最优化问题的数学基础

合集下载

数学中的优化与最优化问题

数学中的优化与最优化问题

数学中的优化与最优化问题数学中的优化与最优化问题是数学领域中的一个重要研究方向。

本文将介绍优化和最优化问题的基本概念和方法,并通过实际案例来说明其在现实世界中的应用。

一、优化问题的概念与方法1.1 优化问题的定义在数学中,优化问题是指寻找函数的极值(最大值或最小值)的问题。

一般来说,优化问题可以表示为以下形式:$$\max f(x)$$或$$\min f(x)$$其中,$f(x)$为要优化的目标函数,$x$为自变量。

1.2 常用的优化方法常用的优化方法包括一维搜索、梯度下降、牛顿法和拟牛顿法等。

这些方法可以根据具体问题的特点选择合适的方法进行求解。

二、最优化问题的概念与方法最优化问题是优化问题的一个特例,它在满足一系列约束条件的前提下寻找目标函数的最优解。

最优化问题可以表示为以下形式:$$\max f(x)$$或$$\min f(x)$$约束条件为:$$g_i(x)\geq 0, i=1,2,\dots,m$$$$h_j(x)=0, j=1,2,\dots,n$$其中$g_i(x)$和$h_j(x)$为约束函数。

最优化问题可以分为线性最优化和非线性最优化两种情况。

2.1 线性最优化线性最优化问题是指目标函数和约束条件均为线性函数的最优化问题。

常用的求解线性最优化问题的方法有单纯形法和内点法等。

2.2 非线性最优化非线性最优化问题是指目标函数和约束条件至少有一个为非线性函数的最优化问题。

求解非线性最优化问题的方法较为复杂,常用的方法有梯度下降法、牛顿法和拟牛顿法等。

三、优化与最优化问题的应用优化和最优化问题在现实生活中有着广泛的应用。

以下是其中的一些例子:3.1 交通路径优化交通路径优化是指通过优化算法来寻找最短路径或最快路径,以减少交通拥堵和节约时间。

例如,在导航软件中,通过优化算法可以找到最短路径来指导驾驶员的行驶方向。

3.2 物流配送优化物流配送优化是指通过优化算法来确定最佳的物流配送路线,以提高物流效率和减少成本。

如何利用高一数学解决实际问题中的最优化

如何利用高一数学解决实际问题中的最优化

如何利用高一数学解决实际问题中的最优化在我们的日常生活和工作中,经常会遇到各种各样需要寻找最优解决方案的问题。

而高一数学中的知识,就为我们提供了有力的工具和方法来解决这些实际问题中的最优化难题。

首先,让我们来谈谈函数的概念。

函数是高一数学中的重要内容,它在解决最优化问题中起着关键作用。

比如,在生产经营中,我们常常需要考虑成本与产量之间的关系,利润与销售价格之间的关系等。

这些关系都可以通过建立函数模型来进行分析和求解。

以一个简单的例子来说明,假设某工厂生产某种产品,其成本函数为 C(x) = 200 + 10x(其中 x 表示产量),而销售价格为每件 20 元,那么总收入函数 R(x) = 20x。

此时,利润函数 P(x) = R(x) C(x) = 10x 200。

我们的目标是找到使利润最大的产量 x。

对利润函数求导,P'(x) = 10。

因为导数为常数 10 大于 0,所以利润函数单调递增。

这意味着产量越大,利润越高。

但在实际情况中,产量会受到多种因素的限制,比如工厂的生产能力、市场需求等。

再来看不等式的应用。

不等式在解决资源分配、规划等问题中非常有用。

例如,一家物流公司有一定数量的车辆和运输任务,每辆车的载重量有限,如何安排运输才能在满足所有任务需求的前提下,使运输成本最低?这就需要建立不等式组来进行分析。

假设物流公司有 m 辆车,每辆车的载重量为 w 吨,共有 n 项运输任务,第 i 项任务的货物重量为 ai 吨。

那么我们可以建立不等式组:∑ai <= m w (i = 1 到 n)通过求解这个不等式组,结合运输成本的计算函数,就能够找到最优的运输方案。

线性规划也是高一数学中的重要内容,它在最优化问题中有着广泛的应用。

比如,一家工厂要生产两种产品 A 和 B,生产单位产品 A 需要消耗资源 a1、b1、c1,生产单位产品 B 需要消耗资源 a2、b2、c2,而工厂拥有的资源总量分别为 A、B、C。

数学中的优化理论与最优化方法

数学中的优化理论与最优化方法

数学中的优化理论与最优化方法数学中的优化理论与最优化方法是研究如何找到一个函数的最优解的数学分支。

它在各个领域中都有广泛的应用,如经济学、管理学、工程学等。

本文将介绍优化理论的基本概念和最优化方法的主要类型。

一、优化理论的基本概念1.1 目标函数目标函数是优化问题中的核心概念,它描述了需要优化的量。

例如,在生产计划中,我们可以用目标函数表示利润的最大化或成本的最小化。

数学上,目标函数通常是一个多元函数,输入是决策变量,输出是一个标量。

1.2 约束条件约束条件是对决策变量的附加限制。

在实际问题中,常常存在一些限制条件,如资源的有限性、技术限制等。

这些约束条件用一些等式或不等式来表示,并对决策变量产生限制。

1.3 最优解优化问题的最优解是指能够使目标函数达到最大或最小值的决策变量取值。

根据问题的特点,最优解可能存在于一些离散点或连续域中。

为了找到最优解,我们需要建立数学模型,并应用相应的最优化方法进行求解。

二、最优化方法的主要类型2.1 无约束优化方法无约束优化方法是指在没有任何约束条件下,仅需优化目标函数的最大或最小值。

其中,最简单的方法是使用微积分中的极值判断法,通过求目标函数导数为零的点来得到最优解。

当目标函数是凸函数时,最优解可通过求解一阶导数为零的方程组得到。

2.2 约束优化方法约束优化方法是用于求解带有约束条件的优化问题的方法。

其中,最常用的方法是拉格朗日乘子法。

该方法将约束条件引入到目标函数中,构建一个拉格朗日函数,并通过求解拉格朗日函数的极值来得到最优解。

此外,还有内点法、外点法等方法可以有效处理约束优化问题。

2.3 数值优化方法数值优化方法是使用计算机进行优化求解的方法。

在实际问题中,往往需要处理大规模的优化问题,无法通过解析方法求解。

数值优化方法通过迭代的方式,逐步逼近最优解。

常用的数值优化方法有梯度下降法、拟牛顿法等。

2.4 离散优化方法离散优化方法是用于求解离散变量的优化问题的方法。

数学五年级第14讲:最优化问题(最新数学课件)

数学五年级第14讲:最优化问题(最新数学课件)


3尺4尺
例题二
用10尺长的竹竿来截取3尺、4尺长的甲、乙 两种短竹竿各100根,至少要用去原材料几根?怎 样截法最合算?
3尺 4尺 3尺4尺
先10取尺50根竹竿按第一种方法截取,可以得到100
第一种截法:3根尺3、尺3长尺的、竹4尺竿,和残50留根04尺尺。长的竹竿。 第二种截法:3尺、还3尺差、503根尺4,尺残长留的1竹尺竿。,可以按第三种方法截取, 第三种截法:4用尺去、245尺根,竹残竿留。2尺。
河对面
过河的时间取决于最 慢30的+牛30,+回50来+的2时0 +间30 =取1决60于(最分快钟的)牛。
答:最少需要160分钟。
甲乙 丙丁
20分钟 30分钟 40分钟 50分钟
练习五(选讲)
阿派、米德、欧拉、卡尔四人要从河的东岸到西岸。现在 只有一条木欧拉需要2分钟,卡尔需要5 分钟;那么他们至少需要多少分钟才能都安全地渡过河?
第二次6名下属通知:6×6=36(人),知道开会的一共有:36+6+1=4(3 人);
所以,6名执委会成员通知的人数:43×6=258(人); 答:有258人知道要开会。
例题四
一天,某诊所只有王大夫值班。三个病人同时来诊所, 甲量血压需3分钟,乙拿药需2分钟,丙打针需5分钟。王 大夫怎样安排就诊的顺序,才能使他们等候时间的总和最 短?最短是多少分钟?
所以 5 分钟就足够了。
答:王老师至少需要5分钟。
练习三
一个执委会的6名成员要召开一次会议。于是这6 名成员给各自的6个下属打电话,每个下属又给各自 的6个下属再打电话。若每个人都只被通知了一次, 那么有多少人知道要开会?
1名执委会成员通知的人数:
第一次执委会成员通知的人数是:6人,知道开会的一共有:6+1 人;

数学中的最优化理论

数学中的最优化理论

数学中的最优化理论最优化理论作为数学中一个重要的分支,其目的是寻找在给定条件下能够使某一函数取得最优值的变量取值。

最优化问题广泛应用于工程、经济、计算机科学等领域,对于提高效率、降低成本具有重要意义。

本文将对最优化理论的基本概念、常见方法和应用进行介绍。

一、最优化理论的基本概念最优化问题可以归结为如下形式:$$\min_{x \in D} f(x)$$其中,$D$是定义域,$f(x)$是目标函数。

最优化问题分为约束优化和无约束优化两类。

在约束优化问题中,目标函数的取值需要满足一定的条件。

无约束优化问题则没有这样的限制条件。

在求解最优化问题时,我们需要找到一个使目标函数值最小的变量取值。

这个变量取值被称为最优解,对应的目标函数值被称为最优值。

最优解的存在性和唯一性是最优化问题的重要性质,而最优化理论研究的就是如何找到最优解。

二、最优化问题的常见求解方法1. 数学分析方法数学分析方法主要通过对目标函数进行求导以及对约束条件进行分析,来得到最优解。

这种方法通常适用于目标函数和约束条件具有良好的可导性质的情况。

通过求解一阶导数为零的方程组,可以得到最优解的可能取值。

然后通过二阶导数的符号来判断这些取值是最大值还是最小值。

2. 梯度下降法梯度下降法是一种常用的优化方法,特别适用于目标函数为凸函数的情况。

其基本思想是通过不断朝着函数梯度的负方向迭代,直到找到最小值或达到预设的停止条件。

梯度下降法的优势在于可以处理大规模问题,并且不需要求解函数的导数。

然而,梯度下降法可能陷入局部最优解,因此在实际应用中需要谨慎选择初始点和调整学习率。

3. 线性规划法线性规划是一种特殊的最优化问题,其目标函数和约束条件均为线性函数。

线性规划问题具有良好的可解性,并且有高效的算法可以求解。

最著名的线性规划方法是单纯形法,它通过不断沿着可行解空间中的边界移动,寻找最优解。

此外,整数规划、二次规划等也是常见的最优化问题,各自有不同的求解方法。

数学中的函数极值与最优化问题

数学中的函数极值与最优化问题

数学中的函数极值与最优化问题在数学中,函数的极值和最优化问题是重要的概念和方法。

通过对函数的极值的研究,我们可以找到函数的最大值和最小值,并应用于各种优化问题中。

一、函数的极值函数的极值是函数在某个特定区间内取得的最大值或最小值。

数学上,函数的极大值和极小值统称为极值。

1. 局部极值局部极值是指函数在某一个区间内取得的最大值或最小值。

局部极大值也称为极大值点,局部极小值也称为极小值点。

要判断一个函数在某点是否为局部极值,可以使用导数的方法。

对于一元函数,函数在该点的导数为0,且导数的符号在该点的左右两侧发生变化时,该点就是一个局部极值点。

2. 全局极值全局极值是指函数在整个定义域内取得的最大值或最小值。

全局极大值也称为最大值,全局极小值也称为最小值。

要判断一个函数是否有全局极值,可以通过两种方法:一种是查看函数在定义域两个端点上的取值,另一种是对函数求导并找到导数为零的点。

二、最优化问题最优化问题是指在约束条件下,寻找函数的极值的问题。

最优化问题可以是线性的、非线性的,也可以是单目标的、多目标的。

最常见的最优化问题是线性规划问题。

线性规划问题的目标是在一组线性约束条件下,找到使目标函数取得最大值或最小值的变量值。

除了线性规划问题,还有一些非线性规划问题,如二次规划、整数规划等。

这些问题通常涉及到非线性目标函数和约束条件,需要使用更复杂的数学方法来求解。

三、函数极值与最优化问题的应用函数极值和最优化问题广泛应用于经济学、物理学、工程学等领域。

例如,在经济学中,最大化利润和最小化成本是最常见的优化目标;在物理学中,最小化能量和最大化效率是典型的优化问题。

此外,函数极值和最优化问题还被应用于机器学习、人工智能等领域。

在这些领域中,通过优化模型的参数,可以使模型对数据的拟合更好,从而提高预测或决策的准确性。

总结:函数的极值和最优化问题是数学中重要的概念和方法。

通过研究函数的极值,我们可以找到函数的最大值和最小值,应用于各种优化问题中。

数学中的最优化问题

数学中的最优化问题数学中的最优化问题是一类重要的数学问题,其目标是寻找某个函数的最优解,即使得函数取得最大值或最小值的输入变量的取值。

最优化问题在数学、经济学、物理学等领域有广泛的应用,对于解决实际问题具有重要意义。

一、最优化问题的基本概念在介绍最优化问题之前,需要先了解几个基本的概念。

1. 目标函数:最优化问题中,我们定义一个目标函数,该函数是一个关于变量的函数,表示我们要优化的目标。

2. 约束条件:最优化问题中,往往存在一些限制条件,这些条件限制了变量的取值范围。

这些限制条件可以是等式约束或者不等式约束。

3. 最优解:最优解是指满足约束条件下使得目标函数取得最优值的变量取值。

最优解可能是唯一的,也可能存在多个。

二、最优化问题的求解方法在数学中,有多种方法可以求解最优化问题。

以下是几种常见的方法:1. 解析法:对于一些特殊的最优化问题,我们可以通过解析的方法求解。

这种方法通常需要对目标函数进行求导,并解方程得到极值点。

2. 迭代法:对于一些复杂的最优化问题,解析法并不适用,这时可以采用迭代法求解。

迭代法通过不断地逼近最优解,逐步优化目标函数的值。

3. 线性规划:线性规划是一种常见的最优化问题,它的约束条件和目标函数都是线性的。

线性规划可以利用线性代数的方法进行求解,有着广泛的应用。

4. 非线性规划:非线性规划是一类更一般的最优化问题,约束条件和目标函数都可以是非线性的。

非线性规划的求解比线性规划更为困难,需要采用一些数值方法进行逼近求解。

三、最优化问题的应用最优化问题在各个领域都有广泛的应用,下面以几个具体的例子来说明:1. 经济学中的最优化问题:经济学中的生产优化、消费优化等问题都可以抽象为最优化问题。

通过求解最优化问题,可以找到最有效的生产组合或最佳的消费策略。

2. 物理学中的最优化问题:在物理学中,最优化问题常常涉及到动力学、优化控制等方面。

例如,在机械设计中,可以通过最优化问题确定各部件的尺寸和形状,使得机械系统具有最佳的性能。

《最优化理论》课件


机器学习中的应用
介绍最优化理论在神经网络训练 中的作用。
工程优化中的应用
应用最优化理论优化机械设计和 自动化控制系统。
总结
通过本课程的学习,您掌握了最优化理论的基本知识和应用方法,为实际问 题的解决提供了有力工具和支持。期待您在未来能够更好地应用这些知识, 为创新和发展做出更大的贡献。
凸优化问题的定义
详细讲解凸优化问题的定义和常用求解方法。
对偶问题
讲解凸优化问题的对偶问题和应用案例。
其他优化问题
1
整数规划
讲解整数规划在实际问题中的应用及其求解方法。
2
半正定规划
介绍半正定规划的定义和求解方式。
3
非线性规划
学习非线性规划问题的求解方法和应用案例。
应用案例
Hale Waihona Puke 经济学中的应用讲解最优化理论在竞争市场模型 中的应用。
数学符号与常用概念
介绍数学符号的含义和常用概念,为后 续学习内容打下基础。
一元函数的最优化问题
讲解一元函数求极值的方法,如牛顿法 和梯度下降法等。
无约束优化问题
一维搜索法
介绍线性搜索和二分搜索等一维 搜索算法。
牛顿法
讲解牛顿法的动机和实现方式。
梯度下降法
详细介绍梯度下降法的原理和特 点。
共轭梯度法
《最优化理论》PPT课件
最优化理论是数学中一项重要的领域,涉及到许多实际问题的求解,如经济 学、机器学习和工程优化等。本课程将为您介绍最优化理论的基础知识和应 用案例,帮助您深入了解这个精彩的领域。
优化理论的基础知识
1
函数的极值
2
学习函数的最值概念和求解方法。
3
多元函数的最优化问题

数学知识点归纳线性规划与最优化问题

数学知识点归纳线性规划与最优化问题数学知识点归纳:线性规划与最优化问题数学作为一门学科,其中有很多重要的知识点需要我们去学习和掌握。

线性规划和最优化问题就是其中的两个重要知识点。

本文将对线性规划和最优化问题进行详细归纳和讲解。

一、线性规划线性规划是一种数学优化方法,其目标是在一组线性约束条件下,寻找一个线性目标函数的最大值或最小值。

线性规划广泛应用于工程、经济、管理等领域。

下面我们将逐步介绍线性规划的基本概念、模型和解法。

1. 问题的建模在线性规划中,我们需要确定目标函数、约束条件和决策变量。

目标函数是我们希望最大化或最小化的线性指标,约束条件限制了决策变量的取值范围。

通过确定这些要素,我们可以建立一个数学模型,描述出线性规划问题。

2. 单变量线性规划在单变量线性规划中,我们只有一个决策变量。

通过绘制目标函数和约束条件的图像,我们可以找到使目标函数取得最大值或最小值的决策变量。

3. 多变量线性规划在多变量线性规划中,我们有多个决策变量。

通过使用线性代数和数学优化方法,我们可以求解出目标函数的最优解。

4. 线性规划的解法求解线性规划问题的常用方法有单纯形法和内点法。

单纯形法是一种基于顶点的搜索方法,通过不断迭代改进目标函数的值,直到找到最优解。

内点法则是通过将问题转化为一系列约束条件更强的问题,逐步逼近最优解。

二、最优化问题最优化问题是数学分析中的一个重要问题领域,它涉及在一定约束条件下找出使目标函数取得最大值或最小值的问题。

最优化问题广泛应用于工程、经济和科学等领域。

下面我们将介绍最优化问题的基本概念和求解方法。

1. 单变量最优化问题在单变量最优化问题中,我们只有一个自变量。

通过求导、求极值点和判断二阶导数的符号,我们可以找到目标函数的最大值或最小值。

2. 多变量最优化问题在多变量最优化问题中,我们有多个自变量。

通过使用梯度下降法、牛顿法等数值优化方法,我们可以找到目标函数的最优解。

3. 最优化问题的约束条件最优化问题中的约束条件可以是等式约束或不等式约束。

最优化_第2章 优化设计的数学基础


(0) (0) f ( x1(0) , x2 x2 ) f ( x1(0) , x2 ) f ( x) lim x2 X ( 0) x2 0 x2
分别表示沿坐标轴x1和x2方向在X (0)处的f(X)变化率。
§2.1
多元函数的导数与梯度
(0) (0) f x1(0) x1 , x2 x2 f x1(0) , x2 f lim d X ( 0 ) d 0 d (0) (0) (0) f x1 x1 , x2 f x1(0) , x2 x1 lim d 0 x1 d
n元函数极值充分条件:海塞矩阵为正定。
2 f 2 x 1 2 f x2 x1 (0) G( X ) 2 f xn x1
2 f xn x2
§2.4
凸集、凸函数与凸规划
f X f X*
函数f(X)在X*附近的一切X均满足不等式
2.二阶导数( Hessian矩阵)判断
Hessian矩阵G(X)在R上处处半正定。
(0) 1 (0) 2
X (0)
x2
§2.2
多元函数的泰勒展开
二元函数泰勒展开矩阵形式:
f x1 , x2 f X
(0)
f ( X
(0) T
1 ) X X TG ( X (0) )X 2
2 f x 2 1 其中: G ( X (0) ) 2 f x2 x1
2 2
2 5 5 5 1 5 1 5 5
f
X
(1)
26 3x 4 x1 x2 x |X ( 0 ) 5 2 5
2 1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

称为二次型.
当aij是复数时, f称为复二次型 ; 当aij是实数时, f称为 实二次型 .
二、二次型的表示方法
1.用和号表示 对二次型 2 2 2 f x1 , x 2 ,, x n a11 x1 a 22 x 2 a nn x n
2a12 x1 x 2 2a13 x1 x 3 2a n1,n x n1, j 1 n
a11 a 21 x1 , x 2 ,, x n a n1 a11 a12 a21 a22 记 A a n1 a n 2
a12 a1n x1 a 22 a 2 n x 2 a n 2 a nn x n a1n x1 a2 n x2 , x , x ann n
Hesse矩阵

Hesse矩阵的性质
当 f 在点X0点的二阶偏导数都连续时,有
2 2
f f , i, j 1,2,, n, xi x j x j xi
因此,在这种情况下Hesse矩阵是对称的。

求目标函数的梯度和Hesse矩阵
3 2 2 f ( x) x14 2x2 3x3 x12 x2 4x2 x3 x1x3
12x12 2 x2 2 x1 2 x3 2 f ( x) 2 x1 12x2 4 2 x3 4 6 2 x1
泰勒展式

1 定理: 设 f : Rn R具有二阶连续偏导数,则 1 T 2 T f ( X P ) f ( X ) f ( X ) P P f ( X ) P , 2
取 a ji aij , 则2 aij xi x j aij xi x j a ji x j xi ,于是 2 f a11 x1 a12 x1 x 2 a1n x1 x n 2 a 21 x 2 x1 a 22 x 2 a 2 n x 2 x n 2 a n1 x n x1 a n 2 x n x 2 a nn x n
1
r
ar 1
0, arr
r 1,2,, n.
这个定理称为霍尔维茨定理.
例1 判别二次型 x1 , x2 , x3 5 x12 x22 5 x32 4 x1 x2 8 x1 x3 4 x2 x3 f 是否正定.
2 4 5 1 2 , 解 f x1 , x2 , x3 的矩阵为 2 4 2 5 它的顺序主子式 2 4 5 5 2 1 2 1 0, 5 0, 1 0, 2 2 1 4 2 5 故上述二次型是正定的.
其中X X P, 而0 1
一、二次型
定义1 含有n个变量 x1 , x2 ,, xn的二次齐次函数
2 2 2 f x1 , x2 , , xn a11 x1 a22 x2 ann xn
2a12 x1 x2 2a13 x1 x3 2an 1, n xn 1 xn
( X T AX ) 2 AX
Hesse矩阵及泰勒展式
梯度▽f(X)是关于f(X)关于X的一阶导数,
那么f(X)关于X的二阶导数是什么?
Hesse矩阵
设f : R n R1 , X 0 R n , 如果f在点X 0处对于自变量 2 f ( X 0 ) X的各分量的二阶偏导数 (i, j 1,2, , n) xi x j 都存在, 则称函数f在点X 0处二阶可导, 并且称矩阵 2 f ( X 0 ) 2 f ( X 0 ) x1x2 x1xn 2 f ( X 0 ) 2 f ( X 0 ) 2 x2 xn x2 2 2 f (X0) f (X0) 2 xn x2 xn 是f在点X 0处的Hesse矩阵 2 f ( X 0 ) 2 x1 2 f (X0) 2 f ( X 0 ) x x 2 1 2 f (X0) x x n 1
CH2 最优化问题的数学基础
梯度

梯度:以f (X)的n个偏导数为分量的向量称为f(X)在X处的梯 度,记为 T
f ( X ) f ( X ) f ( X ) f ( X ) , ,, x2 xn x1

或记为grad(f(X)) 性质:1)C 0 ,C为常数 2)(bT X ) b 3)( X T X ) 2 X 4)若AT=A,则
则二次型可记作 f xT Ax, 其中A为对称矩阵.
例1 写出二次型
2 2 2 f x1 2 x2 3 x3 4 x1 x2 6 x2 x3
的矩阵. 解 a11 1, a22 2 , a33 3 ,
a12 a21 2 , a13 a31 0 , a23 a32 3.
解:
f 2 4 x13 2 x1 x2 x3 x1 f 2 6 x2 x12 4 x3 x2 f 6 x3 4 x2 2 x1 x3 x3
2 4 x13 2 x1 x2 x3 2 2 f ( x) 6 x2 x1 4 x3 6 x3 4 x2 2 x1 x3
例如
f x 2 4 y 2 16z 2 为正定二次型 f x 3x
2 1 2 2
为负定二次型
定理3 对称矩阵 A 为正定的充分必要条件是: A 的各阶主子式为正,即 a11 a1n a11 a12 0; a11 0, 0, , a21 a22 an1 ann 对称矩阵 A 为负定的充分必要条件是:奇数阶主 子式为负,而偶数阶主子式为正,即 a11 a1r
0 1 2 A 2 2 3 . 0 3 3
二、正(负)定二次型的概念
定义1 设有实二次型 f ( x ) x T Ax, 如果对任何 x 0, 都有f x 0显然 f 0 0 , 则称f为正定二 次型, 并称对称矩阵A是正定的;如果对任何x 0 都有f ( x ) 0, 则称 f为负定二次型, 并称对称矩阵 A是负定的.
相关文档
最新文档