论:① AD⊥ BD;② ∠ AOC=∠AEC;③ BC 均分∠ ABD;④ △CEF≌△ BED.此中必定成立的是(把你以为正确结论的序号都填上).(3)如图,《九章算术》是我国古代数学名著,书中有以下问题“今有勾八步,股十五步,问勾中容圆径几何?”其意思是:今有直角三角形,勾(短直角边)长为8 步,股(长直角边)长为15 步,问该直角三角形能容纳的圆形(内切圆)直径是步.(4)如图,在同一平面内,将△ABC绕点A逆时针旋转40°到△AED 的地点,恰巧使得DC∥AB,则∠ CAB 的大小为.(5)如图,一段抛物线:y x( x 2)( 0≤ x≤ 2)记为 C1,它与 x 轴交于两点 O、 A1;将 C1绕A1旋转 180°获得 C2,交 x 轴于 A2;将 C2绕 A2旋转 180°获得 C3,交 x 轴于 A3;这样进行下去,直至获得C7,若点 P( 13,m)在第 7 段抛物线C7上,则 m=.第 15(2)题图第15(3)题图第15(4)题图第15(5)题图三、解答题(共 6 小题,共 63 分)16.(每题 5 分,共 10 分)用适合的方法解一元二次方程:(1)( x4) 25( x 4)(2)3x212 x1217.(本小题 10 分)如图, AB 是⊙ O 的直径, AP 是⊙ O 的切线,点 A 为切点, BP 与⊙O 交于点 C,点 D 是 AP 的中点,连结CD.(1)求证: CD是⊙ O 的切线;(2)若 AB=2,∠ P=30°,求暗影部分的面积.第 17题图18.(本小题 10 分)工人师傅用一块长为10dm,宽为 6dm 的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形.(厚度不计)求长方体底面面积为12dm 2时,裁掉的正方形边长多大?第 18题图19.(本小题 9 分)如图,在平面直角坐标系中,Rt△ABC的极点分别是A(﹣ 3, 1)B( 0, 4) C(0, 2).(1)将△ABC以点 C 为旋转中心旋转 180°,画出旋转后对应的△A1B1C1;(2)分别连结 AB1, BA1后,求四边形 AB1A1B 的面积.第 19题图20.(本小题 11 分)如图,∠BAC=60 °, AD 均分∠ BAC 交⊙ O 于点 D,连结 OB、 OC、BD、 CD.(1)求证:四边形 OBDC是菱形;(2)当∠ BAC为多少度时,四边形 OBDC是正方形?第20题图21.(本小题 13 分)如图,在平面直角坐标系中,二次函数y ax 2bx 4( a 0) 的图象与 x 轴交于点A(﹣ 2, 0)与点 C( 8, 0)两点,与y 轴交于点 B,其对称轴与x 轴交于点 D.(1)求该二次函数的分析式;(2)若点 P(m, n)是该二次函数图象上的一个动点(此中m> 0, n< 0),连结 PB,PD, BD, AB.请问能否存在点 P,使得△BDP的面积恰巧等于△ADB 的面积?若存在恳求出此时点 P 的坐标,若不存在说明原因.第 21题图2018—2019 学年度上学期期中学业水平质量调研试题九年级数学参照答案2018.11一、选择题(本大题共14 小题,每题 3 分,共 42 分)题号1234567891011121314答案D B D B B C D A B B C A C C二、填空题(共 1 大题, 5 小题,每新九年级上册数学期中考试一试题(含答案 )一、选择题(本题共16 分,每题 2 分)1.( 2 分)以下是“回收” 、“绿色包装” 、“节水”、“低碳”四个标记,此中是中心对称图形的是()A.B.C.D.2.( 2 分)二次函数 y=( x+2)2+3 的图象的极点坐标是()A .(﹣ 2, 3) B.( 2, 3)C.(﹣ 2,﹣ 3)D.( 2,﹣ 3)3.( 2 分)如图,⊙ O 的直径为10,AB 为弦, OC⊥ AB,垂足为 C,若 OC= 3,则弦 AB 的长为()A .8 B.6C.4D.104.( 2 分)如图, AB 是⊙O 的直径, CD 是⊙ O 的弦,∠ ABD = 59°,则∠ C 等于()A .29°B .31°C. 59°D .62°5.( 2 分)如图4× 4 的正方形网格中,△PMN绕某点旋转必定的角度,获得△P1M1N1,其旋转中心是()A.A 点B.B 点 C.C 点 D.D 点6.( 2 分)如图, AB 是⊙ O 的直径,弦CD ⊥AB,∠ CDB = 30°, CD = 6,暗影部分图形的面积为()A .4πB .3πC. 2π D .π7.( 2 分)已知抛物线2x 纵坐标 y 的对应值以下表:y= ax +bx+c 上部分点的横坐标X﹣10123 Y30﹣ 103物线 y= ax 2+bx+c 的张口向下;2x=﹣ 1;抛物线 y= ax +bx+c 的对称轴为直线2方程 ax +bx+c= 0 的根为 0 和 2;当 y>0 时, x 的取值范围是x< 0 或 x> 2以上结论中此中的是()A .B .C. D .8.( 2 分)如图1,⊙ O DC 于点 M、N.动点运动.设运动的时间为数关系,在这段时间里过正方形ABCD 的极点 A、D 且与边 BC 相切于点E,分别交AB、P 在⊙ O 或正方形ABCD 的边上以每秒一个单位的速度做连续匀速x,圆心 O 与 P 点的距离为y,图 2 记录了一段时间里y 与 x 的函P 点的运动路径为()A .从B .从D 点出发,沿弧B 点出发,沿线段DA→弧 AM→线段 BM →线段BC→线段 CN→弧 ND→弧BCDAC.从D .从A 点出发,沿弧AM →线段C 点出发,沿线段 CN→弧BM→线段 BC→线段 CNND→弧 DA→线段 AB二、填空题(本题共16 分,每题 2 分)9.( 2 分)在平面直角坐标系中,点P( 2,﹣ 3)对于原点对称点P′的坐标是.10.(2 分)平面直角坐标系xOy 中,以原点O 为圆心, 5 为半径作⊙ O,则点 A(4,3)在⊙ O(填:“内”或“上“或“外”)11.(2 分)以下图,把一个直角三角尺ACB 绕 30°角的极点 B 顺时计旋转,使得点A 落在 CB 的延伸线上的点 E 处,则∠ BCD 的度数为.12.( 222的形式,则 hk=.分)将抛物线 y= x ﹣ 6x+5化成 y= a(x﹣ h)﹣k13.( 2分)若正六边形的边长为2,则其外接圆的面积为.14.( 2 分)二次函数知足以下条件:函数有最大值 3;对称轴为 y 轴,写出一个知足以上条件的二次函数分析式:15.( 2 分)圆锥底面半径为6,高为 8,则圆锥的侧面积为.16.( 2 分)阅读下边资料:在数学课上,老师提出利用尺规作图达成下边问题:已知:∠ ACB 是△ ABC 的一个内角.求作:∠ APB=∠ ACB.小明的做法以下:如图作线段 AB 的垂直均分线m;作线段 BC 的垂直均分线n,与直线m 交于点 O;以点 O 为圆心, OA 为半径作△ ABC 的外接圆;在弧 ACB 上取一点P,连结 AP, BP.因此∠ APB=∠ ACB.老师说:“小明的作法正确.”请回答:( 1)点 O 为△ ABC 外接圆圆心(即OA= OB= OC)的依照是( 2)∠ APB=∠ ACB 的依照是.;三、解答题(来源共68 分,第 17-22分,第 25, 27 题,每题 5 分)17.( 5 分)如图,在Rt△ OAB 中,∠( 1)画出△ OAB 绕点 O 逆时针旋转题,每题 5 分,第23、 24、 26、 28OAB= 90,且点 B 的坐标为( 4,2)90°后的△ OA 1B1.题,每题5( 2)求点 B 旋转到点B1所经过的路线长(结果保存π)218.( 5 分)二次函数y= ax +bx+c( a≠ 0)的部分图象以下图.( 1)确立二次函数的分析式;2( 2)若方程 ax +bx+c= k 有两个不相等的实数根,求k 的取值范围.19.( 5 分)如图,四边形ABCD 内接于⊙ O,∠ ABC= 135°, AC= 4,求⊙ O 的半径长.220.( 5 分)对于 x 一元二次方程x +mx+n= 0.( 1)当 m=n+2 时,利用根的鉴别式判断方程根的状况.( 2)若方程有实数根,写出一组知足条件的m,n 的值,并求此时方程的根.21.( 5 分)如图,PA,PB 是⊙ O 的切线,点 A,B 为切点,AC 是⊙ O 的直径,∠ ACB=70°.求∠ P 的度数.22.( 5 分)某商铺销售一种进价为(双)与销售单价 x(元)知足20 元 / 双的手套,经检查发现,该种手套每日的销售量w=﹣ 2x+80( 20≤x≤40),设销售这类手套每日的收益w为 y(元).(1)求 y 与 x 之间的函数关系式;(2)当销售单价定为多少元时,每日的收益最大?最大收益是多少?23.( 6 分)如图,已知直角坐标系中一条圆弧经过正方形网格的格点A(0,4)、B( 4,4)、C( 6, 2)( 1)用直尺画出该圆弧所在圆的圆心M 的地点,并标出M 点的坐标;(2)若 D 点的坐标为( 7, 0),想想直线 CD 与⊙ M 有如何的地点关系,并证明你的猜想.24.( 6 分)已知:如图,在△ ABC 中, AB= AC,以 AC 为直径的⊙ O 与 BC 交于点 D, DE ⊥AB,垂足为 E,ED 的延伸线与 AC 的延伸线交于点 F .( 1)求证: DE 是⊙ O 的切线;( 2)若⊙ O 的半径为 4,∠ F= 30°,求 DE 的长.25.(7 分)如图, Q是弧AB 与弦AB 所围成的图形的内部的必定点,P 是弦AB 上一动点,连结PQ并延伸交弧AB 于点C,连结BC.已知AB =6cm,设 A,P 两点间的距离为xcm,P,C两点间的距离为y1cm,B, C 两点间的距离为y2cm.小明依据学习函数的经验,分别对函数y1, y2,随自变量x 的变化而变化的规律进行了研究.下边是小明的研究过程,请增补完好:( 1)确立自变量 x 的取值范围是.( 2)按下表中自变量x 的值进行取点、绘图、丈量,分别获得了y1, y2与 x 的几组对应值.x/cm0123456y1/cm 5.47 4.25 2.79 2.72 3.69 4.71 5.73y2/cm 1.82 2.45 3.97 5.59 5.69 5.73( 3)在同一平面直角坐标系xOy 中,描出补全后的表中各组数值所对应的点(x, y1),( x, y2),并面出函数y1, y2的图象.( 4)联合函数图象,解决问题:当△BPC 为等腰三角形时,AP 的长度约为cm.226.( 6 分)在平面直角坐标系中xOy 中,抛物线y= x ﹣4x+m+2 的极点在x 轴上.(1)求抛物线的表达式;(2)点 Q 是 x 轴上一点,若在抛物线上存在点P,使得∠ POQ = 45°,求点P 的坐标.抛物线与直线y= 1 交于点 E, F(点 E 在点 F 的左边),将此抛物线在点E, F(包括点 E 和点 F)之间的部分沿x 轴向左平移n 个单位后获得的图象记为G,若在图象G 上存在点 P,使得∠ POQ= 45°,求 n 的取值范围.27.( 7 分)已知:在四边形ABCD 中, AB= AD,∠ ABC+∠ ADC =180°( 1)如图,若∠ ACD=60°,BC=1,CD=3,则AC的长为;( 2)如图,若∠ ACD=45°,BC=1,CD=3,求出AC的长;( 3)如图,若∠ ACD=30°,BC=a,CD=b,直接写出AC 的长.28.( 6 分)在平面直角坐标系xOy 中,点 A 的坐标为( 0,m),且 m≠ 0,点 B 的坐标为( n,0),将线段 AB 绕点 B 顺时针旋转 90°.获得线段 BA 1,称点 A1为点 A 对于点 B 的“陪伴点”,图 1 为点 A 对于点 B 的“陪伴点”的表示图( 1)已知点 A( 0, 4),当点 B 的坐标分别为(1,0),(﹣ 2, 0)时,点 A 对于点 B 的“陪伴点”的坐标分别为,;点( x, y)是点 A 对于点 B 的“陪伴点” ,直接写出y 与x 之间的关系式;( 2)如图2,点 C的坐标为(﹣ 3, 0),以 C 为圆心,为半径作圆,若在⊙ C上存在点A关于点B的“ 伴随点”,直接写出点A的纵坐标m的取值范围.2018-2019 学年北京市旭日区九年级(上)期中数学试卷参照答案与试题分析一、选择题(本题共16 分,每题 2 分)1.【解答】解: A、不是中心对称图形,本选项错误;B、不是中心对称图形,本选项错误;C、是中心对称图形,本选项正确;D、不是中心对称图形,本选项错误.应选: C.22.【解答】解:∵极点式y= a( x﹣ h) +k,极点坐标是(h,k),∴二次函数2的图象的极点坐标是(﹣2, 3).y=( x+2) +3应选: A.3.【解答】解:连结OA,∵OA= 5,OC= 3,OC⊥ AB,∴AC===4,∵OC⊥ AB,∴AB= 2AC= 2× 4= 8.应选: A.4.【解答】解:∵ AB 是⊙ O 的直径,∴∠ ADB= 90°,∵∠ ABD= 59°,∴∠ A= 90°﹣∠ ABD =31°,∴∠ C=∠ A= 31°.应选: B.5.【解答】解:如图,连结NN1,PP 1,可得其垂直均分线订交于点B,故旋转中心是 B 点.应选: B .6.【解答】 解:连结 BC , OD ,设 CD 交 AB 于 E .∵∠ BOC = 2∠CDB ,∠ CDB = 30°,∴∠ COB = 60°,∵ OC = OB ,∴△ BOC 是等边三角形,∴∠ CBO = 60°,∵ CD ⊥ AB ,CD = 6,∴=,CE =ED = 3,∴∠ BOC =∠ BOD = 60°, EO =, OC =2,∴∠ CBO =∠ BOD ,∴BC ∥ OD ,∴ S △BCD = S △BCO ,∴S 阴=S 扇形 OBC = = 2π.应选: C .7.【解答】 解:从表格能够看出,函数的对称轴是x = 1,极点坐标为( 1,﹣ 1),函数与 x 轴的交点为( 0,0)、( 2,0),物线 y = ax 2+bx+c 的张口向下.抛物线张口向上,错误;2x=﹣ 1,错误;抛物线 y= ax +bx+c 的对称轴为直线2方程 ax +bx+c= 0 的根为 0 和 2,正确;当 y>0 时, x 的取值范围是 x< 0 或 x> 2,正确.应选: D.8.【解答】解:依据画出的函数的图象, C 切合,应选: C.二、填空题(本题共16 分,每题 2 分)9.【解答】解:依据中心对称的性质,得点P(2,﹣3)对于原点的对称点2, 3).P′的坐标是(﹣故答案为:(﹣ 2, 3).10.【解答】解:∵点 A(新人教版九年级第一学期期中模拟数学试卷(含答案)一、选择题 ( 本大题共 10 个小题,每题 3 分,共 30 分.在每个小题给出的四个选项中,只有一项切合题目要求)题号12345678910答案A D B B C C D D D A1.抛物线 y=2x2- 1 的极点坐标是 (A)A. (0 ,- 1)B.(0 , 1)C.( -1,0)D.(1,0)2.假如A. 2x=- 1 是方程 x2- x+ k= 0 的解,那么常数B .1 C.-1D.-2k 的值为 (D)3.将抛物线y= x2向右平移 2 个单位长度,再向上平移 1 个单位长度,所得抛物线的分析式是 (B)A. y= (x +2)2+1B.y=(x-2)2+1C.y=(x+2)2-1D.y=(x-2)2-14.小明在解方程x2- 4x-15= 0 时,他是这样求解的:移项,得 x2- 4x= 15,两边同时加4,2+ 4=19,∴ (x - 2)2∴ x- 2=±1= 2+2=2-19. 这类解方得 x - 4x= 19.19. ∴ x19, x 程的方法称为 (B)A.待定系数法 B .配方法C.公式法D.因式分解法5.以下图形中,既是轴对称图形,又是中心对称图形的是(C)A B C D6.已知抛物线y=- 2x2+ x 经过 A( - 1,y1) 和 B(3 ,y2) 两点,那么以下关系式必定正确的是(C)A. 0< y2< y1 B . y1< y2< 0 C . y2< y1< 0 D . y2< 0< y17.已知a, b, c分别是三角形的三边长,则方程(a +b)x2+2cx+(a+b)=0的根的状况是(D)A.有两个不相等的实数根B.有两个相等的实数根C.可能有且只有一个实数根D.没有实数根8.如图,将矩形 ABCD绕点 A 顺时针旋转到矩形 AB′ C′D′的地点,旋转角为α (0 °<α<90° ) .若∠ 1= 112°,则∠ α的大小是 (D)A. 68° B .20° C .28° D .22°29.已知二次函数y= ax + bx+ c 的图象以下图,则以下结论正确的选项是(D)10.如图,将△ ABC绕着点 B 顺时针旋转60°获得△DBE,点C 的对应点 E 恰巧落在AB的延长线上,连结AD, AC与DB交于点P,DE与CB交于点Q,连结PQ.若PB2AD= 5 cm, AB=5,则PQ的长为(A)57A. 2 cm B. 2 cm C . 3 cm D. 2 cm二、填空题 ( 本大题共 5 个小题,每题 3 分,共 15 分)11.在平面直角坐标系中,点A(0, 1)对于原点对称的点是(0,- 1).12.方程 x(x + 1) = 0 的根为 x1=0, x2=- 1.13.某楼盘2016 年房价为每平方米8 100元,经过两年连续降价后,2018 年房价为7 600元.设该楼盘这两年房价均匀降低率为x,依据题意可列方程为8__100(1 -x)2=7__600.14.二次函数y= ax2+ bx+ c(a≠0) 中x,y的部分对应值以下表:x- 1012y6323则当 x=- 2 时, y 的值为 11.15. 如图,射线 OC与 x 轴正半轴的夹角为30°,点 A 是 OC上一点, AH⊥ x 轴于 H,将△AOH绕着点 O逆时针旋转 90°后,抵达△ DOB的地点,再将△ DOB沿着 y 轴翻折抵达△ GOB的地点.若点 G恰幸亏抛物线 y=x2 (x > 0) 上,则点 A 的坐标为 (3 , 3) .三、解答题 ( 本大题共 8 个小题,共75 分.解答应写出文字说明,证明过程或演算步骤) 16. ( 共题共 2 个小题,每题 5 分,共 10 分 )(1) 解方程: x(x + 5) = 5x+ 25;解: x(x + 5) = 5(x +5) , x(x + 5) - 5(x + 5) = 0,∴(x - 5)(x + 5) = 0. ∴ x- 5=0 或 x+5= 0.∴x1= 5, x2=- 5.(2)已知点 (5 , 0) 在抛物线 y=- x2+ (k +1)x - k 上,求出抛物线的对称轴.解:将点 (5 , 0) 代入 y=- x2+ (k + 1)x -k,得 0=- 52+ 5× (k + 1) - k,解得 k= 5. ∴ y=- x2+6x- 5.6∴该抛物线的对称轴为直线x=-2×(-1)= 3.17.( 本题 6分) 以下图的是一桥拱的表示图,它的形状近似于抛物线,在正常水位时,该桥下边宽度为20 米,拱顶距离水面 4 米,成立平面直角坐标系以下图.求抛物线的分析式.。
江苏省南京联合体2015届九年级上期中学情样题数学试题及答案课件

(满分:120分 考试时间:120分钟)(参考公式:方差公式:s 2= 1n [ (x 1-x )2+(x 2-x )2+…+(x n -x )2] )一、选择题(共6小题,每小题2分,共12分) 1.下列方程中,属于一元二次....方程的是( ) A .x +2y =5B .x 2+y =3C .3x =12x 2-4D .x +1y=32.某校书法决赛共设置6个获奖名额,进入决赛的11名选手决赛得分均不相同.若知道某位选手的决赛得分,要判断他是否获奖,只需知道这11名选手决赛得分的( ) A .平均数B .众数C .方差D .中位数3.某班学生每周课外阅读时间的统计结果如下表:则这些学生每周课外阅读的平均时间为( ) A .4.5小时B .5小时C .5.4小时D .5.5小时4.某单位在两个月内将开支从24000元降到18000元.如果设每月降低开支的百分率均为x (x >0),则由题意列出的方程应是( )A .()180001240002=+x B .()240001180002=+xC .()180001240002=-x D .()240001180002=-x5.如图,长方形纸板ABCD 中,AB =2,BC =1,向纸板投掷飞镖,则飞镖落在以AB 为直径的半圆内的概率是( )A .π2B .π4C .π6D .π86.用一张圆心角为45°的扇形纸板和一张圆形纸板按如图方式分别剪得一个边长都为1的正方形,则原扇形和圆形纸板的面积比是( ) A .5:4B .5:2C .5:2D .5:2(第5题) (第6题)二、填空题(共10小题,每小题2分,共20分) 7.方程x 2-3x =0的根为 .8. 把方程03122=--x x 化为()n m x =+2(其中m 、n 为常数)的形式后为 .9. 已知x 1,x 2是方程x 2-2x -4=0的两个根,则x 1+x 2-x 1x10.写一个你喜欢的整数..m 的值 ,使关于x 的一元二次方程x 2-x +m =0有两个不相等...的实数根. 11.某仪仗队队员的身高(单位:厘米)如下:178,177,179,178,177,178,177,179,178,179. 则该队队员身高的平均数为 厘米.12.在一个不透明的盒子中装有12个白球,若干个黄球,这些球除颜色外都相同.若从中随机摸出一个球是白球的概率是 13,则黄球的个数为 个.13.一个圆锥的母线长为6,底面圆的半径为2,则该圆锥的侧面积为 (结果保留π).14.如图,在⊙O 中,CD 是直径,弦AB ⊥CD ,垂足为E ,连接BC ,若半径r =2cm ,∠BCD =22°30′,则弦AB = cm .15.如图, AB 是⊙O 的切线,切点为B ,AO 交⊙O 于点C ,过点C 的切线交AB 于点D .若AD =2BD ,CD =1,则⊙O 的半径为 .16.如图,已知过A 、C 、D 三点的圆的圆心为E ,过B 、E 、F 三点的圆的圆心为D ,如果∠A =57º,那么∠ABC = °.FEDCBA(第14题) (第15题) (第16题)三、解答题(共11小题,共88分)17.(12分)解方程:(1)(x +3)2-4=0 (2)2x 2-3x +1=0 (3)2(x -3)2=x (x -3)OD CBA18.(7分)已知关于x 的一元二次方程12+++n mx x =0的一根为2. (1)用含m 的代数式表示n ;(2)试说明:关于y 的一元二次方程02=++n my y 总有两个不相等的实数根.19.(7分)某单位院内有一块长30 m ,宽20 m 的矩形空地,准备将其建成一个矩形花坛,要求在花坛中修两条纵向平行和横向弯折的小道(如图),剩余的地方种植花草.要使种植花草的面积为532 m 2,那么小道进出口的宽度应为多少米?(注:所有小道进出口的宽度相等,且每段小道均为平行四边形)20.(7分)在一次即兴演讲比赛中,每个参赛选手都从两个分别标有“A ”、“B ”标签的选题中,随机抽取一个作为自己的演讲内容,某校有甲、乙、丙三个选手参加这次演讲比赛,请求出这三个选手中有两个抽中内容“A ”、一个抽中内容“B ”的概率.21.(8分)某社区准备在甲、乙两位射箭爱好者中选出一人参加集训,两人各射了5箭,他们的总成绩(单⑵请你从平均数和方差的角度分析,谁将被选中.22.(8分)某学校为了解学生体能情况,规定参加测试的每名学生从“1.立定跳远、2.耐久跑、3.掷实心球、4.引体向上”四个项目中随机抽取两项作为测试项目.(1)小明同学恰好抽到“立定跳远”、“耐久跑”两项的概率是多少?(2)据统计,初三二班共12名男生参加了“立定跳远”的测试,他们的成绩如下:95 100 90 82 90 65 89 74 75 93 92 85② 这组数据的众数是,中位数是;②若将不低于90分(含90分)的成绩评为优秀,请你估计初三年级选“立定跳远”的180名男生中成绩为优秀的学生约为多少人.23.(7分)如图,在△ABC中,∠B=60°,∠C=70°.(1)尺规作图:作△ABC的内切圆圆O;(2)若圆O分别与边BC、AB、AC交于点D、E、F,求∠EDF的度数.24.(7分)如图,在四边形ABCD中,AD∥BC,AD=2,AB=22,以A为圆心,AD为半径的圆与BC 相切于点E,交AB于点F,若扇形AFD是一个圆锥的侧面,求这个圆锥底面圆的半径.FE DCBAC BA25.(8分)如图,AB 是⊙O 的直径,点C 在AB 的延长线上,AB =2BC ,点D 在⊙O 上,∠DAO =30°. (1)判断直线CD 与⊙O 的位置关系,并说明理由;(2)若⊙O 半径为2,求图中阴影部分的面积(结果保留π).O DCBA26.(8分)如图,四边形OBCD 中的三个顶点在⊙O 上,点A 是优弧BD 上的一个动点(不与点B 、D 重合).(1)当圆心O 在∠BAD 内部,∠ABO +∠ADO =60°时,∠BOD = °; (2)当圆心O 在∠BAD 内部,四边形OBCD 为平行四边形时,求∠A 的度数;(3)当圆心O 在∠BAD 外部,四边形OBCD 为平行四边形时,请直接写出∠ABO 与∠ADO 的数量关系.ODBAODB27.(9分)已知到直线l 的距离等于a 的所有点的集合是与直线l 平行且距离为a 的两条直线l 1、l 2(如图①). (1)在图②的平面直角坐标系中,画出到直线y =x +22的距离为1的所有点的集合的图形.并写出该图形与y 轴交点的坐标.(2)试探讨在以坐标原点O 为圆心,r 为半径的圆上,到直线y = x + 22的距离为1的点的个数与r 的关系.(3)如图③,若以坐标原点O 为圆心,2为半径的圆上只.有两个点到直线y = x + b 的距离为1,则b 的取值范围为 .图① 图② 图③选择题第6题6.用一张圆心角为45°的扇形纸板和一张圆形纸板按如图方式分别剪得一个边长都为1的正方形,则原扇形和圆形纸板的面积比是( ) A .5:4B .5:2C .5:2D .5:2l 22014-2015学年第一学期期中学情分析样题九年级数学参考答案一、选择题(本大题共6小题,每小题2分,共12分)二、填空题(本大题共10小题,每小题2分,共20分) 7.0或3; 8. 39)6(2=-x ; 9. 6; 10.-1(41<m 都可以); 11.178; 12.24; 13.12π; 14.22; 15.3; 16.22.注:14定理、15长定理虽为打“*”内容,但市里建议放入常规考查之中,只考其直接应用,不做过多变化或综合。
2016届江苏省南京市鼓楼区九年级上学期期中考试数学试卷(带解析)

一、选择题(题型注释)1、方程x2=x的解是()A.x="1" B.x="0" C.x1=1,x2="0" D.x1=-1,x2=0来源:2016届江苏省南京市鼓楼区九年级上学期期中考试数学试卷(带解析)2、一组数据5,2,5,3,2.5,5,5,5.5,这7个数据的众数和中位数分别是()A.5.5,5 B.5,5 C.5,4 D.5,3来源:2016届江苏省南京市鼓楼区九年级上学期期中考试数学试卷(带解析)3、沅江市近年来大力发展芦笋产业,某芦笋生产企业在两年内的销售额从20万元增加到80万元.设这两年的销售额的年平均增长率为x,根据题意可列方程为()A.20(1+2x)="80"B.2×20(1+x)="80"C.20(1+x2)="80"D.20(1+x)2=80来源:2016届江苏省南京市鼓楼区九年级上学期期中考试数学试卷(带解析)4、有一组数据如下:3,a,4,6,7,它们的平均数是5,那么这组数据的方差是()A.B.2 C.D.10来源:2016届江苏省南京市鼓楼区九年级上学期期中考试数学试卷(带解析)5、如图,四边形ABCD为⊙O的内接四边形,已知∠BOD=100°,则∠BCD的度数为()A.130°B.100°C.80°D.50°来源:2016届江苏省南京市鼓楼区九年级上学期期中考试数学试卷(带解析)6、如图,⊙O的内接四边形ABCD两组对边的延长线分别交于点E,F,∠E=α,∠F=β,则∠A=()A.α+βB.C.180-α-βD.来源:2016届江苏省南京市鼓楼区九年级上学期期中考试数学试卷(带解析)二、填空题(题型注释)7、写出一个解为1和2的一元二次方程:.来源:2016届江苏省南京市鼓楼区九年级上学期期中考试数学试卷(带解析)8、已知⊙O的半径是3,OP=2,则点P与⊙O的位置关系是:点P在⊙O .来源:2016届江苏省南京市鼓楼区九年级上学期期中考试数学试卷(带解析)9、如果关于x的一元二次方程x2+4x-m=0没有实数根,那么m的取值范围是.来源:2016届江苏省南京市鼓楼区九年级上学期期中考试数学试卷(带解析)10、小明上学期平时成绩为90分,其中成绩为88分,期末成绩为94分,若平时、期中、期末的成绩按3:3:4计算,计算结果作为学期成绩,则小明上学期学期成绩为分.来源:2016届江苏省南京市鼓楼区九年级上学期期中考试数学试卷(带解析)11、已知一元二次方程x2-6x-5=0的两根为m,n,则m2-mn+n2= .来源:2016届江苏省南京市鼓楼区九年级上学期期中考试数学试卷(带解析)12、已知⊙A的半径是6,点A的坐标是(-3,-4),那么⊙A与x轴的位置关系是.来源:2016届江苏省南京市鼓楼区九年级上学期期中考试数学试卷(带解析)13、将圆心角为90°,面积为4π的扇形围成一个圆锥的侧面,则所围成的圆锥的底面半径为.来源:2016届江苏省南京市鼓楼区九年级上学期期中考试数学试卷(带解析)14、如图,AB为⊙O直径,点C,D在⊙O上,若∠DCB=30°,则∠DBA= .来源:2016届江苏省南京市鼓楼区九年级上学期期中考试数学试卷(带解析)15、将量角器按如图所示的方式放置在三角形纸片上,使点O在半圆上,点B在半圆上,边AB,AO分别交半圆于点C,D,点B,C,D对应的读数分别为160°、52°、40°,则∠A= .来源:2016届江苏省南京市鼓楼区九年级上学期期中考试数学试卷(带解析)16、同圆的内接正方形和内接正三角形的边长比是.来源:2016届江苏省南京市鼓楼区九年级上学期期中考试数学试卷(带解析)三、解答题(题型注释)17、(1)解方程:①x2-6x-4=0②x2-12x+27=0(2)直接写出方程(x2-6x-4)(x2-12x+27)=0的解为.来源:2016届江苏省南京市鼓楼区九年级上学期期中考试数学试卷(带解析)18、为了从甲、乙两名射击运动员中选拔一名参加比赛,对这两名运动员进行测试,他们10次射击命中的环数如下:根据测试成绩,你认为选择哪一名运动员参赛更好?为什么?来源:2016届江苏省南京市鼓楼区九年级上学期期中考试数学试卷(带解析)19、已知△ABC,∠C=90°,AC=4,BC=3.(1)用尺规在图1中作出△ABC的外接圆,在图2中作出△ABC的内切圆.(2)△ABC的外接圆半径为,内切圆半径为.来源:2016届江苏省南京市鼓楼区九年级上学期期中考试数学试卷(带解析)20、已知关于x的方程kx2+(2k+1)x+2=0.(1)若方程有两个不相等的实数根,则k的取值范围是;(2)求证:无论k取任何实数时,方程总有实数根.来源:2016届江苏省南京市鼓楼区九年级上学期期中考试数学试卷(带解析)21、如图,四边形ABCD内接于⊙O,∠DAE是四边形ABCD的一个外角,且AD平分∠CAE.求证:DB=DC.来源:2016届江苏省南京市鼓楼区九年级上学期期中考试数学试卷(带解析)22、如图,⊙O是△ABC的外接圆,半径为4,直线l与⊙O相切,切点为P,l∥BC,l与BC间的距离为7.(1)仅用无刻度的直尺,画出一条弦,使这条炫将△ABC分成面积相等的两部分(保留作图痕迹,不写画法).(2)求弦BC的长.来源:2016届江苏省南京市鼓楼区九年级上学期期中考试数学试卷(带解析)23、如图,在△ABC中,AB=AC,∠ABC=30°,点O在边BC上,⊙O经过点A,B,且与BC相交于点D.(1)求证:CA是⊙O的切线;(2)若AB=2,请直接写出阴影部分的面积.来源:2016届江苏省南京市鼓楼区九年级上学期期中考试数学试卷(带解析)24、某水产店每天购进一种高档海鲜500千克,预计每千克盈利10元,当天可全部售完,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.当天剩余的海鲜全部以每千克盈利5元的价格卖给某饭店,如果该水产店要保证当天盈利6500元,那么每千克应涨价多少元?来源:2016届江苏省南京市鼓楼区九年级上学期期中考试数学试卷(带解析)25、某课题小组研究如下的几个问题.(1)边长为1的等边三角形从图1位置开始沿直线顺时针无滑动地向右滚动一周,求点P 运动的路径长(直接列式计算);(2)边长为1的正方形从图2位置开始沿直线顺时针无滑动地向右滚动,当正方形滚动一周时,求点P运动的路经长(直接列式计算).(3)请你将(1)(2)中的正多边形化成一个边长为1,边数大于4的正多边形,按(1)(2)的方式滚动一周,求其任意一个顶点运动的路径长(请写出你选的图形的名称,直接写出结果)来源:2016届江苏省南京市鼓楼区九年级上学期期中考试数学试卷(带解析)26、要建一个面积为150m2的长方形养鸡场,为了节省材料,养鸡场的一边靠着原有的一条墙,墙长am,另三边用竹篱笆围成.如果篱笆的总长为40m,设养鸡场垂直于墙的一边长为xm,求养鸡场的长和宽.来源:2016届江苏省南京市鼓楼区九年级上学期期中考试数学试卷(带解析)27、如图,在平面直角坐标系中,直线l的表达式是y=-x+1,长度为2的线段AB在y轴上移动,设点A的坐标为(0,a).(1)当以A为圆心,AB为半径的圆与直线l相切时,求a的值;(2)直线l上若存在点C,使得△ABC是以AB为腰的等腰三角形,则a的取值范围为;(3)直线l上是否存在点C,使得∠ACB=90°?若存在,求出a的取值范围;若不存在,请说明理由.来源:2016届江苏省南京市鼓楼区九年级上学期期中考试数学试卷(带解析)参考答案1、C.2、B.3、D.4、B.5、A.6、D.7、x2-3x+2=0.8、外部.9、m<-4.10、91.11、3.12、相交.13、1.14、60°.15、24°.16、17、(1)①x1=3+,x2=3-;②x1=3,x2=9;(2)x1=3+,x2=3-;x3=3,x4=9.18、选择乙运动员参赛更好.理由见解析.19、(1)作图见解析;(2)2.5;1.20、(1)k≠且k≠0;(2)证明见解析.21、证明见解析.22、(1)画图见解析;(2)2.23、(1)证明见解析;(2).24、每千克应涨价15元或5元.25、(1);(2)(+1)π;(3).26、当5≤a<30时,问题有一解,即宽为10m,长为15m;当a≥30时,问题有两解,可建宽为10m,长为15m或宽为5m,长为30m的鸡场.27、(1)-2+1(2)-2+1≤a≤2+1;(3)2-≤a≤2+.【解析】1、试题解析:x2-x=0,x(x-1)=0,x=0或x-1=0,所以x1=0,x2=1.故选C.考点:解一元二次方程-因式分解法.2、试题解析:这组数据按照从小到大的顺序排列为:2,2.5,3,5,5,5,5,5.5,众数为:5,中位数为:=5.故选B.考点:1.众数;2.中位数.3、试题解析:设增长率为x,根据题意得20(1+x)2=80,故选D.考点:由实际问题抽象出一元二次方程.4、试题解析:∵3、a、4、6、7,它们的平均数是5,∴(3+a+4+6+7)=5,解得,a="5"S2=[(3-5)2+(5-5)2+(4-5)2+(6-5)2+(7-5)2] =2,故选B.考点:1.方差;2.算术平均数.5、试题解析:∵∠BOD=100°,∴∠A=∠BOD=50°,∵四边形ABCD为⊙O的内接四边形,∴∠BCD+∠A=180°,∴∠BCD=130°,故选A.考点:1.圆周角定理;2.圆内接四边形的性质.6、试题解析:连结EF,如图,∵四边形ABCD为圆的内接四边形,∴∠ECD=∠A,∵∠ECD=∠1+∠2,∴∠A=∠1+∠2,∵∠A+∠1+∠2+∠E+∠F=180°,∴2∠A+α+β=180°,∴∠A=.故选D.考点:圆内接四边形的性质.7、试题解析:∵1+2=3,1×2=2,∴以1和2为根的一元二次方程可为x2-3x+2=0.考点:根与系数的关系.8、试题解析:∵OP<3,∴点P在⊙O外部.考点:点与圆的位置关系.9、试题解析:∵一元二次方程x2+4x-m=0没有实数根,∴△=16-4(-m)<0,∴m<-4.考点:根的判别式.10、试题解析:小明上学期学期成绩是:=91分.考点:加权平均数.11、试题解析:∵m,n是一元二次方程x2-6x-5=0的两个根,∴m+n=6,mn=-5,则m2-mn+n2=(m+n)2-3mn=18-15=3.考点:根与系数的关系.12、试题解析:∵点A的坐标是(-3,-4),∴点A到x轴的距离d=4,∵⊙A的半径r=6,∵d<r,∴⊙A与x轴相交.考点:1.直线与圆的位置关系;2.坐标与图形性质.13、试题解析:设扇形的半径为R,则=4π,解得R=4,设圆锥的底面半径为r,根据题意得=4π,解得r=1,即圆锥的底面半径为1.考点:圆锥的计算.14、试题解析:如图,连接AC,∵AB为直径,∴∠ACB=90°,∵∠DCB=30°,∴∠ACD=90°-30°=60°,∴∠DBA=∠ACD=60°.考点:圆周角定理.15、试题解析:如图,以EF为直径作半圆,延长BO交圆于M,连接OC,∵点B,C,D对应的读数分别为160°、52°、40°,∴∠BOA=160°-40°=120°,∠BOF=180°-160°=20°,∠COE=52°,∴∠COM=52°+20°=72°,∴∠B=∠COM=36°,∴∠A=180°-∠B-∠AOB=180°-120°-36°=24°.考点:圆周角定理.16、试题解析:设圆的半径为R,如图所示:在正方形ABCD中,连接AC,∵∠B=90°,∴AC为直径,∴AC=2R,∴AB=AC=R;在正三角形EFM中,作ON⊥EF于N,连接OF,则∠ONF=90°,∠OFN=∠EFM=30°,∴ON=R,∴FN=ON=R,∴FM=2FN=R,∴AB:FM=.考点:正多边形和圆.17、试题分析:(1)①按照步骤:移项,把常数项移到右边,左右两边加上一次项系数一半的平方,写成完全平方式,直接开方;②将方程的左边因式分解,将一元二次方程转化为两个一元一次方程,即可解决问题;(2)由(x2-6x-4)(x2-12x+27)=0,得出x2-6x-4=0,x2-12x+27=0把两个方程的解合并在一起即可.试题解析:(1)①x2-6x-4=0x2-6x=4,x2-6x+9=4+9,(x-3)2=13,x-3=±,∴x1=3+,x2=3-;②x2-12x+27=0,(x-3)(x-9)=0,x-3=0,x-9=0,解得:x1=3,x2=9;(2)方程(x2-6x-4)(x2-12x+27)=0的解为x1=3+,x2=3-; x3=3,x4=9.考点:1.解一元二次方程-因式分解法;2.解一元二次方程-配方法.18、试题分析:先计算甲乙的平均数,再根据方程公式计算甲乙的方差,然后通过比较方差的大小,根据方差的意义决定选择哪一名运动员参赛更好.试题解析:=(7+9+8+6+10+7+9+8+6+10)=8(环),=(7+8+9+8+8+6+8+9+7+10)=8(环),S甲2= [(7-8)2+(9-8)2+(8-8)2+(6-8)2+(10-8)2+(7-8)2+(9-8)2+(8-8)2+(6-8)2+(10-8)2]=2,S乙2=[(7-8)2+(8-8)2+(9-8)2+(8-8)2+(8-8)2+(6-8)2+(8-8)2+(9-8)2+(7-8)2+(10-8)2]=1.2,∵S甲2>S乙2,∴乙运动员的成绩比较稳定,∴选择乙运动员参赛更好.考点:1.方差;2.加权平均数.19、试题分析:(1)首先作出AC、BC的垂直平分线,两线的交点O就是外接圆圆心,再以O为圆心AO长为半径画圆即可;作出∠A、∠B的角平分线,两线的交点M就是内切圆圆心,再过点M作BC的垂线,交BC于N,再以M为圆心,MN的长为半径画圆即可;(2)利用勾股定理计算出AB的长,进而可得外接圆半径;设△ABC内切圆的半径为r,由于Rt△ABC的面积为AC•CB=(AB+BC+AC)×r,从而求得r的值试题解析:(1)如图所示:(2)∵∠C=90°,AC=4,BC=3,∴AB==5,∵AO=BO,∴AO=2.5;设△ABC内切圆的半径为r,连接CM,由于Rt△ABC的面积为=6,则由Rt△ABC的面积为S△ABM+S△BMC+S△AMC=(AB+BC+AC)×r=×(3+4+5)×r,×(3+4+5)×r=6,解得r=1.考点:1.作图—复杂作图;2.三角形的外接圆与外心;3.三角形的内切圆与内心.20、试题分析:(1)根据一元二次方程的定义和△的意义得到k≠0且△>0,即(2k+1)2-4k×2>0,然后求出两个不等式的公共部分即可;(2)分k=0,为一元一次方程;k≠0,利用根的判别式整理得出答案即可.试题解析:(1)∵关于x的方程kx2+(2k+1)x+2=0有两个不相等的实数根,∴k≠0且△=(2k+1)2-4k×2=(2k-1)2>0,∴k≠且k≠0.(2)∵当k=0,为x+2=0一元一次方程,解为x=-2;当k≠0,△=(2k+1)2-4k×2=(2k-1)2≥0,∴无论k取任何实数时,方程总有实数根.考点:1.根的判别式;2.一元一次方程的解.21、试题分析:先根据圆周角定理得出∠DAC=∠DBC,再由角平分线的性质得出∠EAD=∠DAC,根据圆内接四边形的性质得出∠EAD=∠BCD,由此可得出结论.试题解析:∵∠DAC与∠DBC是同弧所对的圆周角,∴∠DAC=∠DBC.∵AD平分∠CAE,∴∠EAD=∠DAC,∴∠EAD=∠DBC.∵四边形ABCD内接于⊙O,∴∠EAD=∠BCD,∴∠DBC=∠DCB,∴DB=DC.考点:1.圆内接四边形的性质;2.圆周角定理.22、试题分析:(1)连结PO并延长交BC于Q,然后连结AQ并延长交⊙O于D,则弦AD为所求;(2)连结OC,如图,根据切线的性质得OP⊥l,则根据平行线的性质得PQ⊥BC,则根据垂径定理得BQ=CQ,然后在Rt△OCQ中利用勾股定理计算出CQ,则利用BC=2CQ求解.试题解析:(1)如图,(2)连结OC,如图,∵直线l与⊙O相切,切点为P,∴OP⊥l,而l∥BC,∴PQ⊥BC,∴BQ=CQ,∵PQ=7,OP=OC=4,∴OQ=3,在Rt△OCQ中,CQ=,∴BC=2CQ=2.考点:1.切线的性质;2.作图—复杂作图.23、试题分析:(1)连接OA,由AB=AC,则∠C=∠B=30°,∠AOC=60°,从而得出∠OAC=90°,则直线CA与⊙O相切;(2)连接AD,作OE⊥AB,根据圆周角定理得出∠BAD=90°,通过解直角三角函数求得直径BD的长,进而得出半径的长以及OE的长,根据S阴影=S△AOB+S扇形求得即可.试题解析:(1)连接OA,∵AB=AC,∴∠C=∠B,∵∠ABC=30°,∴∠C=30°,∵OA=OB,∴∠B=∠OAB=30°,∴∠AOC=60°,∴∠OAC=90°,∴直线CA与⊙O相切;(2)连接AD,作OE⊥AB,∵BD是直径,∴∠BAD=90°,∵∠B=30°,∴cos∠B=,∴BD=,∴OB=OD=,∴OE=OB=,∴S阴影=S△AOB+S扇形=AB•OE+=.考点:1.切线的判定;2.扇形面积的计算.24、试题分析:设每千克应涨价x元,根据总利润=涨价利润后的利润+剩余的销售利润列出方程探讨得出答案即可.试题解析:设每千克应涨价x元,由题意,得(10+x)(500-20x)+5×20x=6500,整理,得x2-20x+75=0,解得x1=15,x2=5.答:每千克应涨价15元或5元.考点:一元二次方程的应用.25、试题分析:(1)点P从开始到结束,所经过路径为两段弧,第一段是以B点为圆心,1为半径,圆心角为120°的弧,第二段是以(A)点为圆心,1为半径,圆心角为120°的弧,然后根据弧长公式计算即可;(2)弧长是三段,第一段以对角线PB为半径,第二段以边长为半径,第三段不动,第四段以边长为半径,根据弧长公式计算后相加即可;(3)选择正六边形,首先画出几何图形,连A1A5,A1A4,A1A3,作A6C⊥A1A5,利用正六边形的性质分别计算出A1A4=2,A1A5=A1A3=,而当A1第一次滚动到图2位置时,顶点A1所经过的路径分别是以A6,A5,A4,A3,A2为圆心,以1,,2,,1为半径,圆心角都为60°的五条弧,然后根据弧长公式进行计算即可.试题解析:(1)∵△ABP为等边三角形,∴∠ABP=60°,∴△ABC每次旋转的度数为120°,点P从开始到结束,所经过路径的长度==;(2)根据勾股定理,得PB=.则当正方形滚动一周时,正方形的顶点A所经过的路线的长==(+1)π;(3)如图所示:连A1A5,A1A4,A1A3,作A6C⊥A1A5,∵六边形A1A2A3A4A5A6为正六边形,∴A1A4=2,∠A1A6A5=120°,∴∠CA1A6=30°,∴A6C=,A1C=,∴A1A5=A1A3=,当A1第一次滚动到图2位置时,顶点A1所经过的路径分别是以A6,A5,A4,A3,A2为圆心,以1,,2,,1为半径,圆心角都为60°的五条弧,∴顶点A1所经过的路径的长=.考点:圆的综合题.26、试题分析:设鸡场的宽为xm,则长可用含x的代数式表示,从而这个鸡场的面积可用含x的代数式表示,列方程求解,然后对a进行讨论确定答案.试题解析:设养鸡场垂直于墙的一边长为xm,则平行于墙的边长为(40-2x)m,由题意得.x(40-2x)=150,整理,得x2-20x+75=0,解方程,得x1=15,x2=5.当x=15时,40-2x=10;当x=5时,40-2x=30.答:当a<5时,问题无解;当5≤a<30时,问题有一解,即宽为10m,长为15m;当a≥30时,问题有两解,可建宽为10m,长为15m或宽为5m,长为30m的鸡场.考点:一元二次方程的应用.27、试题分析:(1)当⊙A与直线l相切时,设切点为M,则AM⊥DE,根据∠ADM=45°,OD=1,求出AD,再减去圆的半径求出AO,即可得出点A的坐标;(2)过点A作AC⊥l于点C,使AC=AB=2,根据①可直接得出a,当点A移动到点D的上方A′处时,过点A′作A′C′⊥l于点C′,使A′C=AB=2,再求出a,最后根据若使得△ABC是以AB为腰的等腰三角形,则点A在线段AA′上,即可得出a的取值范围;(3)以AB为直径作⊙Q,点Q在点D下方,使⊙Q与直线l相切于点C,则∠ACB=90°,根据∠ODE=45°求出DQ从而得出点A的纵坐标,求出a,当点Q在点D上方的Q′点时,作⊙Q′与直线l相切于点C′,则∠AC′B=90°,同理求出点A的纵坐标,求出a,最后根据⊙Q的圆心在点Q与Q′之间时,∠ACB=90°,即可求出a的取值范围.试题解析:(1)如图:当⊙A与直线l相切时,设切点为M,则AM⊥DE,∵直线l的表达式是y=-x+1,∴∠ADM=45°,OD=1,∵DM=AM=2,∴AD=2,∴AO=2-1,∴点A的坐标为(0,-2+1);(2)如图:过点A作AC⊥l于点C,使AC=AB=2,由①得:a=-2-1,当点A移动到点D的上方A′处时,过点A′作A′C′⊥l于点C′,使A′C=AB=2,同理可得:A′D=2,则a=2+1,∵若使得△ABC是以AB为腰的等腰三角形,则点A在线段AA′上,∴a的取值范围为-2+1≤a≤2+1,(3)以AB为直径作⊙Q,点Q在点D下方,使⊙Q与直线l相切于点C,则QC⊥l,QC=QA=1,∠ACB=90°,∵∠ODE=45°,∴DC=QC=1,∴DQ=,∴AD=DQ-AQ=-1,∴点A的纵坐标为1-(-1)=2-,∴a=2-,当点Q在点D上方的Q′点时,作⊙Q′与直线l相切于点C′,则∠AC′B=90°,同理可得DQ′=,∴AQ′=1,∴AD=AQ′+DQ′=+1,∴AO=AD+OD=+1+1=+2,∴点A的纵坐标为+2,∴a=+2,∵⊙Q的圆心在点Q与Q′之间时,∠ACB=90°,∴a的取值范围为2-≤a≤2+.考点:一次函数综合题.。
【5套打包】南京市初三九年级数学上期中考试检测试卷(解析版)

新九年级上册数学期中考试试题(含答案)一、选择题(本题共16分,每小题2分)1.(2分)以下是“回收”、“绿色包装”、“节水”、“低碳”四个标志,其中是中心对称图形的是()A.B.C.D.2.(2分)二次函数y=(x+2)2+3的图象的顶点坐标是()A.(﹣2,3)B.(2,3)C.(﹣2,﹣3)D.(2,﹣3)3.(2分)如图,⊙O的直径为10,AB为弦,OC⊥AB,垂足为C,若OC=3,则弦AB的长为()A.8B.6C.4D.104.(2分)如图,AB是⊙O的直径,CD是⊙O的弦,∠ABD=59°,则∠C等于()A.29°B.31°C.59°D.62°5.(2分)如图4×4的正方形网格中,△PMN绕某点旋转一定的角度,得到△P1M1N1,其旋转中心是()A.A点B.B点C.C点D.D点6.(2分)如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=6,阴影部分图形的面积为()A.4πB.3πC.2πD.π7.(2分)已知抛物线y=ax2+bx+c上部分点的横坐标x纵坐标y的对应值如下表:①物线y=ax2+bx+c的开口向下;②抛物线y=ax2+bx+c的对称轴为直线x=﹣1;③方程ax2+bx+c=0的根为0和2;④当y>0时,x的取值范围是x<0或x>2以上结论中其中的是()A.①④B.②④C.②③D.③④8.(2分)如图1,⊙O过正方形ABCD的顶点A、D且与边BC相切于点E,分别交AB、DC于点M、N.动点P在⊙O或正方形ABCD的边上以每秒一个单位的速度做连续匀速运动.设运动的时间为x,圆心O与P点的距离为y,图2记录了一段时间里y与x的函数关系,在这段时间里P点的运动路径为()A.从D点出发,沿弧DA→弧AM→线段BM→线段BCB.从B点出发,沿线段BC→线段CN→弧ND→弧DAC.从A点出发,沿弧AM→线段BM→线段BC→线段CND.从C点出发,沿线段CN→弧ND→弧DA→线段AB二、填空题(本题共16分,每小题2分)9.(2分)在平面直角坐标系中,点P(2,﹣3)关于原点对称点P′的坐标是.10.(2分)平面直角坐标系xOy中,以原点O为圆心,5为半径作⊙O,则点A(4,3)在⊙O(填:“内”或“上“或“外”)11.(2分)如图所示,把一个直角三角尺ACB绕30°角的顶点B顺时计旋转,使得点A 落在CB的延长线上的点E处,则∠BCD的度数为.12.(2分)将抛物线y=x2﹣6x+5化成y=a(x﹣h)2﹣k的形式,则hk=.13.(2分)若正六边形的边长为2,则其外接圆的面积为.14.(2分)二次函数满足下列条件:①函数有最大值3;②对称轴为y轴,写出一个满足以上条件的二次函数解析式:15.(2分)圆锥底面半径为6,高为8,则圆锥的侧面积为.16.(2分)阅读下面材料:在数学课上,老师提出利用尺规作图完成下面问题:已知:∠ACB是△ABC的一个内角.求作:∠APB=∠ACB.小明的做法如下:如图①作线段AB的垂直平分线m;②作线段BC的垂直平分线n,与直线m交于点O;③以点O为圆心,OA为半径作△ABC的外接圆;④在弧ACB上取一点P,连结AP,BP.所以∠APB=∠ACB.老师说:“小明的作法正确.”请回答:(1)点O为△ABC外接圆圆心(即OA=OB=OC)的依据是;(2)∠APB=∠ACB的依据是.三、解答题(本原共68分,第17-22题,每小题5分,第23、24、26、28题,每小题5分,第25,27题,每小题5分)17.(5分)如图,在Rt△OAB中,∠OAB=90,且点B的坐标为(4,2)(1)画出△OAB绕点O逆时针旋转90°后的△OA1B1.(2)求点B旋转到点B1所经过的路线长(结果保留π)18.(5分)二次函数y=ax2+bx+c(a≠0)的部分图象如图所示.(1)确定二次函数的解析式;(2)若方程ax2+bx+c=k有两个不相等的实数根,求k的取值范围.19.(5分)如图,四边形ABCD内接于⊙O,∠ABC=135°,AC=4,求⊙O的半径长.20.(5分)关于x一元二次方程x2+mx+n=0.(1)当m=n+2时,利用根的判别式判断方程根的情况.(2)若方程有实数根,写出一组满足条件的m,n的值,并求此时方程的根.21.(5分)如图,P A,PB是⊙O的切线,点A,B为切点,AC是⊙O的直径,∠ACB=70°.求∠P的度数.22.(5分)某商店销售一种进价为20元/双的手套,经调查发现,该种手套每天的销售量w (双)与销售单价x(元)满足w=﹣2x+80(20≤x≤40),设销售这种手套每天的利润为y(元).(1)求y与x之间的函数关系式;(2)当销售单价定为多少元时,每天的利润最大?最大利润是多少?23.(6分)如图,已知直角坐标系中一条圆弧经过正方形网格的格点A(0,4)、B(4,4)、C(6,2)(1)用直尺画出该圆弧所在圆的圆心M的位置,并标出M点的坐标;(2)若D点的坐标为(7,0),想一想直线CD与⊙M有怎样的位置关系,并证明你的猜想.24.(6分)已知:如图,在△ABC中,AB=AC,以AC为直径的⊙O与BC交于点D,DE ⊥AB,垂足为E,ED的延长线与AC的延长线交于点F.(1)求证:DE是⊙O的切线;(2)若⊙O的半径为4,∠F=30°,求DE的长.25.(7分)如图,Q是弧AB与弦AB所围成的图形的内部的一定点,P是弦AB上一动点,连接PQ并延长交弧AB于点C,连接BC.已知AB=6cm,设A,P两点间的距离为xcm,P,C两点间的距离为y1cm,B,C两点间的距离为y2cm.小明根据学习函数的经验,分别对函数y1,y2,随自变量x的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整:(1)确定自变量x的取值范围是.(2)按下表中自变量x的值进行取点、画图、测量,分别得到了y1,y2与x的几组对应值.(3)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并面出函数y1,y2的图象.(4)结合函数图象,解决问题:当△BPC为等腰三角形时,AP的长度约为cm.26.(6分)在平面直角坐标系中xOy中,抛物线y=x2﹣4x+m+2的顶点在x轴上.(1)求抛物线的表达式;(2)点Q是x轴上一点,①若在抛物线上存在点P,使得∠POQ=45°,求点P的坐标.②抛物线与直线y=1交于点E,F(点E在点F的左侧),将此抛物线在点E,F(包含点E和点F)之间的部分沿x轴向左平移n个单位后得到的图象记为G,若在图象G上存在点P,使得∠POQ=45°,求n的取值范围.27.(7分)已知:在四边形ABCD中,AB=AD,∠ABC+∠ADC=180°(1)如图①,若∠ACD=60°,BC=1,CD=3,则AC的长为;(2)如图②,若∠ACD=45°,BC=1,CD=3,求出AC的长;(3)如图③,若∠ACD=30°,BC=a,CD=b,直接写出AC的长.28.(6分)在平面直角坐标系xOy中,点A的坐标为(0,m),且m≠0,点B的坐标为(n,0),将线段AB绕点B顺时针旋转90°.得到线段BA1,称点A1为点A关于点B的“伴随点”,图1为点A关于点B的“伴随点”的示意图(1)已知点A(0,4),①当点B的坐标分别为(1,0),(﹣2,0)时,点A关于点B的“伴随点”的坐标分别为,;②点(x,y)是点A关于点B的“伴随点”,直接写出y与x之间的关系式;(2)如图2,点C的坐标为(﹣3,0),以C为圆心,为半径作圆,若在⊙C上存在点A关于点B的“伴随点”,直接写出点A的纵坐标m的取值范围.2018-2019学年北京市朝阳区九年级(上)期中数学试卷参考答案与试题解析一、选择题(本题共16分,每小题2分)1.【解答】解:A、不是中心对称图形,本选项错误;B、不是中心对称图形,本选项错误;C、是中心对称图形,本选项正确;D、不是中心对称图形,本选项错误.故选:C.2.【解答】解:∵顶点式y=a(x﹣h)2+k,顶点坐标是(h,k),∴二次函数y=(x+2)2+3的图象的顶点坐标是(﹣2,3).故选:A.3.【解答】解:连接OA,∵OA=5,OC=3,OC⊥AB,∴AC===4,∵OC⊥AB,∴AB=2AC=2×4=8.故选:A.4.【解答】解:∵AB是⊙O的直径,∴∠ADB=90°,∵∠ABD=59°,∴∠A=90°﹣∠ABD=31°,∴∠C=∠A=31°.故选:B.5.【解答】解:如图,连接NN1,PP1,可得其垂直平分线相交于点B,故旋转中心是B点.故选:B.6.【解答】解:连接BC,OD,设CD交AB于E.∵∠BOC=2∠CDB,∠CDB=30°,∴∠COB=60°,∵OC=OB,∴△BOC是等边三角形,∴∠CBO=60°,∵CD⊥AB,CD=6,∴=,CE=ED=3,∴∠BOC=∠BOD=60°,EO=,OC=2,∴∠CBO=∠BOD,∴BC∥OD,∴S△BCD=S△BCO,∴S阴=S扇形OBC==2π.故选:C.7.【解答】解:从表格可以看出,函数的对称轴是x=1,顶点坐标为(1,﹣1),函数与x轴的交点为(0,0)、(2,0),①物线y=ax2+bx+c的开口向下.抛物线开口向上,错误;②抛物线y=ax2+bx+c的对称轴为直线x=﹣1,错误;③方程ax2+bx+c=0的根为0和2,正确;④当y>0时,x的取值范围是x<0或x>2,正确.故选:D.8.【解答】解:根据画出的函数的图象,C符合,故选:C.二、填空题(本题共16分,每小题2分)9.【解答】解:根据中心对称的性质,得点P(2,﹣3)关于原点的对称点P′的坐标是(﹣2,3).故答案为:(﹣2,3).10.【解答】解:∵点A(新人教版九年级第一学期期中模拟数学试卷(答案)一、选择题(共30分,每小题3分)1.某反比例函数的图象经过点(﹣2,3),则此函数图象也经过点()A.(2,﹣3)B.(﹣3,﹣3)C.(2,3)D.(﹣4,6)2.如图,△ABC中,DE∥BC,=,AE=2cm,则AC的长是()A.2cm B.4cm C.6cm D.8cm3.已知1是关于x的一元二次方程(m﹣1)x2+x+1=0的一个根,则m的值是()A.1 B.﹣1 C.0 D.无法确定4.右面的三视图对应的物体是()A.B.C.D.5.若点(﹣2,y1),(﹣1,y2),(3,y3)在双曲线y=(k<0)上,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y26.已知△ABC∽△DEF,S△ABC:S△DEF=9,且△ABC的周长为18,则△DEF的周长为()A.2 B.3 C.6 D.547.在一个不透明的纸箱中放入m个除颜色外其他都完全相同的球,这些球中有4个红球,每次将球摇匀后任意摸出一个球,记下颜色再放回纸箱中,通过大量的重复摸球实验后发现摸到红球的频率稳定在,因此可以估算出m的值大约是()A.8 B.12 C.16 D.208.如图,在矩形ABCD中,已知AB=3,AD=8,点E为BC的中点,连接AE,EF是∠AEC的平分线,交AD于点F,则FD=()A.3 B.4 C.5 D.69.如图,在正方形ABCD中,E是CD的中点,点F在BC上,且FC=BC.图中相似三角形共有()A.1对B.2对C.3对D.4对10.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,CH⊥AF于点H,那么CH的长是()A.B.C.D.二、填空题(共12分,每小题3分)11.方程x2=x的根是.12.如图,菱形ABCD的面积为8,边AD在x轴上,边BC的中点E在y轴上,反比例函数y=的图象经过顶点B,则k的值为.13.如图,在△ABC中,∠C=90°,AC=8,CB=6,在斜边AB上取一点M,使MB=CB,过M作MN⊥AB交AC于N,则MN=.14.如图,矩形ABCD中,AB=6,MN在边AB上运动,MN=3,AP=2,BQ=5,PM+MN+NQ 最小值是.二、解答题(共11小题,计78分)15.(5分)解方程:2x2﹣2x﹣1=0.16.(5分)如图,AB、CD、EF是与路灯在同一直线上的三个等高的标杆,已知AB、CD在路灯光下的影长分别为BM、DN,在图中作出EF的影长.17.(5分)如图,已知O是坐标原点,A、B的坐标分别为(3,1),(2,﹣1).(1)在y轴的左侧以O为位似中心作△OAB的位似△OCD,使新图与原图的相似比为2:1;(2)分别写出A、B的对应点C、D的坐标.18.(5分)若关于x的一元二次方程(k﹣1)x2﹣(2k﹣2)x﹣3=0有两个相等的实数根,求实数k的值.19.(7分)如图,在Rt△ABC中,∠ACB=90°,点D、E分别是边AB、AC的中点,延长DE至F,使得AF∥CD,连接BF、CF.(1)求证:四边形AFCD是菱形;(2)当AC=4,BC=3时,求BF的长.20.(7分)太原双塔寺又名永祚寺,是国家级文物保护单位,由于双塔(舍利塔、文峰塔)耸立,被人们称为“文笔双塔”,是太原的标志性建筑之一,某校社会实践小组为了测量舍利塔的高度,在地面上的C处垂直于地面竖立了高度为2米的标杆CD,这时地面上的点E,标杆的顶端点D,舍利塔的塔尖点B正好在同一直线上,测得EC=4米,将标杆CD向后平移到点C处,这时地面上的点F,标杆的顶端点H,舍利塔的塔尖点B正好在同一直线上(点F,点G,点E,点C与塔底处的点A在同一直线上),这时测得FG=6米,GC=53米.请你根据以上数据,计算舍利塔的高度AB.21.(7分)某花圃用花盆培育某种花苗,经过实验发现每盆的盈利与每盆的株数构成一定的关系.每盆植入3株时,平均单株盈利4元;以同样的栽培条件,若每盆每增加1株,平均单株盈利就减少0.5元.要使每盆的盈利达到14元,且尽可能地减少成本,每盆应该植多少株?22.(7分)如图①,▱OABC的边OC在x轴的正半轴上,OC=5,反比例函数y=(x>0)的图象经过点A(1,4).(1)求反比例函数的关系式和点B的坐标;(2)如图②,过BC的中点D作DP∥x轴交反比例函数图象于点P,连接AP、OP,求△AOP的面积;23.(8分)小红有青、白、黄、黑四件衬衫,又有米色、白色、蓝色三条裙子,她最喜欢的搭配是白色衬衫配米色裙子,最不喜欢青色衬衫配蓝色裙子或者黑色衬衫配蓝色裙子.(1)黑暗中,她随机拿出一套衣服正是她最喜欢的搭配的概率是多少?(2)黑暗中,她随机拿出一套衣服正是她最喜欢的搭配,这样的巧合发生的机会与黑暗中她随机拿出一套衣服正是她最不喜欢的搭配的机会是否相等?画树状图加以分析说明.24.(10分)如图,已知在△ABC中,∠BAC=2∠B,AD平分∠BAC,DF∥BE,点E在线段BA的延长线上,联结DE,交AC于点G,且∠E=∠C.(1)求证:AD2=AF•AB;(2)求证:AD•BE=DE•AB.25.(12分)如图,已知矩形ABCD,AD=4,CD=10,P是AB上一动点,M、N、E分别是PD、PC、CD的中点.(1)求证:四边形PMEN是平行四边形;(2)请直接写出当AP为何值时,四边形PMEN是菱形;(3)四边形PMEN有可能是矩形吗?若有可能,求出AP的长;若不可能,请说明理由.参考答案一、选择题1.某反比例函数的图象经过点(﹣2,3),则此函数图象也经过点()A.(2,﹣3)B.(﹣3,﹣3)C.(2,3)D.(﹣4,6)【分析】将(﹣2,3)代入y=即可求出k的值,再根据k=xy解答即可.解:设反比例函数解析式为y=,将点(﹣2,3)代入解析式得k=﹣2×3=﹣6,符合题意的点只有点A:k=2×(﹣3)=﹣6.故选:A.【点评】本题考查了反比例函数图象上点的坐标特征,只要点在函数的图象上,则一定满足函数的解析式.反之,只要满足函数解析式就一定在函数的图象上.2.如图,△ABC中,DE∥BC,=,AE=2cm,则AC的长是()A.2cm B.4cm C.6cm D.8cm【分析】根据平行线分线段成比例定理得出=,代入求出即可.解:∵DE∥BC,∴=,∵,AE=2cm,∴=,∴AC=6(cm),故选:C.【点评】本题考查了平行线分线段成比例定理的应用,注意:一组平行线截两条直线,所截的线段对应成比例.3.已知1是关于x的一元二次方程(m﹣1)x2+x+1=0的一个根,则m的值是()A.1 B.﹣1 C.0 D.无法确定【分析】把x=1代入方程,即可得到一个关于m的方程,即可求解.解:根据题意得:(m﹣1)+1+1=0,解得:m=﹣1.故选:B.【点评】本题主要考查了方程的解的定义,正确理解定义是关键.4.右面的三视图对应的物体是()A.B.C.D.【分析】因为主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.所以可按以上定义逐项分析即可.解:从俯视图可以看出直观图的下面部分为三个长方体,且三个长方体的宽度相同.只有D 满足这两点,故选:D.【点评】本题主要考查学生对图形的三视图的了解及学生的空间想象能力.5.若点(﹣2,y1),(﹣1,y2),(3,y3)在双曲线y=(k<0)上,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y2【分析】先分清各点所在的象限,再利用各自的象限内利用反比例函数的增减性解决问题.解:∵点(﹣2,y1),(﹣1,y2),(3,y3)在双曲线y=(k<0)上,∴(﹣2,y1),(﹣1,y2)分布在第二象限,(3,y3)在第四象限,每个象限内,y随x的增大而增大,∴y3<y1<y2.故选:D.【点评】此题主要考查了反比例函数的性质,正确掌握反比例函数增减性是解题关键,注意:反比例函数的增减性要在各自的象限内.6.已知△ABC∽△DEF,S△ABC:S△DEF=9,且△ABC的周长为18,则△DEF的周长为()A.2 B.3 C.6 D.54【分析】由△ABC∽△DEF,S△ABC:S△DEF=9,根据相似三角形的面积比等于相似比的平方,即可求得△ABC与△DEF的相似比,又由相似三角形的周长的比等于相似比,即可求得△ABC与△DEF的周长比为:3:1,又由△ABC的周长为18厘米,即可求得△DEF 的周长.解:∵△ABC∽△DEF,S△ABC:S△DEF=9,∴△ABC与△DEF的相似比为:3:1,∴△ABC与△DEF的周长比为:3:1,∵△ABC的周长为18厘米,∴,∴△DEF的周长为6厘米.故选:C.【点评】此题考查了相似三角形的性质.解题的关键是掌握相似三角形的面积比等于相似比的平方与相似三角形的周长的比等于相似比定理的应用.7.在一个不透明的纸箱中放入m个除颜色外其他都完全相同的球,这些球中有4个红球,每次将球摇匀后任意摸出一个球,记下颜色再放回纸箱中,通过大量的重复摸球实验后发现摸到红球的频率稳定在,因此可以估算出m的值大约是()A.8 B.12 C.16 D.20【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出等式解答.解:根据题意得,=,解得,m=20.故选:D.【点评】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.8.如图,在矩形ABCD中,已知AB=3,AD=8,点E为BC的中点,连接AE,EF是∠AEC的平分线,交AD于点F,则FD=()A.3 B.4 C.5 D.6【分析】由矩形的性质和已知条件可求出∠AFE=∠AEF,进而推出AE=AF,求出BE,根据勾股定理求出AE,即可求出AF,即可求出答案.解:∵四边形ABCD是矩形,∴AD=BC=8,AD∥BC,∴∠AFE=∠FEC,∵EF平分∠AEC,∴∠AEF=∠FEC,∴∠AFE=∠AEF,∴AE=AF,∵E为BC中点,BC=8,∴BE=4,在Rt△ABE中,A B=3,BE=4,由勾股定理得:AE=5,∴AF=AE=5,∴DF=AD﹣AF=8﹣5=3,故选:A.【点评】本题考查了矩形性质,勾股定理的运用,平行线性质,等腰三角形的性质和判定的应用,注意:矩形的对边相等且平行是解题的关键.9.如图,在正方形ABCD中,E是CD的中点,点F在BC上,且FC=BC.图中相似三角形共有()A.1对B.2对C.3对D.4对【分析】首先由四边形ABCD是正方形,得出∠D=∠C=90°,AD=DC=CB,又由DE =CE,FC=BC,证出△ADE∽△ECF,然后根据相似三角形的对应边成比例与相似三角形的对应角相等,证明出△AEF∽△ADE,则可得△AEF∽△ADE∽△ECF,进而可得出结论.解:图中相似三角形共有3对.理由如下:∵四边形ABCD是正方形,∴∠D=∠C=90°,AD=DC=CB,∵DE=CE,FC=BC,∴DE:CF=AD:EC=2:1,∴△ADE∽△ECF,∴AE:EF=AD:EC,∠DAE=∠CEF,∴AE:EF=AD:DE,即AD:AE=DE:EF,∵∠DAE+∠AED=90°,∴∠CEF+∠AED=90°,∴∠AEF=90°,∴∠D=∠AEF,∴△ADE∽△AEF,∴△AEF∽△ADE∽△ECF,即△ADE∽△ECF,△ADE∽△AEF,△AEF∽△ECF.故选:C.【点评】此题考查了相似三角形的判定与性质,以及正方形的性质.此题难度适中,解题的关键是证明△ECF∽△ADE,在此基础上可证△AEF∽△ADE.10.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,CH⊥AF于点H,那么CH的长是()A.B.C.D.【分析】AF交GC于点K.根据△ADK∽△FGK,求出KF的长,再根据△CHK∽△FGK,求出CH的长.解:∵CD=BC=1,∴GD=3﹣1=2,∵△ADK∽△FGK,∴,即,∴DK=DG,∴DK=2×=,GK=2×=,∴KF=,∵△CHK∽△FGK,∴,∴,∴CH=.方法二:连接AC、CF,利用面积法:CH=;故选:A.【点评】本题考查了勾股定理,利用勾股定理求出三角形的边长,再构造相似三角形是解题的关键.二、填空题(共12分,每小题3分)11.方程x2=x的根是x 1=0,x2=.【分析】方程整理后,利用因式分解法求出解即可.解:方程整理得:x(x﹣)=0,可得x=0或x﹣=0,解得:x 1=0,x2=.故答案为:x 1=0,x2=【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.12.如图,菱形ABCD的面积为8,边AD在x轴上,边BC的中点E在y轴上,反比例函数y=的图象经过顶点B,则k的值为 4 .【分析】在Rt△AEB中,由∠AEB=90°,AB=2BE,推出∠EAB=30°,设BE=a,则AB=2a,由题意2a×a=8,推出a2=,可得k=a2=4.解:在Rt△AEB中,∵∠AEB=90°,AB=2BE,∴∠EAB=30°,设BE=a,则AB=2a,OE=a,由题意2a×a=8,∴a2=,∴k=a2=4,故答案为4.【点评】本题考查反比例函数系数的几何意义、菱形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.13.如图,在△ABC中,∠C=90°,AC=8,CB=6,在斜边AB上取一点M,使MB=CB,过M作MN⊥AB交AC于N,则MN= 3 .【分析】首先证明△ACB∽△AMN,可得AC:CB=AM:MN,代入数值求解即可.解:∵∠C=∠AMN=90°,∠A为△ACB和△AMN的公共角,∴△ACB∽△AMN,∴AC:CB=AM:MN,在直角△ABC中,由勾股定理得AB2=AC2+BC2,即AB=10;又∵AC=8,CB=6,AM=AB﹣6=4,∴=,即MN=3.【点评】本题主要考查相似三角形的判定和性质,涉及到勾股定理的运用.14.如图,矩形ABCD中,AB=6,MN在边AB上运动,MN=3,AP=2,BQ=5,PM+MN+NQ 最小值是3+.【分析】作QQ′∥AB,使得QQ′=MN=3,作点Q′关于直线AB的对称点Q″,连接PQ″交AB于M,此时PM+MN+NQ的值最小.作Q″H⊥DA于H.利用勾股定理求出PQ″即可解决问题;解:作QQ′∥AB,使得QQ′=MN=3,作点Q′关于直线AB的对称点Q″,连接PQ″交AB于M,此时PM+MN+NQ的值最小.作Q″H⊥DA于H.在Rt△PHQ″中,PQ″==,∴PM+MN+NQ的最小值=3+.故答案为3+.【点评】本题考查轴对称﹣最短问题,矩形的性质等知识,解题的关键是正确寻找PM+MN+NQ最小时点M的位置,属于中考常考题型.二、解答题(共11小题,计78分)15.(5分)解方程:2x2﹣2x﹣1=0.【分析】此题可以采用配方法和公式法,解题时要正确理解运用每种方法的步骤.解法一:原式可以变形为,,,∴,∴,.解法二:a=2,b=﹣2,c=﹣1,∴b2﹣4ac=12,∴x==,∴x1=,x2=.【点评】公式法和配方法适用于任何一元二次方程,解题时要细心.16.(5分)如图,AB、CD、EF是与路灯在同一直线上的三个等高的标杆,已知AB、CD 在路灯光下的影长分别为BM、DN,在图中作出EF的影长.【分析】直接利用已知路灯的影子得出灯的位置,进而得出EF的影长.解:如图所示:【点评】此题主要考查了中心投影,正确得出灯的位置是解题关键.17.(5分)如图,已知O是坐标原点,A、B的坐标分别为(3,1),(2,﹣1).(1)在y轴的左侧以O为位似中心作△OAB的位似△OCD,使新图与原图的相似比为2:1;(2)分别写出A、B的对应点C、D的坐标.【分析】(1)利用位似图形的性质得出C,D两点坐标在A,B坐标的基础上,同乘以﹣2,进而得出坐标画出图形即可;(2)利用位似图形的性质得出C,D点坐标.解:(1)如图所示:;(2)如图所示:D(﹣4,2),C(﹣6,﹣2).【点评】此题主要考查了位似变换,得出对应点坐标是解题关键.18.(5分)若关于x的一元二次方程(k﹣1)x2﹣(2k﹣2)x﹣3=0有两个相等的实数根,求实数k的值.【分析】由二次项系数非零及根的判别式△=0,即可得出关于k的一元一次不等式及一元二次方程,解之即可得出结论.解:∵关于x的一元二次方程(k﹣1)x2﹣(2k﹣2)x﹣3=0有两个相等的实数根,∴,解得:k=﹣2.【点评】本题考查了根的判别式以及一元二次方程的定义,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.19.(7分)如图,在Rt△ABC中,∠ACB=90°,点D、E分别是边AB、AC的中点,延长DE至F,使得AF∥CD,连接BF、CF.(1)求证:四边形AFCD是菱形;(2)当AC=4,BC=3时,求BF的长.【分析】(1)根据邻边相等的平行四边形是菱形即可证明;(2)如图,作FH⊥BC交BC的延长线于H.在Rt△BFH中,根据勾股定理计算即可.(1)证明:∵AF∥CD,∴∠EAF=∠ECD,∵E是AC中点,∴AE=EC,在△AEF和△CED中,,∴△AEF≌△CED,∴AF=CD,∴四边形AFCD是平行四边形,∵∠ACB=90°,AD=DB,∴CD=AD=BD,∴四边形AFCD是菱形.(2)解:如图,作FH⊥BC交BC的延长线于H.∵四边形AFCD是菱形,∴AC⊥DF,EF=DE=BC=,∴∠H=∠ECH=∠CEF=90°,∴四边形FHCE是矩形,∴FH=EC=2,EF=CH=,BH=CH+BC=,在Rt△BHF中,BF==.【点评】本题考查菱形的判定和性质、三角形的中位线定理、直角三角形斜边中线的性质、矩形的判定和性质、勾股定理、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造直角三角形解决问题.20.(7分)太原双塔寺又名永祚寺,是国家级文物保护单位,由于双塔(舍利塔、文峰塔)耸立,被人们称为“文笔双塔”,是太原的标志性建筑之一,某校社会实践小组为了测量舍利塔的高度,在地面上的C处垂直于地面竖立了高度为2米的标杆CD,这时地面上的点E,标杆的顶端点D,舍利塔的塔尖点B正好在同一直线上,测得EC=4米,将标杆CD向后平移到点C处,这时地面上的点F,标杆的顶端点H,舍利塔的塔尖点B正好在同一直线上(点F,点G,点E,点C与塔底处的点A在同一直线上),这时测得FG=6米,GC=53米.请你根据以上数据,计算舍利塔的高度AB.【分析】易知△EDC∽△EBA,△FHG∽△FBA,可得=,=,因为DC=HG,推出=,列出方程求出CA=106(米),由=,可得=,由此即可解决问题.解:∵△EDC∽△EBA,△FHG∽△FBA,∴=,=,∵DC=HG,∴=,∴=,∴CA=106(米),∵=,∴=,∴AB=55(米),答:舍利塔的高度AB为55米.【点评】本题考查解直角三角形的应用、相似三角形的判定和性质,解题的关键是灵活运用所学知识解决问题,学会构建方程解决问题,属于中考常考题型.21.(7分)某花圃用花盆培育某种花苗,经过实验发现每盆的盈利与每盆的株数构成一定的关系.每盆植入3株时,平均单株盈利4元;以同样的栽培条件,若每盆每增加1株,平均单株盈利就减少0.5元.要使每盆的盈利达到14元,且尽可能地减少成本,每盆应该植多少株?【分析】根据已知假设每盆花苗增加x株,则每盆花苗有(x+3)株,得出平均单株盈利为(4﹣0.5x)元,由题意得(x+3)(4﹣0.5x)=14求出即可.解:设每盆应该多植x株,由题意得(3+x)(4﹣0.5x)=14,解得:x1=1,x2=4.因为要且尽可能地减少成本,所以x2=4舍去,x+3=4.答:每盆植4株时,每盆的盈利14元.【点评】此题考查了一元二次方程的应用,根据每盆花苗株数×平均单株盈利=总盈利得出方程是解题关键.22.(7分)如图①,▱OABC的边OC在x轴的正半轴上,OC=5,反比例函数y=(x>0)的图象经过点A(1,4).(1)求反比例函数的关系式和点B的坐标;(2)如图②,过BC的中点D作DP∥x轴交反比例函数图象于点P,连接AP、OP,求△AOP的面积;【分析】(1)由点A的坐标利用反比例函数图象上点的坐标特征即可求出反比例函数关系式,再根据平行四边形的性质结合点A、O、C的坐标即可求出点B的坐标;(2)延长DP交OA于点E,由点D为线段BC的中点,可求出点D的坐标,再令反比例函数关系式中y=2求出x值即可得出点P的坐标,由此即可得出PD、EP的长度,根据三角形的面积公式即可得出结论.解:(1)∵反比例函数y=(x>0)的图象经过点A(1,4).∴m=1×4=4,∴反比例函数的关系式为y=(x>0).∵四边形OABC为平行四边形,且点O(0,0),OC=5,点A(1,4),∴点C(5,0),∴点B(6,4).(2)延长DP交OA于点E,如图②所示.∵点D为线段BC的中点,点C(5,0)、B(6,4),∴点D(,2).令y=中y=2,则x=2,∴点P(2,2),∴PD=﹣2=,EP=ED﹣PD=,∴S△AOP=EP•(y A﹣y O)=××(4﹣0)=3.【点评】本题考查了反比例函数图象上点的坐标特征、三角形的面积公式、平行四边形的性质,解题的关键是:根据反比例函数图象上点的坐标特征求出反比例函数解析式.23.(8分)小红有青、白、黄、黑四件衬衫,又有米色、白色、蓝色三条裙子,她最喜欢的搭配是白色衬衫配米色裙子,最不喜欢青色衬衫配蓝色裙子或者黑色衬衫配蓝色裙子.(1)黑暗中,她随机拿出一套衣服正是她最喜欢的搭配的概率是多少?(2)黑暗中,她随机拿出一套衣服正是她最喜欢的搭配,这样的巧合发生的机会与黑暗中她随机拿出一套衣服正是她最不喜欢的搭配的机会是否相等?画树状图加以分析说明.【分析】(1)列举出所有情况,看白色衬衫配米色裙子的总数即可得出答案;(2)列举出青色衬衫配蓝色裙子或者黑色衬衫配蓝色裙子的情况数占所有情况数的多少即可.解:(1)共有8种情况,白色衬衫米色裙子的情况数有1种,所以他最喜欢的搭配的概率为;(2)青色衬衫配蓝色裙子或者黑色衬衫配蓝色裙子的情况数有2种,所以他最不喜欢的搭配的概率为,故她随机拿出一套衣服正是她最喜欢的搭配,这样的巧合发生的机会与黑暗中她随机拿出一套衣服正是她最不喜欢的搭配的机会不相等.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.24.(10分)如图,已知在△ABC中,∠BAC=2∠B,AD平分∠BAC,DF∥BE,点E在线段BA的延长线上,联结DE,交AC于点G,且∠E=∠C.(1)求证:AD2=AF•AB;(2)求证:AD•BE=DE•AB.。
江苏省南京市秦淮区九年级数学上学期期中试题(含解析) 新人教版-新人教版初中九年级全册数学试题

某某省某某市秦淮区2016届九年级数学上学期期中试题一、选择题:本大题共6小题,每小题2分,共12分。
在每小题给出的四个选项中,恰好有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卷相应位置上。
1.一组数据4、1、3、2、﹣1的极差是( )A.5 B.4 C.3 D.22.甲、乙、丙、丁四人参加训练,近期的10次百米测试平均成绩都是13.2秒,方差如表选手甲乙丙丁方差(秒2)则这四人中发挥最稳定的是( )A.甲B.乙C.丙D.丁3.设x1、x2是一元二次方程3x2﹣8x+5=0的两个根,则x1+x2的值是( )A.B.﹣C.﹣D.4.如图,AB是半圆的直径,点D是的中点,∠ABC=50°,则∠DAB等于( )A.55° B.60° C.65° D.70°5.已知圆锥的母线长为5cm,底面半径为3cm,则此圆锥的侧面积为( )A.12πcm2B.15πcm2C.20πcm2D.30πcm26.如图,AD、BC是⊙O的两条互相垂直的直径,点P从O点出发,沿0CDO的路线匀速运动,设点P运动的时间为x(单位:秒),∠APB=y(单位:度),那么表示y与x之间关系的图象是( )A.B.C.D.二、填空题:本大题共10小题,每小题2分,共20分。
不需写出解答过程,请把答案直接填写在答题卷相应位置上。
7.已知关于x的一元二次方程x2﹣x+k=2的一个根是1,则k=__________.8.将方程x2﹣2x﹣5=0化为(x+h)2=k的形式为__________.9.(1999•某某)已知扇形的圆心角为150°,弧长为20π厘米,则这个扇形的半径为__________厘米.10.已知一元二次方程x2﹣8x+12=0的两个根恰好是等腰三角形ABC的两条边长,则△ABC 的周长为__________.11.某市2015年1月上旬每天的最低气温如图所示(单位:℃),则3日~7日这5天该市最低气温的平均数为__________℃.12.某商品经过两次降价,零售价降为原来的一半.若设平均每次降价的百分率为x,则可列方程为__________.13.如图,⊙O的直径AB=12,CD是⊙O的弦,CD⊥AB,垂足为P,且BP:AP=1:5,则CD 的长为__________.14.某公司欲招聘一名公关人员,对甲、乙、丙三位候选人进行了面试和笔试,他们的成绩如下(单位:分):公司认为,作为公关人员面试的成绩比笔试的成绩更重要,所以面试和笔试的成绩按6:4计算,那么根据三人各自的平均成绩,公司将录取__________.候选人甲乙丙测试成绩面试86 92笔试90 83 83 15.如图,正八边形的边长为2,则图中阴影部分的面积为__________.16.如图,△ABC中,已知AB=8,BC=5,AC=7,则它的内切圆的半径为__________.三、解答题:本大题共11小题,共88分。
江苏省南京市玄武区2016届九年级上学期期中考试数学答案

角度 2:因为(1)班成绩的中位数比(2)班高,所以(1)班的成绩比(2)班好 角度 3:因为(2)班 A 级人数比(1)班多,所以(2)班成绩的优秀水平比(1)班高 角度 4:因为(1)班成绩的 A、B 级人数比(2)班多,所以(1)班成绩的优良水平比(2)班高 21. (本题 8 分) 解: (1)如图 1,点 A、B 即为所求…………4 分 (2)如图 2,点 A、B 即为所求…………8 分
…………1 分 …………3 分
…………4 分 …………6 分 …………7 分
…………8 分
k1=- , b1=60, 5 ∴ 解得 75k1+b1=45.
1
b1=60.
1 ∴每万台生产成本y1 与产量 x 的函数关系式为 y1=- x+60(0≤x≤75) 5
…………2 分
第 3 页 共 4 页
第 4 页 共 4 页
…………5 分 …………6 分
…………7 分 …………8 分
…………2 分 …………3 分
…………5 分 …………6 分 …………8 分
第 2 页 共 4 页
24. (本题 8 分) 解: (1)如图,即为所求; …………4 分 (2)证明一:连结 DE ∵在 Rt△ABC 中,∠ACB=90° ∴∠ACE=90° 又∵点 A、C、D、E 在⊙O 上 ∴∠ADE=∠ACE=90° ∴∠ADE=∠BDE=90° 又∵CD 是 AB 上的中线 ∴AD=BD 又∵DE 是公共边 ∴△ADE≌△BDE ∴AE=BE 证明二:连结 OD ∵在 Rt△ABC 中,∠ACB=90° 又∵点 A、C、D、E 在⊙O 上 ∴弦 AE 是⊙O 的直径,AE=2OD 又∵CD 是 AB 上的中线 ∴点 D 是 AB 的中点 又∵点 O 是 AE 的中点 ∴在△ABE 中,BE=2OD ∴AE=BE
汇文2015-2016年度第一学期12月测试卷初三数学
2015-2016年度第一学期12月测试卷初三数学 (满分:120分,考试时间:120分钟) 一.选择题(每题2分,共12分)1.一元二次方程220x -=根的情况是()A.有两个不相等实数根B.有两个相等实数根C.无实数根D.无法确定 2.若二次函数2y ax =的图象经过点()2,4P -,则该图象必经过点() A.()2,4 B.()2,4-- C.()4,2- D.()4,2-3.在平面直角坐标系中作出二次函数226y x x =--的图象,有图象可知,方程2260x x --=由两个根;一个根在2-和1-之间,另一个跟在3和4之间,利用计算器进行探索:由下表知,方程的一个近似根4.为了帮助本市一名患“白血病”的高中生,某班15名同学积极捐款,他们捐款数额如下表:关于这15名中位数是205.如图,在平面直角坐标系中,过格点A ,B ,C 作一圆弧,点B 与下列格点的连线中,能够与该圆弧相切的是()A.点()0,3B.点()2,3C.点()5,1D.点()6,16.为了说明命题:“当0b <时,关于x 的一元二次方程220x bx ++=必有实数解”是假命题,可以举的一个反例是()A.2b =B.3b =C.2b =-3b =- 二.填空题(每空2分,共22分)7.已知1x ,2x 是方程2240x x --=的两个根,则1212x x x x+-=_____. 8.写出一个图像开口向上,对称轴是直线1x =的二次函数为______.9.在一个不透明的盒子中装有4个白球,n 个黄球,它们除颜色不同外,其余均相同,从中随机摸出一个球,若摸出白球的概率为23,则n 的值应为______.10.如图,C 为O 的劣弧AB 上一点,若124AOB ∠=︒,则C ∠=_____︒.11.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径20cm r =,则该圆锥的母线长l 为6cm ,扇形的圆心角θ=______︒.12.在如图所示平面直角坐标系中,桥孔抛物线对应的二次函数关系式是213y x =-当水位由AB 上涨1m到CD 时,水面宽为,则桥下的水面宽AB 为_____m .13.如图是把T 字形木工尺,AD 垂直平分BC ,40cm AD BC ==,过A 、B 、C 三点的圆的半径是____cm .ACDB14.若二次函数2y ax bx c =++的与y 的部分对应值如下表: ①当3ax bx c ++>-时,x 的取值范围是_______; ②当40x -<<时,y 的取值范围是______. 15.如图,将半径为3的圆形纸片,按下列顺序折叠.若AB 和BC 都经过圆心O ,则阴影部分的面积是____.(结果保留π).16.某数学兴趣小组研究二次函数()212302y ax ax a =-++≠的图像发现,随着a 的变化,这个二次函数的图象形状与位置均发生变化,但这个二次函数的图象总经过两个定点,请你写出这两个定点的坐标:_________. 三.解答题:(本大题共86分) 17.(8分)解方程:(1)2410x x +-= (2)()233x x x -=-18.(8分)为了从甲、乙两人中选拔一人参加射击比赛,现对他们的射击成绩进行了测试,5次打靶命中的环数如下:甲:8,7,10,7,8;乙:9,5,10,9,7 (3)若乙再射击一次,命中8环,则乙这六次射击成绩的方差会______.(填“变大”或“变小”或“不变”) 19.(8分)已知二次函数2y x bx c =++的图像与x 轴交于A 、B 两点,其中点A 的坐标为()1,0,且A 、B 间的距离为4.(1)求二次函数的表达式及顶点坐标;(2)请设计一种平移方法,使(1)中的二次函数图像的顶点在一次函数y x =的图像上,并直接写出平移后相应的二次函数的关系式.20.(8分)甲、乙、丙3人聚会,每人带了一件从外盒包装上看完全相同的礼物(里面的东西只有颜色不同),将3件礼物放在一起,每人从中随机抽取一件. (1)下列事件发生的可能性最大的是().A.乙抽到甲带来的礼物B.乙恰好抽到自己带来的礼物C.乙抽到丙带来的礼物D.乙没有抽到自己带来的礼物(2)甲、乙、丙3人抽到的都不是自己带来的礼物(记为事件A ),请列出事件A 的所有可能的结果,并求事件A 的概率.21.(8分)关于x 的函数为()2221y m x x =-+-.(1)求证:不论m 为何值,该函数的图像都经过y 轴上一定点; (2)当m 取何值时,该函数的图象与x轴只有一个交点?22.(8分)如图,已知ABC △内接于O ,点D 在OC 的延长线上,ABC CAD ∠=∠. (1)若40ABC ∠=︒,则OCA ∠的度数为_______︒; (2)判断直线AD 与O 的位置关系,并说明理由;B23.(9分)如图,正方形ABCD 的边长为3cm ,动点P 从B 点出发以3cm/s 的速度沿着边BC CD DA →→运动,到达A 点停止运动;另一动点Q 同时从B 点出发,以1cm/s 的速度沿着边BA 向A 点运动,到达A 点停止运动,设P 点运动时间为()s x ,BPQ △的面积为()2cm y ,(1)求y 与x 的函数表达式;(2)运动时间x 为何值时,BPQ △的面积等于22cm ?24.(9分)某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨x 元,(x 为正整数....),每个月的销售利润为y 元.(1)求y 与x 的函数关系式,并直接写出自变量x 的取值范围; (2)若每个月的利润为2200元,求每件商品的售价应定为多少元?(3)每件商品的售价定为多少元时,每个月可获得最大利润?最大利润是多少元?25.(9元)某人利用一段旧直墙MN 与长为32m 的篱笆共同围成一个外形为矩形的花圃.已知原旧直墙MN 的最大可利用长度为8m ,求围成的花圃的最大面积.26.(11分)提出问题:对于实数a ,b ,我们可以用{}max ,a b 表示a ,b 两树中较大的数,如{}max 3,13-=.类似地,设函数1y 、2y 都是x 的函数,我们可以用{}12max ,y y y =表示对同一个自变量x ,函数值较大的函数,此时称{}12max ,y y y =是函数1y 和2y 的“取大函数”.当函数1y 、2y 的自变量范围不一致时,则以它们自变量范围的公共部分为自变量范围. 理解概念:(1)设1y x =,21y x =,则函数1max ,y x x ⎧⎫=⎨⎬⎩⎭的图象应该是_______中的实线部分.PQDCBAMNNMA BC D(2)取大函数21max ,y x x ⎧⎫=--⎨⎬⎩⎭的函数值y 的取值范围是_____.探索性质:(3)画出函数()(){}22max 2,2y x x =---+的图象③观察图象,任意写出该图象的两条性质:______;_______. 运用性质:(4)若函数(){}22max 2,y x a x t =--的图象关于直线3x =对称,其中0a <,则a t +=_____.。
江苏省南京市汇文中学2016届九年级上学期期中考试数学试题解析(解析版)
汇文中学2015-2016学年第一学期期中检测九年级数学试卷一、选择题(各题所给答案中,只有一个答案是正确的,每小题3分,共18分)1.方程2x2=x的根为( )A.x=12B.x=0 C.x1=2,x2=0 D.x=12或x=02.我校男子足球队22名队员的年龄如下表所示:这些队员年龄的众数和中位数分别是( )A.18,17 B.17,18 C.18,17.5 D.17.5,18【答案】A.【解析】试题解析:18出现的次数最多,18是众数.第11和第12个数分别是17、17,所以中位数为17.故选A.考点:中位数.3.下列命题中,是真命题的是( )A.三点确定一个圆 B.长度相等的弧是等弧C.圆周角等于圆心角的一半 D.正七边形有七条对称轴【答案】D.【解析】试题解析:A、错误,不在同一直线上的三点确定一个圆;B、错误,能够重合的弧是等弧;C、错误,同弧或等弧所对的圆周角等于圆心角的一半;D、正确.故选D.考点:命题与定理.4.已知⊙O的直径为8,直线l上有一点M,满足OM=4,则直线l与⊙O的位置关系是( )A.相交 B.相离或相交C.相离或相切D.相交或相切【答案】D.【解析】试题解析:∵⊙O的直径为8,∴半径为4,∵OM=4,当OM垂直于直线l时,即圆心O到直线l的距离d=4=r,⊙O与l相切;当OM不垂直于直线l时,即圆心O到直线l的距离d<4=r,⊙O与直线l相交.故直线l与⊙O的位置关系是相切或相交.故选D.考点:直线与圆的位置关系.5.如图,在△ABC中,AB=10,AC=8,BC=6,经过点C且与边AB相切的动圆与CB,CA分别相交于点E,F,则线段EF长度的最小值是( )A. B.4.75 C.5 D.4.8【答案】D.【解析】试题解析:如图,∵∠ACB=90°,∴EF是直径,设EF的中点为O,圆O与AB的切点为D,连接OD,CO,CD,则OD⊥AB.∵AB=10,AC=8,BC=6,∴∠ACB=90°,∴EF为直径,OC+OD=EF,∴CO+OD>CD,∵当点O在直角三角形ABC的斜边AB的高上CD时,EF=CD有最小值∴由三角形面积公式得:CD=BC•AC÷AB=4.8.故选D.考点:1.切线的性质;2.勾股定理的逆定理;3.圆周角定理.6.如图已知四边形ABCD是⊙O的内接四边形,且AB=CD=5,AC=7,BE=3,下列命题:①△AED∽△BEC ②∠AEB=90°③∠BDA=45° ④图中全等的三角形共有3对.其中正确的命题有( )个.A.1 B.2 C.3 D.4【答案】D.【解析】试题解析:①根据圆周角的推论,可得到:∠ADE=∠BCE,∠DAE=∠CBE,则△AED∽△BED,正确;②由上面的分析可知,BE=CE=3,AB=5,AE=AC-CE=4,根据勾股定理的逆定理,△ABE为直角三角形,即∠AEB=90°,正确;③∵AE=DE,∴∠EAD=∠EDA=45°,正确;④从已知条件不难得到△ABE≌△DCE、△ABC≌△DCB、△ABD≌△DCA共3对,正确.其中正确的命题有4个;故选D.考点:命题与定理.二、填空题(每题3分,共30分)7.若a是方程x2-2x-1=0的解,则代数式2a2-4a+2011的值为.8.已知三角形三边长分别为1cm cm cm,则此三角形的外接圆半径为 cm..【解析】试题解析:∵三角形的三条边长分别为1cm cm,12+)2=)2,cm为斜边的直角三角形,(cm).考点:1.三角形的外接圆与外心;2.勾股定理的逆定理.9.如图,⊙O是△ABC的内切圆,切点分别为D、E、F,点M是⊙O上一点,∠EMF=55°,则∠A=.【答案】70°.【解析】试题解析:连接OF,OE,∵⊙O是△ABC的内切圆,切点分别为D、E、F,∴∠AEO=∠AFO=90°,∵∠EMF=55°,∴∠EOF=110°,∴∠A=180°-110°=70°.考点:三角形的内切圆与内心.10.一组数据1,2,x,0,-1的极差为3,则整数x的值是.【答案】2或-1.【解析】试题解析:当x是最大值,则x-(-1)=3,所以x=2;当x是最小值,则2-x=3,所以x=-1;所以x的值为2或-1.考点:极差.11.已知圆锥的高为4cm,底面半径为3cm,则它的表面积为 cm2(结果保留π).【答案】15π.【解析】试题解析:由勾股定理知:圆锥母线长=5cm,则圆锥侧面积=12×6π×5=15πcm2.考点:圆锥的计算.12.一组数据23,27,20,18,x,12,它们的中位数是21,则x= .【答案】22.【解析】试题解析:这组数据23,27,20,18,x,12,共6个;最中间两个数的平均数是这组数据的中位数.将除x外的五个数从小到大重新排列后为12 18 20 23 27;20这个数总是中间的一个数,由于中位数是21,所以中间还一个是22,即x=22.考点:中位数.13.已知AB、CD是⊙O的两条直径,则四边形ACBD一定是形.【答案】矩.【解析】试题解析:连接AC、BC、BD、AD,∵AB、CD为圆O的直径,∴OA=OB=OC=OD,∴四边形ACBD为矩形.考点:1.圆周角定理;2.矩形的判定.14.若一组数据a1,a2,…,a n的方差是5,则一组新数据2a1,…,2a n的方差是.【答案】20.【解析】试题解析:一组数据a1,a2,…,a n的方差是5,设其平均数为m,方差为n,即n=5;则一组新数据2a1,2a2,…,2a n的平均数是2m,方差是S2=4n2=20.考点:方差.15.若一个圆锥的侧面积是它底面积的2倍,则这个圆锥的侧面展开图的圆心角是.【答案】180°.【解析】试题解析:设底面圆的半径为r,侧面展开扇形的半径为R,扇形的圆心角为n度.由题意得S底面面积=πr2,l底面周长=2πr,S扇形=2S底面面积=2πr2,l扇形弧长=l底面周长=2πr.由S扇形=12l扇形弧长×R得2πr2=12×2πr×R,故R=2r.由l 扇形弧长=180n rπ得: 2πr=2180n r π⨯解得n=180°. 考点:圆锥的计算.16.如图所示,给出下列条件:①∠B=∠ACD;②∠ADC=∠ACB;③AC AB CD BC=;④AC 2=AD•AB,其中单独能够判定△ABC∽△ACD 的有 .【答案】①②④. 【解析】试题解析:由图可知∠A 为两个要证明相似的三角形的公共角,因此,只要再找出一组对应角相等,或两组对应边成比例即可证明△ABC ∽△ACD . 而①②④分别与∠A 为△ABC 与△ACD 的公共角相结合,均可推出△ABC ∽△ACD . ③中∠A 不是已知的比例线段的夹角,故不正确. 考点:相似三角形的判定.三、解答题17.已知关于x 的一元二次方程x 2-6x+k=0有两个实数根. (1)求k 的取值范围;(2)如果k 取符合条件的最大整数,且一元二次方程x 2-6x+k=0与x 2+mx-1=0有一个相同的根,求常数m 的值.【答案】(1) k≤9;(2) 83-. 【解析】试题分析:(1)根据题意知△=b2-4ac ≥0,从而求出k 的取值;(2)根据题意和(1)知当k=9时,方程有相同的根,然后求出两根,再求m 的值即可. 试题解析:(1)∵b 2-4ac=(-6)2-4×1×k=36-4k≥0 ∴k≤9(2)∵k是符合条件的最大整数且k≤9∴k=9当k=9时,方程x2-6x+9=0的根为x1=x2=3;把x=3代入方程x2+mx-1=0得9+3m-1=0∴m=83 .考点:根的判别式.18.有四张背面图案相同的卡片A、B、C、D,其正面分别画有四个不同的几何图形(如图).小敏将这四张卡片背面朝上洗匀摸出一张,放回洗匀再摸出一张.(1)用树状图(或列表法)表示两次摸出卡片所有可能的结果;(卡片可用A、B、C、D表示)(2)求摸出的两张卡片图形都是中心对称图形的概率.【答案】(1) 所有情况见解析;(2)14.【解析】试题分析:(1)列举出所有情况即可;(2)中心对称图形是绕某点旋转180°后能够和原来的图形完全重合,那么B,D是中心对称图形,看所求的情况占总情况的多少即可.试题解析:(1)树状图:或列表法(2)由图可知:只有卡片B、D才是中心对称图形.所有可能的结果有16种,其中满足摸出的两张卡片图形都是中心对称图形(记为事件A)有4种,即:(B,B)(B,D)(D,B)(D,D).∴P(A)=41 164=.考点:1.列表法与树状图法;2.中心对称图形.19.一次期中考试中,甲、乙、丙、丁、戊五位同学的数学、英语成绩等有关信息如下表所示:(单位:分)(1)求这五位同学在本次考试中数学成绩的平均分和英语成绩的标准差;(2)为了比较不同学科考试成绩的好与差,采用标准分是一个合理的选择,标准分的计算公式:标准分=(个人成绩一平均成绩)÷成绩标准差.从标准分看,标准分大的考试成绩更好,请问甲同学在本次考试中,数学与英语哪个学科考得更好?【答案】)1)70;6;(2)甲同学数学比英语考得更好.【解析】试题分析:由平均数的概念计算平均数,根据标准差是方差的算术平方根计算标准差,根据标准分的计算公式:标准分=(个人成绩一平均成绩)÷成绩标准差,计算数学和英语的标准分,然后比较.试题解析:(1)数学考试成绩的平均分x数学=1(7172696870)70 5++++=,英语考试成绩的标准差S英语6=;(2)设甲同学数学考试成绩标准分为P数学,英语考试成绩标准分为P英语,则P数学=(7170)-=P英语=1 (8885)62-÷=.∵P数学>P英语,∴从标准分来看,甲同学数学比英语考得更好.考点:1.标准差;2.算术平均数.20.如图,AB是⊙O的直径,BC是⊙O的弦,半径OD⊥BC,垂足为E,若BC=,DE=3.求:(1)⊙O的半径;(2)弦AC的长;(3)阴影部分的面积.【答案】(1)6;(2)6;(3)6π【解析】试题分析:(1)半径OD⊥BC,所以由垂径定理知:CE=BE,在直角△OCE中,根据勾股定理就可以求出OC 的值;(2)根据AB是⊙O的直径,得到∠ACB=90°,因而在直角三角形ABC中根据勾股定理得到AC的长;(3)阴影部分的面积就是扇形OCA的面积减去△OAC的面积.试题解析:(1)∵半径OD⊥BC,∴CE=BE,,,设OC=x,在直角三角形OCE中,OC2=CE2+OE2,∴x2=()2+(x-3)2,∴x=6即半径OC=6;(2)∵AB为直径,∴∠ACB=90°,AB=12,∴AC2=AB2-BC2=36,∴AC=6;(3)∵OA=OC=AC=6,∴∠AOC=60°,∴S 阴=S 扇-S △OAC =26061663602π⨯⨯-⨯⨯=6π.考点:1.扇形面积的计算;2.勾股定理;3.垂径定理;4.圆周角定理.21.某商店准备进一批季节性小家电,每个进价为40元,经市场预测,销售定价为50元,可售出400个;定价每增加1元,销售量将减少10个.设每个定价增加x 元.(1)写出售出一个可获得的利润是 元.(用含x 的代数式表示)(2)商店若准备获得利润6000元,并且使进货量较少,则每个定价为多少元?【答案】(1)x+10;(2)每个定价为70元,应进货200个.【解析】试题分析:(1)根据利润=销售价-进价列关系式;(2)总利润=每个的利润×销售量,销售量为400-10x ,列方程求解,根据题意取舍.试题解析:由题意得:(1)50+x-40=x+10(元)(2)设每个定价增加x 元.列出方程为:(x+10)(400-10x )=6000解得:x 1=10 x 2=20要使进货量较少,则每个定价为70元,应进货200个.考点:一元二次方程的应用.22.在平行四边形ABCD 中,过点A 作AE⊥BC,垂足为E ,连接DE ,F 为线段DE 上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC;(2)若AB=4,AE=3,求AF 的长.【答案】(1)证明见解析;(2)【解析】试题分析:(1)△ADF和△DEC中,易知∠ADF=∠CED(平行线的内错角),而∠AFD和∠C是等角的补角,由此可判定两个三角形相似;(2)在Rt△ABE中,由勾股定理易求得BE的长,即可求出EC的值;从而根据相似三角形得出的成比例线段求出AF的长.试题解析:(1)∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠ADF=∠CED,∠B+∠C=180°;∵∠AFE+∠AFD=180°,∠AFE=∠B,∴∠AFD=∠C,∴△ADF∽△DEC;(2)∵CD=AB=4,AE⊥BC,∴AE⊥AD;在Rt△ADE中,6==,∵△ADF∽△DEC,∴AD AF DE CD=;4AF=,解得AF=考点:1.勾股定理;2.平行线的性质;3.平行四边形的性质;4.相似三角形的判定与性质.23.已知,如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D.(1)以AB边上一点O为圆心,过A,D两点作⊙O(不写作法,保留作图痕迹),再判断直线BC与⊙O的位置关系,并说明理由;(2)若(1)中的⊙O与AB边的另一个交点为E,AB=6,BD=,求⊙O的半径.【答案】(1)作图见解析;BC是⊙O的切线.理由见解析;(2)2.【解析】试题分析:(1)根据题意得:O点应该是AD垂直平分线与AB的交点;由∠BAC的角平分线AD交BC边于D,与圆的性质可证得AC∥OD,又由∠C=90°,则问题得证;(2)设⊙O的半径为r.则在Rt△OBD中,利用勾股定理列出关于r的方程,通过解方程即可求得r的值.试题解析:(1)如图1,作AD的垂直平分线交AB于点O,O为圆心,OA为半径作圆.判断结果:BC是⊙O的切线.如图2,连接OD.∵AD平分∠BAC,∴∠DAC=∠DAB∵OA=OD,∴∠ODA=∠DAB∴∠DAC=∠ODA,∴OD∥AC,∴∠ODB=∠C,∵∠C=90°,∴∠ODB=90°,即:OD⊥BC,∵OD是⊙O的半径,∴BC是⊙O的切线.(2)设⊙O的半径为r,则OB=6-r,∵BD=,在Rt△OBD中,OD2+BD2=OB2,即r2+()2=(6-r)2,解得r=2.故⊙O的半径是2.考点:1.作图—复杂作图;2.切线的判定.24.如图,已知点I是△ABC的内心,AI交BC于D,交外接圆O于E,求证:(1)IE=EC;(2)IE2=ED•EA.【答案】(1)证明见解析;(2)证明见解析.【解析】试题分析:(1)由内心的性质可知;∠ACI=∠BCI,∠BAE=∠CAE,由圆周角定理可知∠BCE=∠BAE,从而得到∠CAE+∠ACI=∠ICB+∠BCE,从而得到∠EIC=∠ICE,于是得到IE=EC;(2)先证明DCE∽△CAE,从而可得到CE2=DE•EA,由IE=EC从而得到IE2=DE•EA.试题解析:(1)如图所示;连接IC.∵点I是△ABC的内心,∴∠ACI=∠BCI,∠BAE=∠CAE.又∵∠BAE=∠BCE,∴∠CAE=∠BCE.∴∠CAE+∠ACI=∠ICB+∠BCE.∴∠EIC=∠ICE.∴IE=EC.(2)由(1)可知:∠CAE=∠BCE.又∵∠AEC=∠DEC,∴△DCE∽△CAE.∴CE DE AE CE.∴CE2=DE•EA.∵IE=EC,∴IE2=DE•EA.考点:三角形的内切圆与内心.25.如图,AB是⊙O的弦,D为半径OA的中点,过D作CD⊥OA交弦于点E,交⊙O于点F,且CE=CB.(1)求证:BC是⊙O的切线;(2)连接AF、BF,求∠ABF的度数;(3)如果CD=15,BE=10,sinA=513,求⊙O的半径.【答案】(1)证明见解析;(2)30°;(3)485.【解析】试题分析:(1)连接OB,由圆的半径相等和已知条件证明∠OBC=90°即可证明BC是⊙O的切线;(2)连接OF,AF,BF,首先证明△OAF是等边三角形,再利用圆周角定理:同弧所对的圆周角是所对圆心角的一半即可求出∠ABF的度数;(3)过点C作CG⊥BE于G,根据等腰三角形的性质得到EG=12BE=5,由于∠ADE=∠CGE=90°,∠AED=∠GEC,得到∠GCE=∠A,△ADE∽△CGE,于是得到sin∠ECG=sin∠A=513,在R t ECG中求得,根据三角形相似得到比例式AD DECG GE=,代入数据即可得到结果.试题解析:(1)连接OB∵OB=OA,CE=CB,∴∠A=∠OBA,∠CEB=∠ABC又∵CD⊥OA∴∠A+∠AED=∠A+∠CEB=90°∴∠OBA+∠ABC=90°∴OB⊥BC∴BC是⊙O的切线.(2)如图1,连接OF,AF,BF,∵DA=DO,CD⊥OA,∴AF=OF,∵OA=OF,∴△OAF是等边三角形,∴∠AOF=60°∴∠ABF=12∠AOF=30°;(3)如图2,过点C作CG⊥BE于G,∵CE=CB,∴EG=12BE=5,∵∠ADE=∠CGE=90°,∠AED=∠GEC,∴∠GCE=∠A,∴△ADE∽△CGE,∴sin∠ECG=sin∠A=5 13,在R t ECG中,=12,∵CD=15,CE=13,∴DE=2,∵△ADE∽△CGE,∴AD DE CG GE=,∴AD=DEGE,CG=245,∴⊙O的半径OA=2AD=48 5.考点:1.切线的判定;2.相似三角形的判定与性质.26.如图△ABC与△DEA是两个全等的等腰直角三角形,∠BAC=∠D=90°,△DEA 绕点A旋转,边AD、AE 与BC分别与AD、AE相交于点F、G,CB=5.回答下列问题:(1)求证:△GAF∽△GBA;(2)求证:AF2=FG•FC;(3)设y=AF2+AG2,FG=x,求y与x的函数关系式;(不要求写出自变量的取值范围)(4)探究BF2、FG2、GC2之间的关系,证明你的结论.【答案】(1)证明见解析;(2)证明见解析;(3)y=x2+5x;(4)FG2=BF2+GC2.证明见解析.【解析】试题分析:(1)根据等腰直角三角形的性质得到∠C=∠B=∠DAE=∠E=45°,由外角的性质得到∠CFA=∠B+∠FAB,∠GAB=∠FAG+∠FAB,于是得到∠CFA=∠BAG,即可得到结论.(2)方法同(1)证得△AGF∽△ACF,根据相似三角形的性质即可得到结论.(3)由△GAF∽△GBA,可得AG2=FG•BG,又由AF2=FG•FC,易得y=AF2+AG2=FG•(CB+FG),继而求得y与x的函数关系式.(4)首先把△ABF旋转至△ACP,得△ABF≌△ACP,再利用三角形全等的知识证明∠ACP+∠ACB=90°,进而可以证明BF、FG、GC之间的关系.试题解析:(1)∵△ABC与△DEA是两个全等的等腰直角三角形,∠BAC=∠EDA=90°,∴∠C=∠B=∠DAE=∠E=45°,∵∠CFA=∠B+∠FAB,∠GAB=∠FAG+∠FAB,∴∠CFA=∠BAG,∴△GAF∽△GBA;(2)∵△ABC与△DEA是两个全等的等腰直角三角形,∠BAC=∠EDA=90°,∴∠C=∠B=∠DAE=∠E=45°,∵∠FGA=∠B+∠EAC,∠CAF=∠FAG+∠EAC,∴∠AGF=∠CAF,∴△AGF∽△ACF, ∴AF CF FG AF=, ∴AF 2=FG•FC.(3)∵△GAF∽△GBA, ∴AG FG BG AG=, ∴AG 2=FG•BG,∵AF 2=FG•FC,∴y=AF 2+AG 2=FG•BG+FG•FC=FG•(BG+FC )=FG•(CB+FG ), ∵FG=x,CB=5,∴y=x(x+5)=x 2+5x ;(4)把△ABF 旋转至△ACP,得△ABF≌△ACP, ∴∠1=∠4,AF=AP ,CP=BF ,∠ACP=∠B,∵∠1+∠3=45°,∴∠4+∠3=45°,∴∠2=∠4+∠3=45°,∴∠2=∠PAG,在△FAG 和△PAG 中, 2AF AP PAG AG AG =⎧⎪∠=∠⎨⎪=⎩,∴△AFG≌△AGP(SAS ),∴FG=GP,∵∠ACP+∠ACB=45°+45°=90°,∴在Rt△PGC 中,GP 2=GC 2+CP 2,∴FG 2=BF 2+GC 2.考点:相似形综合题.高考一轮复习:。
【初三数学】南京市九年级数学上期中考试单元综合练习卷及答案
新九年级(上)数学期中考试试题及答案一、填空题(每小题3分,共30分).1.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.下列方程中,关于x的一元一次方程是()A.x2+2x=x2﹣1 B.+﹣2=0C.ax2+bx+c=0 D.(x+1)2=2(x+1)3.平面直角坐标系中,与点(2,﹣3)关于原点中心对称的点是()A.(﹣3,2)B.(3,﹣2)C.(﹣2,3)D.(2,3)4.对于二次函数y=(x﹣1)2+2的图象,下列说法正确的是()A.开口向下B.顶点坐标是(1,2)C.对称轴是x=﹣1 D.与x轴有两个交点5.抛物线y=x2向左平移3个单位,再向下平移2个单位后,所得的抛物线表式是()A.y=(x﹣3)2﹣2 B.y=(x﹣3)2+2 C.y=(x+3)2﹣2 D.y=(x+3)2+2 6.关于x的一元二次方程x2+bx+c=0的两个实数根分别为2和﹣3,则()A.b=1,c=﹣6 B.b=﹣1,c=﹣6 C.b=5,c=﹣6 D.b=﹣1,c=6 7.从5点15分到5点20分,分针旋转的度数为()A.20°B.26°C.30°D.36°8.若二次函数y=x2﹣6x+c的图象过A(﹣1,y1),B(2,y2),C(3,y3),则y1、y2、y3的大小关系是()A.y1>y2>y3B.y1>y3>y2C.y2>y1>y3D.y3>y1>y29.在同一平面直角坐标系中,函数y=ax+b与y=ax2﹣bx的图象可能是()A.B.C.D.10.如图,二次函数y=ax2+bx+c(a≠0)图象的一部分,对称轴为直线x=,且经过点(2,0),下列说法:①abc<0;②a+b=0;③4a+2b+c<0;④若(﹣2,y1),(﹣3,y2)是抛物线上的两点,则y1<y2,其中说法正确的是()A.①②④B.③④C.①③④D.①②二、填空题(每小题4分,共24分)11.把方程3x2=5x+2化为一元二次方程的一般形式是.12.(a+2)x2﹣2x+3=0是关于x的一元二次方程,则a所满足的条件是.13.抛物线y=2x2﹣bx+3的对称轴是直线x=1,则b的值为.14.已知实数x,y满足x2﹣6x++9=0,则(x+y)2017的值是.15.如图是一张长9cm、宽5cm的矩形纸板,将纸板四个角各剪去一个同样的正方形,可制成底面积是12cm2的一个无盖长方体纸盒,设剪去的正方形边长为xcm,则可列出关于x 的方程为.16.如图,把直角三角形ABC的斜边AB放在定直线l上,按顺时针方向在l上转动两次,使它转到△A″B″C″的位置.设BC=2,AC=2,则顶点A运动到点A″的位置时,点A经过的路线与直线l所围成的面积是.三、解答题(一)(本大题共3小题,每小题6分,共18分)17.(6分)解方程:3(x﹣2)2=2(2﹣x).18.(6分)如图,平面直角坐标系中,每个小正方形边长都是1.(1)按要求作图:△ABC关于原点中心对称的△A1B1C1.(2)△A1B1C1中各个顶点的坐标.19.(6分)已知二次函数y=x2+mx+n的图象经过点P(﹣3,1),对称轴是直线x=﹣1.(1)求m,n的值;(2)x取什么值时,y随x的增大而减小?四、解答题(二)(本大题共3小题,每小题7分,共21分)20.(7分)美化城市,改善人们的居住环境已成为城市建设的一项重要内容.我市近几年来,通过拆迁旧房,植草,栽树,修公园等措施,使城区绿地面积不断增加(如图所示).(1)根据图中所提供的信息回答下列问题:2015年底的绿地面积为公顷,比2014年底增加了公顷;在2013年,2014年,2015年这三年中,绿地面积增加最多的是年;(2)为满足城市发展的需要,计划到2017年底使城区绿地面积达到72.6公顷,试求今明两年绿地面积的年平均增长率.21.(7分)已知二次函数y=﹣2x2+bx+c的图象经过点A(0,4)和B(1,﹣2).(1)求此抛物线的解析式;(2)求此抛物线的对称轴和顶点坐标;(3)设抛物线的顶点为C,试求△CAO的面积.22.(7分)已知:关于x的方程x2﹣(k+2)x+2k=0(1)求证:无论k取任何实数值,方程总有实数根;(2)若等腰三角形ABC的一边长a=1,另两边长b,c恰好是这个方程的两个根,求△ABC 的周长.五、解答题(三)(本大题共3小题,每小题9分,共27分)23.(9分)为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=﹣2x+80.设这种产品每天的销售利润为w元.(1)求w与x之间的函数关系式.(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?24.(9分)如图,△ABC中,AB=AC=2,∠BAC=45°,△AEF是由△ABC绕点A按逆时针方向旋转得到的,连接BE、CF相交于点D.(1)求证:BE=CF;(2)当四边形ABDF为菱形时,求CD的长.25.(9分)如图,矩形OABC在平面直角坐标系xOy中,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=4,OC=3,若抛物线的顶点在BC边上,且抛物线经过O,A两点,直线AC交抛物线于点D.(1)求抛物线的解析式;(2)求点D的坐标;(3)若点M在抛物线上,点N在x轴上,是否存在以A,D,M,N为顶点的四边形是平行四边形?若存在,求出点N的坐标;若不存在,请说明理由.参考答案一、填空题1.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.解:A、不是轴对称图形,也不是中心对称图形,故A错误;B、不是轴对称图形,是中心对称图形,故B错误;C、是轴对称图形,不是中心对称图形,故C错误;D、既是轴对称图形,又是中心对称图形,故D正确.故选:D.【点评】本题考查了中心对称及轴对称的知识,解题时掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.下列方程中,关于x的一元一次方程是()A.x2+2x=x2﹣1 B.+﹣2=0C.ax2+bx+c=0 D.(x+1)2=2(x+1)【分析】根据一元一次方程的定义,一元二次方程的定义对各选项分析判断即可得解.解:A、化简可得2x=﹣1,是一元一次方程,故本选项正确;B、未知数在分母上,不是整式方程,故本选项错误;C、没有对常数a、b不等于0的限制,所以不是一元一次方程,也不是一元二次方程,故本选项错误;D、整理得x2+2x+1=2x+2,是一元二次方程,故本选项错误.故选:A.【点评】本题利用了一元二次方程的概念,一元一次方程的概念,只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).3.平面直角坐标系中,与点(2,﹣3)关于原点中心对称的点是()A.(﹣3,2)B.(3,﹣2)C.(﹣2,3)D.(2,3)【分析】平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y).解:点(2,﹣3)关于原点中心对称的点的坐标是(﹣2,3).故选:C.【点评】本题考查了平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),比较简单.4.对于二次函数y=(x﹣1)2+2的图象,下列说法正确的是()A.开口向下B.顶点坐标是(1,2)C.对称轴是x=﹣1 D.与x轴有两个交点【分析】根据二次函数的性质对各开口方向、顶点坐标、对称轴以及与x轴交点的坐标进行判断即可.解:A、y=(x﹣1)2+2,∵a=1>0,∴图象的开口向上,此选项错误;B、y=(x﹣1)2+2顶点坐标是(1,2),此选项正确;C、对称轴是直线x=1,此选项错误;D、(x﹣1)2+2=0,(x﹣1)2=﹣2,此方程无解,与x轴没有交点,故本选项错误.【点评】本题考查了二次函数的性质,掌握利用顶点式求抛物线的开口方向、顶点坐标、对称轴与x轴交点的判定方法是解决问题的关键.5.抛物线y=x2向左平移3个单位,再向下平移2个单位后,所得的抛物线表式是()A.y=(x﹣3)2﹣2 B.y=(x﹣3)2+2 C.y=(x+3)2﹣2 D.y=(x+3)2+2 【分析】根据函数图象的平移规律:左加右减,上加下减,可得答案.解:y=x2向左平移3个单位,再向下平移2个单位后,所得的抛物线表式是y=(x+3)2﹣2,故选:C.【点评】本题考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.6.关于x的一元二次方程x2+bx+c=0的两个实数根分别为2和﹣3,则()A.b=1,c=﹣6 B.b=﹣1,c=﹣6 C.b=5,c=﹣6 D.b=﹣1,c=6 【分析】根据根与系数的关系得到2+(﹣3)=﹣b,2×(﹣3)=c,然后可分别计算出b、c的值.解:根据题意得2+(﹣3)=﹣b,2×(﹣3)=c,解得b=1,c=﹣6.故选:A.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=﹣,x1•x2=.7.从5点15分到5点20分,分针旋转的度数为()A.20°B.26°C.30°D.36°【分析】先求的分针旋转的速度为=6(度/分钟),继而可得答案.解:∵分针旋转的速度为=6(度/分钟),∴从5点15分到5点20分,分针旋转的度数为6×5=30(度),故选:C.【点评】本题考查了旋转的性质:旋转前后两图形全等,即对应线段相等,对应角相等,对应点与旋转中心的连线段的夹角等于旋转角.8.若二次函数y=x2﹣6x+c的图象过A(﹣1,y1),B(2,y2),C(3,y3),则y1、y2、y3的大小关系是()A.y1>y2>y3B.y1>y3>y2C.y2>y1>y3D.y3>y1>y2【分析】根据函数解析式的特点,其对称轴为x=3,图象开口向上;利用对称轴左侧y随x 的增大而减小,可判断y1>y2,根据C(3,y3)在对称轴上可判断y3<y2;于是y1>y2>y.3解:由二次函数y=x2﹣6x+c可知对称轴为x=﹣=﹣=3,∴C(3,y3)在对称轴上,∵A(﹣1,y1),B(2,y2)在对称轴的左侧,y随x的增大而减小,∴y1>y2>y3.故选:A.【点评】此题主要考查二次函数图象上点的坐标特征,关键是根据函数关系式,找出对称轴.9.在同一平面直角坐标系中,函数y=ax+b与y=ax2﹣bx的图象可能是()A.B.C.D.【分析】首先根据图形中给出的一次函数图象确定a、b的符号,进而运用二次函数的性质判断图形中给出的二次函数的图象是否符合题意,根据选项逐一讨论解析,即可解决问题.解:A、对于直线y=ax+b来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2﹣bx 来说,对称轴x=>0,应在y轴的右侧,故不合题意,图形错误;B、对于直线y=ax+b来说,由图象可以判断,a<0,b>0;而对于抛物线y=ax2﹣bx来说,对称轴x=<0,应在y轴的左侧,故不合题意,图形错误;C、对于直线y=ax+b来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2﹣bx来说,图象开口向上,对称轴x=>0,应在y轴的右侧,故符合题意;D、对于直线y=ax+b来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2﹣bx来说,图象开口向下,a<0,故不合题意,图形错误;故选:C.【点评】此主要考查了一次函数、二次函数图象的性质及其应用问题;解题的方法是首先根据其中一次函数图象确定a、b的符号,进而判断另一个函数的图象是否符合题意;解题的关键是灵活运用一次函数、二次函数图象的性质来分析、判断、解答.10.如图,二次函数y=ax2+bx+c(a≠0)图象的一部分,对称轴为直线x=,且经过点(2,0),下列说法:①abc<0;②a+b=0;③4a+2b+c<0;④若(﹣2,y1),(﹣3,y2)是抛物线上的两点,则y1<y2,其中说法正确的是()A.①②④B.③④C.①③④D.①②【分析】①根据抛物线开口方向、对称轴位置、抛物线与y轴交点位置求得a、b、c的符号;②根据对称轴求出b=﹣a;③把x=2代入函数关系式,结合图象判断函数值与0的大小关系;④根据﹣3<﹣2<,结合抛物线的性质即可判断y1和y2的大小.解:①∵二次函数的图象开口向下,∴a<0,∵二次函数的图象交y轴的正半轴于一点,∴c>0,∵对称轴是直线x=,∴﹣=,∴b=﹣a>0,∴abc<0.故①正确;②∵由①中知b=﹣a,∴a+b=0,故②正确;③把x=2代入y=ax2+bx+c得:y=4a+2b+c,∵抛物线经过点(2,0),∴当x=2时,y=0,即4a+2b+c=0.故③错误;④∵抛物线开口向下,对称轴为x=,∴在对称轴的左边y随x的增大而增大,∵﹣3<﹣2<,∴y1>y2.故④错误;综上所述,正确的结论是①②.故选:D.【点评】本题考查了二次函数的图象和系数的关系的应用,注意:当a>0时,二次函数的图象开口向上,当a<0时,二次函数的图象开口向下.二、填空题(本大题共6小题,每小题4分,共24分)11.把方程3x2=5x+2化为一元二次方程的一般形式是3x2﹣5x﹣2=0 .【分析】一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0),据此即可求解.解:一元二次方程3x2=5x+2的一般形式是3x2﹣5x﹣2=0.故答案为:3x2﹣5x﹣2=0.【点评】在移项的过程中容易出现的错误是忘记变号.12.(a+2)x2﹣2x+3=0是关于x的一元二次方程,则a所满足的条件是a≠﹣2 .【分析】根据一元二次方程的定义得出a+2≠0,求出即可.解:∵(a+2)x2﹣2x+3=0是关于x的一元二次方程,∴a+2≠0,∴a≠﹣2.故答案为:a≠﹣2.【点评】本题考查了一元二次方程的定义,注意:一元二次方程的一般形式是ax2+bx+c=0(abc都是常数,且a≠0).13.抛物线y=2x2﹣bx+3的对称轴是直线x=1,则b的值为 4 .【分析】已知抛物线的对称轴,利用对称轴公式可求b的值.解:∵y=2x2﹣bx+3,对称轴是直线x=1,∴=1,即﹣=1,解得b=4.【点评】主要考查了求抛物线的顶点坐标的方法:公式法:y=ax2+bx+c的顶点坐标为(,),对称轴是x=.14.已知实数x,y满足x2﹣6x++9=0,则(x+y)2017的值是﹣1 .【分析】直接利用非负数的性质以及二次根式的性质求出x,y的值进而得出答案.解:∵x2﹣6x++9=0,∴(x﹣3)2+=0,解得:x=3,y=﹣4,故(x+y)2017=(3﹣4)2017=﹣1.故答案为:﹣1.【点评】此题主要考查了非负数的性质,正确得出x的值是解题关键.15.如图是一张长9cm、宽5cm的矩形纸板,将纸板四个角各剪去一个同样的正方形,可制成底面积是12cm2的一个无盖长方体纸盒,设剪去的正方形边长为xcm,则可列出关于x 的方程为(9﹣2x)•(5﹣2x)=12 .【分析】由于剪去的正方形边长为xcm,那么长方体纸盒的底面的长为(9﹣2x),宽为(5﹣2x),然后根据底面积是12cm2即可列出方程.解:设剪去的正方形边长为xcm,依题意得(9﹣2x)•(5﹣2x)=12,故填空答案:(9﹣2x)•(5﹣2x)=12.【点评】此题首先要注意读懂题意,正确理解题意,然后才能利用题目的数量关系列出方程.16.如图,把直角三角形ABC的斜边AB放在定直线l上,按顺时针方向在l上转动两次,使它转到△A″B″C″的位置.设BC=2,AC=2,则顶点A运动到点A″的位置时,点A经过的路线与直线l所围成的面积是π+2.【分析】在△ABC中,BC=2,AC=2,根据勾股定理得到AB的长为4.求出∠CAB、∠CBA,顶点A运动到点A″的位置时,点A经过的路线与直线l所围成的面积是两个扇形的面积+△A′BC″的面积.根据扇形的面积公式可以进行计算.解:∵在Rt△ACB中,BC=2,AC=2,∴由勾股定理得:AB=4,∴AB=2BC,∴∠CAB=30°,∠CBA=60°,∴∠ABA′=120°,∠A″C″A′=90°,S =++×2×2=π+2,故答案为:π+2.【点评】本题考查了扇形的面积计算,勾股定理,含30度角的直角三角形的性质的应用,本题的关键是弄清顶点A运动到点A″的位置时,点A经过的路线与直线l所围成的图形的形状.三、解答题(一)(本大题共3小题,每小题6分,共18分)17.(6分)解方程:3(x﹣2)2=2(2﹣x).【分析】移项,利用因式分解法求得方程的解即可.解:3(x﹣2)2=2(2﹣x)3(x﹣2)2﹣2(2﹣x)=0(x﹣2)[3(x﹣2)+2]=0x﹣2=0,3x﹣4=0解得:x1=2,x2=.【点评】此题考查用因式分解法解一元二次方程,掌握提取公因式法是解决问题的关键.18.(6分)如图,平面直角坐标系中,每个小正方形边长都是1.(1)按要求作图:△ABC关于原点中心对称的△A1B1C1.(2)△A1B1C1中各个顶点的坐标.【分析】(1)根据关于原点对称的点的坐标特征写出A1、B1、C1点的坐标,然后描点即可;(2)由(1)可得)△A1B1C1中各个顶点的坐标.解:(1)如图,(2)A1(1,﹣3),B1(6,﹣1),C1(3,﹣1).【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了等腰三角形的性质.19.(6分)已知二次函数y=x2+mx+n的图象经过点P(﹣3,1),对称轴是直线x=﹣1.(1)求m,n的值;(2)x取什么值时,y随x的增大而减小?【分析】(1)根据二次函数过点P和二次函数的对称轴为x=﹣1,可得出关于m、n的二元一次方程组,解方程组即可得出m、n的值;(2)由二次函数的a的值大于0,结合函数的单调性,即可得出结论.解:(1)∵二次函数y=x2+mx+n的图象经过点P(﹣3,1),对称轴是直线x=﹣1,∴有,解得.∴二次函数的解析式为y=x2+2x﹣2.(2)∵a=1>0,∴抛物线的开口向上,当x≤﹣1时,函数递减;当x>﹣1时,函数递增.故当x≤﹣1时,y随x的增大而减小.【点评】本题考查了二次函数的性质,解题的关键是:(1)由点的坐标以及对称轴的解析式得出二元一次方程组;(2)由a=1>0及对称轴为x=﹣1,结合二次函数的性质即可得知当x≤﹣1时,函数递减.四、解答题(二)(本大题共3小题,每小题7分,共21分)20.(7分)美化城市,改善人们的居住环境已成为城市建设的一项重要内容.我市近几年来,通过拆迁旧房,植草,栽树,修公园等措施,使城区绿地面积不断增加(如图所示).(1)根据图中所提供的信息回答下列问题:2015年底的绿地面积为60 公顷,比2014年底增加了 4 公顷;在2013年,2014年,2015年这三年中,绿地面积增加最多的是2014 年;(2)为满足城市发展的需要,计划到2017年底使城区绿地面积达到72.6公顷,试求今明两年绿地面积的年平均增长率.【分析】(1)根据统计图能看出2003年的绿化面积和2002年的绿化面积.(2)设04,05两年绿地面积的年平均增长率为x,根据计划到2005年底使城区绿地面积达到72.6公顷,可列方程求解.解:(1)2015年的绿化面积为60公顷,2014年绿化的面积为56公顷.60﹣56=4,比2014年底增加了4公顷,这三年中增长最多的是2014年.故答案是:60;4;2014;(2)设2016,2017两年绿地面积的年平均增长率为x,60(1+x)2=72.6.x=10%或x=﹣210%(舍去).答:2016,2017两年绿地面积的年平均增长率10%.【点评】本题考查折线统计图及一元二次方程的应用的知识,从上面可看出每年对应的公顷数,以及2015年和2017年的公顷数,求出增长率.21.(7分)已知二次函数y=﹣2x2+bx+c的图象经过点A(0,4)和B(1,﹣2).(1)求此抛物线的解析式;(2)求此抛物线的对称轴和顶点坐标;(3)设抛物线的顶点为C,试求△CAO的面积.【分析】(1)利用待定系数法把A(0,4)和B(1,﹣2)代入y=﹣2x2+bx+c中,可以解得b,c的值,从而求得函数关系式即可;(2)利用配方法求出图象的对称轴和顶点坐标;(3)由(2)可得顶点C的坐标,再根据三角形的面积公式即可求出△CAO的面积.解:(1)把A(0,4)和B(1,﹣2)代入y=﹣2x2+bx+c,得:,解得:,所以此抛物线的解析式为y=﹣2x2﹣4x+4;(2)∵y=﹣2x2﹣4x+4=﹣2(x2+2x)+4=﹣2[(x+1)2﹣1]+4=﹣2(x+1)2+6,∴此抛物线的对称轴为直线x=﹣1,顶点坐标为(﹣1,6);(3)由(2)知:顶点C(﹣1,6),∵点A(0,4),∴OA=4,∴S△CAO=OA•|x c|=×4×1=2,即△CAO的面积为2.【点评】本题考查了用待定系数法求二次函数的解析式,二次函数解析式的三种形式,二次函数的性质以及三角形的面积,难度适中.正确求出函数的解析式是解题的关键.22.(7分)已知:关于x的方程x2﹣(k+2)x+2k=0(1)求证:无论k取任何实数值,方程总有实数根;(2)若等腰三角形ABC的一边长a=1,另两边长b,c恰好是这个方程的两个根,求△ABC 的周长.【分析】(1)先计算出△=(k+2)2﹣4•2k=(k﹣2)2,然后根据非负数的性质和根的判别式的意义判断方程根的情况;(2)分类讨论:当b=c时,△=0,则k=2,再把k代入方程,求出方程的解,然后计算三角形周长;当b=a=1或c=a=1时,把x=1代入方程解出k=1,再解此时的一元二次方程,然后根据三角形三边的关系进行判断.(1)证明:△=(k+2)2﹣4•2k=(k﹣2)2,∵(k﹣2)2≥0,即△≥0,∴无论取任何实数值,方程总有实数根;(2)解:当b=c时,△=(k﹣2)2=0,则k=2,方程化为x2﹣4x+4=0,解得x1=x2=2,∴△ABC的周长=2+2+1=5;当b=a=1或c=a=1时,把x=1代入方程得1﹣(k+2)+2k=0,解得k=1,方程化为x2﹣3x+2=0,解得x1=1,x2=2,不符合三角形三边的关系,此情况舍去,∴△ABC的周长为5.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:①当△>0,方程有两个不相等的实数根;②当△=0,方程有两个相等的实数根;③当△<0,方程没有实数根.也考查了三角形三边的关系.五、解答题(三)(本大题共3小题,每小题9分,共27分)23.(9分)为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=﹣2x+80.设这种产品每天的销售利润为w元.(1)求w与x之间的函数关系式.(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?【分析】(1)根据销售额=销售量×销售单价,列出函数关系式;(2)用配方法将(1)的函数关系式变形,利用二次函数的性质求最大值;(3)把y=150代入(2)的函数关系式中,解一元二次方程求x,根据x的取值范围求x的值.解:(1)由题意得出:w=(x﹣20)∙y=(x﹣20)(﹣2x+80)=﹣2x2+120x﹣1600,故w与x的函数关系式为:w=﹣2x2+120x﹣1600;(2)w=﹣2x2+120x﹣1600=﹣2(x﹣30)2+200,∵﹣2<0,∴当x=30时,w有最大值.w最大值为200.答:该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润200元.(3)当w=150时,可得方程﹣2(x﹣30)2+200=150.解得x1=25,x2=35.∵35>28,∴x2=35不符合题意,应舍去.答:该农户想要每天获得150元的销售利润,销售价应定为每千克25元.【点评】本题考查了二次函数的运用.关键是根据题意列出函数关系式,运用二次函数的性质解决问题.24.(9分)如图,△ABC中,AB=AC=2,∠BAC=45°,△AEF是由△ABC绕点A按逆时针方向旋转得到的,连接BE、CF相交于点D.(1)求证:BE=CF;(2)当四边形ABDF为菱形时,求CD的长.【分析】(1)根据旋转的性质得AE=AF=AB=AC=2,∠EAF=∠BAC=45°,然后根据“SAS”证明△ABE≌△ACF,于是根据全等三角形的性质即可得到结论;(2)根据菱形的性质得DF=AF=2,DF∥AB,再利用平行线的性质得∠1=∠BAC=45°,则可判断△ACF为等腰直角三角形,所以CF=AF=2,然后计算CF﹣DF即可.(1)证明:∵△AEF是由△ABC绕点A按逆时针方向旋转得到的,∴AE=AF=AB=AC=2,∠EAF=∠BAC=45°,∴∠BAC+∠3=∠EAF+∠3,即∠BAE=∠CAF,在△ABE和△ACF中,∴△ABE≌△ACF,∴BE=CF;(2)解:∵四边形ABDF为菱形,∴DF=AF=2,DF∥AB,∴∠1=∠BAC=45°,∴△ACF为等腰直角三角形,∴CF=AF=2,∴CD=CF﹣DF=2﹣2.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了菱形的性质.25.(9分)如图,矩形OABC在平面直角坐标系xOy中,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=4,OC=3,若抛物线的顶点在BC边上,且抛物线经过O,A两点,直线AC交抛物线于点D.(1)求抛物线的解析式;(2)求点D的坐标;(3)若点M在抛物线上,点N在x轴上,是否存在以A,D,M,N为顶点的四边形是平行四边形?若存在,求出点N的坐标;若不存在,请说明理由.【分析】(1)由OA的长度确定出A的坐标,再利用对称性得到顶点坐标,设出抛物线的顶点形式y=a(x﹣2)2+3,将A的坐标代入求出a的值,即可确定出抛物线解析式;(2)设直线AC解析式为y=kx+b,将A与C坐标代入求出k与b的值,确定出直线AC 解析式,与抛物线解析式联立即可求出D的坐标;(3)存在,分两种情况考虑:如图所示,当四边形ADMN为平行四边形时,DM∥AN,DM=AN,由对称性得到M(3,),即DM=2,故AN=2,根据OA+AN求出ON的长,即可确定出N的坐标;当四边形ADM′N′为平行四边形,可得三角形ADQ全等于三角形N′M′P,M′P=DQ=,N′P=AQ=3,将y=﹣代入得:﹣=﹣x2+3x,求出x的值,确定出OP的长,由OP+PN′求出ON′的长即可确定出N′坐标.解:(1)设抛物线顶点为E,根据题意OA=4,OC=3,得:E(2,3),设抛物线解析式为y=a(x﹣2)2+3,将A(4,0)坐标代入得:0=4a+3,即a=﹣,则抛物线解析式为y=﹣(x﹣2)2+3=﹣x2+3x;(2)设直线AC解析式为y=kx+b(k≠0),将A(4,0)与C(0,3)代入得:,解得:,故直线AC解析式为y=﹣x+3,与抛物线解析式联立得:,解得:或,则点D坐标为(1,);(3)存在,分两种情况考虑:①当点M在x轴上方时,如答图1所示:四边形ADMN为平行四边形,DM∥AN,DM=AN,由对称性得到M(3,),即DM=2,故AN=2,∴N1(2,0),N2(6,0);②当点M在x轴下方时,如答图2所示:过点D作DQ⊥x轴于点Q,过点M作MP⊥x轴于点P,可得△ADQ≌△NMP,∴MP=DQ=,NP=AQ=3,将y M=﹣代入抛物线解析式得:﹣=﹣x2+3x,解得:x M=2﹣或x M=2+,∴x N=x M﹣3=﹣﹣1或﹣1,∴N 3(﹣﹣1,0),N4(﹣1,0).综上所述,满足条件的点N有四个:N 1(2,0),N2(6,0),N3(﹣﹣1,0),N4(﹣1,0).【点评】此题考查了二次函数综合题,涉及的知识有:待定系数法确定抛物线解析式,一次函数与二次函数的交点,平行四边形的性质,以及坐标与图形性质,是一道多知识点的探究型试题.新人教版数学九年级上册期中考试试题及答案一、细心选一选。
中考数学复习:专题4-16 双等腰直角三角形问题前解法分析
专题16 双等腰直角三角形问题前解法分析【专题综述】一个等腰直角三角形绕另一等腰直角三角形旋转,形成以双等腰直角三角形为背景的数学问题,在近年各地中考试卷中大量出现.本文拟通过对不同类型的双等腰直角三角形问题的剖析,找到某些共性,以达到帮助大家提高解题题能力的目的.【方法解读】一、共直角顶点的两个等腰直角三角形例1 (2016内蒙古呼和浩特市)已知,如图,△ACB 和△ECD 都是等腰直角三角形,∠ACB=∠ECD=90°,D 为AB 边上一点.(1)求证:△ACE ≌△BCD ; (2)求证:2222=CD AD DB .【举一反三】如图1,在四边形ABCD 中,点E 、F 分别是AB 、CD 的中点,过点E 作AB 的垂线,过点F 作CD 的垂线,两垂线交于点G ,连接AG 、BG 、CG 、DG ,且∠AGD=∠BGC . (1)求证:AD=BC ; (2)求证:△AGD ∽△EGF ;(3)如图2,若AD 、BC 所在直线互相垂直,求AD:EF 的值.【来源】湖北武汉市硚口区六十中学2017年九年级数学中考模拟试卷二、共底角顶点的两个等腰直角三角形例2 如图1,A,B分别在射线OA,ON上,且∠MON为钝角,现以线段OA,OB为斜边向∠MON的外侧作等腰直角三角形,分别是△OAP,△OBQ,点C,D,E分别是OA,OB,AB的中点.(1)求证:△PCE≌△EDQ;(2)延长PC,QD交于点R.如图2,若∠MON=150°,求证:△ABR为等边三角形;(3)如图3,若△ARB∽△PEQ,求∠MON大小.【举一反三】已知两个共一个顶点的等腰Rt△ABC,Rt△CEF,∠ABC=∠CEF=90°,连接AF,M是AF的中点,连接MB、ME.(1)如图1,当CB与CE在同一直线上时,求证:MB∥CF;(2)如图1,若CB=a,CE=2a,求BM,ME的长;(3)如图2,当∠BCE=45°时,求证:BM=ME.【来源】2013年初中毕业升学考试(湖南常德卷)数学(带解析)三、一直角顶点和一底角顶点重合的两个等腰直角三角形例3 如图,在Rt△ABC中,∠BAC=90°,AC=2AB,点D是AC的中点,将一块锐角为45°的直角三角板如图放置,使三角板斜边的两个端点分别与A、D重合,连结BE、EC.试猜想线段BE和EC的数量..及位置..关系,并证明你的猜想.【举一反三】如图△ABC与△DEA是两个全等的等腰直角三角形,∠BAC=∠D=90°,△DEA 绕点A旋转,边AD、AE 与BC分别与AD、AE相交于点F、G,CB=5.回答下列问题:(1)求证:△GAF∽△GBA;(2)求证:AF2=FG•FC;(3)设y=AF2+AG2,FG=x,求y与x的函数关系式;(不要求写出自变量的取值范围)(4)探究BF2、FG2、GC2之间的关系,证明你的结论.【来源】2016届江苏省南京市汇文中学九年级上学期期中数学试卷(带解析)四、一直角顶点和一底边中点重合的两个等腰直角三角形例4 (2016四川省资阳市)如图,在等腰直角△ABC中,∠ACB=90°,CO⊥AB于点O,点D、E分别在边AC、BC上,且AD=CE,连结DE交CO于点P,给出以下结论:①△DOE 是等腰直角三角形;②∠CDE=∠COE ;③若AC=1,则四边形CEOD 的面积为14;④22222AD BE OP DP PE +-=⋅,其中所有正确结论的序号是 .【举一反三】已知:△ABC 中,∠A =90°,AB =AC ,D 为BC 的中点,(1)如图,E ,F 分别是AB ,AC 上的点,且BE =AF ,求证:△DEF 为等腰直角三角形;(2)若E ,F 分别为AB ,CA 延长线上的点,仍有BE =AF ,其他条件不变,那么,△DEF 是否仍为等腰直角三角形?证明你的结论.【来源】2012-2013年福建仙游承璜第二学校八年级上期末考试数学试题(带解析)【强化训练】1.如图,已知,△ABC 与△DCE 为一小一大的两个等腰直角三角形,顶点C 互相重合。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015-2016学年江苏省南京市汇文中学九年级(上)期中数学试卷一、选择题(各题所给答案中,只有一个答案是正确的,每小题3分,共18分)1.(3分)方程2x2=x的根为()A.x= B.x=0 C.x1=2,x2=0 D.x=或x=02.(3分)我校男子足球队22名队员的年龄如下表所示:这些队员年龄的众数和中位数分别是()A.18,17 B.17,18 C.18,17.5 D.17.5,183.(3分)下列命题中,是真命题的是()A.三点确定一个圆 B.长度相等的弧是等弧C.圆周角等于圆心角的一半D.正七边形有七条对称轴4.(3分)已知⊙O的直径为8,直线l上有一点M,满足OM=4,则直线l与⊙O的位置关系是()A.相交B.相离或相交C.相离或相切D.相交或相切5.(3分)如图,在△ABC中,AB=10,AC=8,BC=6,经过点C且与边AB相切的动圆与CB,CA分别相交于点E,F,则线段EF长度的最小值是()A.B.4.75 C.5 D.4.86.(3分)如图已知四边形ABCD是⊙O的内接四边形,且AB=CD=5,AC=7,BE=3,下列命题:①△AED∽△BEC②∠AEB=90°③∠BDA=45°④图中全等的三角形共有3对.其中正确的命题有()个.A.1 B.2 C.3 D.4二、填空题(每题3分,共30分)7.(3分)若a是方程x2﹣2x﹣1=0的解,则代数式2a2﹣4a+2011的值为.8.(3分)已知三角形三边长分别为1cm、cm和cm,则此三角形的外接圆半径为cm.9.(3分)如图,⊙O是△ABC的内切圆,切点分别为D、E、F,点M是⊙O上一点,∠EMF=55°,则∠A=°.10.(3分)一组数据1,2,x,0,﹣1的极差为3,则整数x的值是.11.(3分)已知圆锥的高为4cm,底面半径为3cm,则它的表面积为cm2(结果保留π).12.(3分)一组数据23,27,20,18,x,12,它们的中位数是21,则x=.13.(3分)已知AB、CD是⊙O的两条直径,则四边形ACBD一定是形.14.(3分)若一组数据a1,a2,…,a n的方差是5,则一组新数据2a1,…,2a n 的方差是.15.(3分)若一个圆锥的侧面积是它底面积的2倍,则这个圆锥的侧面展开图的圆心角是.16.(3分)如图所示,给出下列条件:①∠B=∠ACD;②∠ADC=∠ACB;③;④AC2=AD•AB,其中单独能够判定△ABC∽△ACD的有.三、解答题17.(8分)已知关于x的一元二次方程x2﹣6x+k=0有两个实数根.(1)求k的取值范围;(2)如果k取符合条件的最大整数,且一元二次方程x2﹣6x+k=0与x2+mx﹣1=0有一个相同的根,求常数m的值.18.(8分)有四张背面图案相同的卡片A、B、C、D,其正面分别画有四个不同的几何图形(如图).小敏将这四张卡片背面朝上洗匀摸出一张,放回洗匀再摸出一张.(1)用树状图(或列表法)表示两次摸出卡片所有可能的结果;(卡片可用A、B、C、D表示)(2)求摸出的两张卡片图形都是中心对称图形的概率.19.(10分)一次期中考试中,甲、乙、丙、丁、戊五位同学的数学、英语成绩等有关信息如下表所示:(单位:分)(1)求这五位同学在本次考试中数学成绩的平均分和英语成绩的标准差;(2)为了比较不同学科考试成绩的好与差,采用标准分是一个合理的选择,标准分的计算公式:标准分=(个人成绩一平均成绩)÷成绩标准差.从标准分看,标准分大的考试成绩更好,请问甲同学在本次考试中,数学与英语哪个学科考得更好?20.(10分)如图,AB是⊙O的直径,BC是⊙O的弦,半径OD⊥BC,垂足为E,若BC=,DE=3.求:(1)⊙O的半径;(2)弦AC的长;(3)阴影部分的面积.21.(10分)某商店准备进一批季节性小家电,每个进价为40元,经市场预测,销售定价为50元,可售出400个;定价每增加1元,销售量将减少10个.设每个定价增加x元.(1)写出售出一个可获得的利润是元.(用含x的代数式表示)(2)商店若准备获得利润6000元,并且使进货量较少,则每个定价为多少元?22.(10分)如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)△ADF与△DEC相似吗?为什么?(2)若AB=4,AD=,AE=3,求AF的长.23.(10分)已知,如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC 边于D.(1)以AB边上一点O为圆心,过A,D两点作⊙O(不写作法,保留作图痕迹),再判断直线BC与⊙O的位置关系,并说明理由;(2)若(1)中的⊙O与AB边的另一个交点为E,AB=6,BD=,求⊙O的半径.24.(10分)如图,已知点I是△ABC的内心,AI交BC于D,交外接圆O于E,求证:(1)IE=EC;(2)IE2=ED•E A.25.(12分)如图,AB是⊙O的弦,D为半径OA的中点,过D作CD⊥OA交弦AB于点E,交⊙O于点F,且CE=CB.(1)求证:BC是⊙O的切线;(2)连接AF、BF,求∠ABF的度数;(3)如果CD=15,BE=10,sinA=,求⊙O的半径.26.(14分)如图△ABC与△DEA是两个全等的等腰直角三角形,∠BAC=∠D=90°,△DEA 绕点A旋转,边AD、AE与BC分别与AD、AE相交于点F、G,CB=5.回答下列问题:(1)求证:△GAF∽△GBA;(2)求证:AF2=FG•FC;(3)设y=AF2+AG2,FG=x,求y与x的函数关系式;(不要求写出自变量的取值范围)(4)探究BF2、FG2、GC2之间的关系,证明你的结论.2015-2016学年江苏省南京市汇文中学九年级(上)期中数学试卷参考答案与试题解析一、选择题(各题所给答案中,只有一个答案是正确的,每小题3分,共18分)1.(3分)方程2x2=x的根为()A.x= B.x=0 C.x1=2,x2=0 D.x=或x=0【解答】解:方程整理得:2x2﹣x=0,分解因式得:x(2x﹣1)=0,解得:x=或x=0.故选:D.2.(3分)我校男子足球队22名队员的年龄如下表所示:这些队员年龄的众数和中位数分别是()A.18,17 B.17,18 C.18,17.5 D.17.5,18【解答】解:18出现的次数最多,18是众数.第11和第12个数分别是17、17,所以中位数为17.故选:A.3.(3分)下列命题中,是真命题的是()A.三点确定一个圆 B.长度相等的弧是等弧C.圆周角等于圆心角的一半D.正七边形有七条对称轴【解答】解:A、错误,不在同一直线上的三点确定一个圆;B、错误,能够重合的弧是等弧;C、错误,同弧或等弧所对的圆周角等于圆心角的一半;故选:D.4.(3分)已知⊙O的直径为8,直线l上有一点M,满足OM=4,则直线l与⊙O的位置关系是()A.相交B.相离或相交C.相离或相切D.相交或相切【解答】解:∵⊙O的直径为8,∴半径为4,∵OM=4,当OM垂直于直线l时,即圆心O到直线l的距离d=4=r,⊙O与l相切;当OM不垂直于直线l时,即圆心O到直线l的距离d<4=r,⊙O与直线l相交.故直线l与⊙O的位置关系是相切或相交.故选:D.5.(3分)如图,在△ABC中,AB=10,AC=8,BC=6,经过点C且与边AB相切的动圆与CB,CA分别相交于点E,F,则线段EF长度的最小值是()A.B.4.75 C.5 D.4.8【解答】解:如图,∵∠ACB=90°,∴EF是直径,设EF的中点为O,圆O与AB的切点为D,连接OD,CO,CD,则OD⊥AB.∵AB=10,AC=8,BC=6,∴∠ACB=90°,∴EF为直径,OC+OD=EF,∴CO+OD>CD=4.8,∵当点O在直角三角形ABC的斜边AB的高上CD时,EF=CD有最小值∴由三角形面积公式得:CD=BC•AC÷AB=4.8.6.(3分)如图已知四边形ABCD是⊙O的内接四边形,且AB=CD=5,AC=7,BE=3,下列命题:①△AED∽△BEC②∠AEB=90°③∠BDA=45°④图中全等的三角形共有3对.其中正确的命题有()个.A.1 B.2 C.3 D.4【解答】解:①根据圆周角的推论,可得到:∠ADE=∠BCE,∠DAE=∠CBE,则△AED∽△BED,正确;②由上面的分析可知,BE=CE=3,AB=5,AE=AC﹣CE=4,根据勾股定理的逆定理,△ABE为直角三角形,即∠AEB=90°,正确;③∵AE=DE,∴∠EAD=∠EDA=45°,正确;④从已知条件不难得到△ABE≌△DCE、△ABC≌△DCB、△ABD≌△DCA共3对,正确.其中正确的命题有4个;故选:D.二、填空题(每题3分,共30分)7.(3分)若a是方程x2﹣2x﹣1=0的解,则代数式2a2﹣4a+2011的值为2013.【解答】解:∵a是方程x2﹣2x﹣1=0的一个解,∴a2﹣2a=1,则2a2﹣4a+2011=2(a2﹣2a)+2011=2×1+2011=2013;故答案为:2013.8.(3分)已知三角形三边长分别为1cm、cm和cm,则此三角形的外接圆半径为cm.【解答】解:∵三角形的三条边长分别为1cm、cm和cm,12+()2=()2,∴此三角形是以cm为斜边的直角三角形,∴这个三角形外接圆的半径为÷2=(cm).故答案为:.9.(3分)如图,⊙O是△ABC的内切圆,切点分别为D、E、F,点M是⊙O上一点,∠EMF=55°,则∠A=70°.【解答】解:连接OF,OE,∵⊙O是△ABC的内切圆,切点分别为D、E、F,∴∠AEO=∠AFO=90°,∵∠EMF=55°,∴∠EOF=110°,∴∠A=180°﹣110°=70°.故答案为:70.10.(3分)一组数据1,2,x,0,﹣1的极差为3,则整数x的值是2或1或0或﹣1.【解答】解:当x是最大值,则x﹣(﹣1)=3,所以x=2;当x是最小值,则2﹣x=3,所以x=﹣1;所以x的值为2或1或0或﹣1.故答案为2或1或0或﹣1.11.(3分)已知圆锥的高为4cm,底面半径为3cm,则它的表面积为15πcm2(结果保留π).【解答】解:由勾股定理知:圆锥母线长==5cm,则圆锥侧面积=×6π×5=15πcm2.故本题答案为:15π.12.(3分)一组数据23,27,20,18,x,12,它们的中位数是21,则x=22.【解答】解:这组数据23,27,20,18,x,12,共6个;最中间两个数的平均数是这组数据的中位数.将除x外的五个数从小到大重新排列后为12 18 20 23 27;20这个数总是中间的一个数,由于中位数是21,所以中间还一个是22,即x=22.故填22.13.(3分)已知AB、CD是⊙O的两条直径,则四边形ACBD一定是矩形.【解答】解:连接AC、BC、BD、AD,∵AB、CD为圆O的直径,∴OA=OB=OC=OD,∴四边形ACBD为矩形.故答案是:矩.14.(3分)若一组数据a1,a2,…,a n的方差是5,则一组新数据2a1,…,2a n 的方差是20.【解答】解:一组数据a1,a2,…,a n的方差是5,设其平均数为m,方差为n,即n=5;则一组新数据2a1,2a2,…,2a n的平均数是2m,方差是S2=4n2=20.故答案为:20.15.(3分)若一个圆锥的侧面积是它底面积的2倍,则这个圆锥的侧面展开图的圆心角是180°.【解答】解:设底面圆的半径为r,侧面展开扇形的半径为R,扇形的圆心角为n度.由题意得S底面面积=πr2,l底面周长=2πr,S扇形=2S底面面积=2πr2,l扇形弧长=l底面周长=2πr.由S扇形=l扇形弧长×R得2πr2=×2πr×R,故R=2r.由l扇形弧长=得:2πr=解得n=180°.故答案为180°.16.(3分)如图所示,给出下列条件:①∠B=∠ACD;②∠ADC=∠ACB;③;④AC2=AD•AB,其中单独能够判定△ABC∽△ACD的有①②④.【解答】解:由图可知∠A为两个要证明相似的三角形的公共角,因此,只要再找出一组对应角相等,或两组对应边成比例即可证明△ABC∽△ACD.而①②④分别与∠A为△ABC与△ACD的公共角相结合,均可推出△ABC∽△ACD.③中∠A不是已知的比例线段的夹角,故不正确.∴选①②④.故答案为:①②④.三、解答题17.(8分)已知关于x的一元二次方程x2﹣6x+k=0有两个实数根.(1)求k的取值范围;(2)如果k取符合条件的最大整数,且一元二次方程x2﹣6x+k=0与x2+mx﹣1=0有一个相同的根,求常数m的值.【解答】解:(1)∵b2﹣4ac=(﹣6)2﹣4×1×k=36﹣4k≥0∴k≤9(2)∵k是符合条件的最大整数且k≤9∴k=9当k=9时,方程x2﹣6x+9=0的根为x1=x2=3;把x=3代入方程x2+mx﹣1=0得9+3m﹣1=0∴m=18.(8分)有四张背面图案相同的卡片A、B、C、D,其正面分别画有四个不同的几何图形(如图).小敏将这四张卡片背面朝上洗匀摸出一张,放回洗匀再摸出一张.(1)用树状图(或列表法)表示两次摸出卡片所有可能的结果;(卡片可用A、B、C、D表示)(2)求摸出的两张卡片图形都是中心对称图形的概率.【解答】解:(1)树状图:或列表法;(2)由图可知:只有卡片B、D才是中心对称图形.所有可能的结果有16种,其中满足摸出的两张卡片图形都是中心对称图形(记为事件A)有4种,即:(B,B)(B,D)(D,B)(D,D).∴P(A)=.19.(10分)一次期中考试中,甲、乙、丙、丁、戊五位同学的数学、英语成绩等有关信息如下表所示:(单位:分)(1)求这五位同学在本次考试中数学成绩的平均分和英语成绩的标准差;(2)为了比较不同学科考试成绩的好与差,采用标准分是一个合理的选择,标准分的计算公式:标准分=(个人成绩一平均成绩)÷成绩标准差.从标准分看,标准分大的考试成绩更好,请问甲同学在本次考试中,数学与英语哪个学科考得更好?【解答】解:(1)数学考试成绩的平均分数学=,英语考试成绩的标准差S英语=;(2)设甲同学数学考试成绩标准分为P数学,英语考试成绩标准分为P英语,则P数学=,P英语=.∵P数学>P英语,∴从标准分来看,甲同学数学比英语考得更好.20.(10分)如图,AB是⊙O的直径,BC是⊙O的弦,半径OD⊥BC,垂足为E,若BC=,DE=3.求:(1)⊙O的半径;(2)弦AC的长;(3)阴影部分的面积.【解答】解:(1)∵半径OD⊥BC,∴CE=BE,∵BC=6,∴CE=3,设OC=x,在直角三角形OCE中,OC2=CE2+OE2,∴x2=(3)2+(x﹣3)2,∴x=6即半径OC=6;(4分)(2)∵AB为直径,∴∠ACB=90°,AB=12,又∵BC=6,∴AC2=AB2﹣BC2=36,∴AC=6;(7分)(3)∵OA=OC=AC=6,∴∠AOC=60°,∴S阴=S扇﹣S△OAC=﹣=6π﹣9.(10分)21.(10分)某商店准备进一批季节性小家电,每个进价为40元,经市场预测,销售定价为50元,可售出400个;定价每增加1元,销售量将减少10个.设每个定价增加x元.(1)写出售出一个可获得的利润是x+10元.(用含x的代数式表示)(2)商店若准备获得利润6000元,并且使进货量较少,则每个定价为多少元?【解答】解:由题意得:(1)50+x﹣40=x+10(元)(2)设每个定价增加x元.列出方程为:(x+10)(400﹣10x)=6000解得:x1=10 x2=20要使进货量较少,则每个定价为70元,应进货200个.22.(10分)如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)△ADF与△DEC相似吗?为什么?(2)若AB=4,AD=,AE=3,求AF的长.【解答】解:(1)△ADF∽△DEC;理由:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠ADF=∠CED,∠B+∠C=180°,∵∠AFE+∠AFD=180°,∠AFE=∠B,∴∠AFD=∠C,∴△ADF∽△DEC;(2)∵四边形ABCD是平行四边形,∴AD∥BC,CD=AB=4,又∵AE⊥BC,∴AE⊥AD,在Rt△ADE中,DE===6,∵△ADF∽△DEC,∴=,∴=,解得:AF=2.23.(10分)已知,如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC 边于D.(1)以AB边上一点O为圆心,过A,D两点作⊙O(不写作法,保留作图痕迹),再判断直线BC与⊙O的位置关系,并说明理由;(2)若(1)中的⊙O与AB边的另一个交点为E,AB=6,BD=,求⊙O的半径.【解答】解:(1)如图1,作AD的垂直平分线交AB于点O,O为圆心,OA为半径作圆.判断结果:BC是⊙O的切线.如图2,连接OD.∵AD平分∠BAC,∴∠DAC=∠DAB∵OA=OD,∴∠ODA=∠DAB∴∠DAC=∠ODA,∴OD∥AC,∴∠ODB=∠C,∵∠C=90°,∴∠ODB=90°,即:OD⊥BC,∵OD是⊙O的半径,∴BC是⊙O的切线.(2)设⊙O的半径为r,则OB=6﹣r,∵BD=2,在Rt△OBD中,OD2+BD2=OB2,即r2+(2)2=(6﹣r)2,解得r=2.故⊙O的半径是2.24.(10分)如图,已知点I是△ABC的内心,AI交BC于D,交外接圆O于E,求证:(1)IE=EC;(2)IE2=ED•EA.【解答】解:(1)如图所示;连接IC.∵点I是△ABC的内心,∴∠ACI=∠BCI,∠BAE=∠CAE.又∵∠BAE=∠BCE,∴∠CAE=∠BCE.∴∠CAE+∠ACI=∠ICB+∠BCE.∴∠EIC=∠ICE.∴IE=EC.(2)由(1)可知:∠CAE=∠BCE.又∵∠AEC=∠DEC,∴△DCE∽△CAE.∴.∴CE2=DE•EA.∵IE=EC,∴IE2=DE•EA.25.(12分)如图,AB是⊙O的弦,D为半径OA的中点,过D作CD⊥OA交弦AB于点E,交⊙O于点F,且CE=CB.(1)求证:BC是⊙O的切线;(2)连接AF、BF,求∠ABF的度数;(3)如果CD=15,BE=10,sinA=,求⊙O的半径.【解答】(1)证明:连接OB,∵OB=OA,CE=CB,∴∠A=∠OBA,∠CEB=∠ABC,又∵CD⊥OA,∴∠A+∠AED=∠A+∠CEB=90°,∴∠OBA+∠ABC=90°,∴OB⊥BC,∴BC是⊙O的切线;(2)解:如图1,连接OF,AF,BF,∵DA=DO,CD⊥OA,∴AF=OF,∵OA=OF,∴△OAF是等边三角形,∴∠AOF=60°,∴∠ABF=∠AOF=30°;(3)解:作CH⊥BE于H,如图,∵CE=CB,∴BH=EH=BE=5,∵∠3=∠4,∴∠A=∠ECH,在Rt△CHE中,∵sin∠ECH=sinA==,∴CE=13,∴DE=CD﹣CE=15﹣13=2,在Rt△ADE中,∵sinA==,∴AE=,∴AD==,∵D为半径OA的中点,∴OA=2AD=,即⊙O的半径为.26.(14分)如图△ABC与△DEA是两个全等的等腰直角三角形,∠BAC=∠D=90°,△DEA 绕点A旋转,边AD、AE与BC分别与AD、AE相交于点F、G,CB=5.回答下列问题:(1)求证:△GAF∽△GBA;(2)求证:AF2=FG•FC;(3)设y=AF2+AG2,FG=x,求y与x的函数关系式;(不要求写出自变量的取值范围)(4)探究BF2、FG2、GC2之间的关系,证明你的结论.【解答】证明:(1)∵△ABC与△DEA是两个全等的等腰直角三角形,∠BAC=∠EDA=90°,∴∠C=∠B=∠DAE=∠E=45°,∵∠CFA=∠B+∠FAB,∠GAB=∠FAG+∠FAB,∴∠CFA=∠BAG,∴△GAF∽△GBA;(2)∵△ABC与△DEA是两个全等的等腰直角三角形,∠BAC=∠EDA=90°,∴∠C=∠B=∠DAE=∠E=45°,∵∠FGA=∠B+∠EAC,∠CAF=∠FAG+∠EAC,∴∠AGF=∠CAF,∴△AGF∽△ACF,∴,∴AF2=FG•FC.(3)∵△GAF∽△GBA,∴,∴AG2=FG•BG,∵AF2=FG•FC,∴y=AF2+AG2=FG•BG+FG•FC=FG•(BG+FC)=FG•(CB+FG),∵FG=x,CB=5,∴y=x(x+5)=x2+5x;(4)把△ABF旋转至△ACP,得△ABF≌△ACP,∴∠1=∠4,AF=AP,CP=BF,∠ACP=∠B,∵∠1+∠3=45°,∴∠4+∠3=45°,∴∠2=∠4+∠3=45°,∴∠2=∠PAG,在△FAG和△PAG中,,∴△AFG≌△AGP(SAS),∴FG=GP,∵∠ACP+∠ACB=45°+45°=90°,∴在Rt△PGC中,GP2=GC2+CP2,∴FG2=BF2+GC2.。