鸡兔同笼问题的三种解法

合集下载

鸡兔同笼问题几种不同的解法

鸡兔同笼问题几种不同的解法

鸡兔同笼问题几种不同的解法鸡兔同笼是中国古代著名的数学趣题,大约在 1500 年前的《孙子算经》中就有记载。

这个问题虽然看似简单,却蕴含着丰富的数学思维和解题方法。

接下来,咱们就一起探讨一下鸡兔同笼问题常见的几种解法。

假设笼子里有若干只鸡和兔,从上面数有 35 个头,从下面数有 94 只脚,那鸡和兔各有多少只呢?解法一:假设法咱们先假设笼子里全部都是鸡。

因为每只鸡有 2 只脚,那么 35 只鸡总共就应该有 35×2 = 70 只脚。

但实际上有 94 只脚,这说明我们少算了脚的数量。

少算的脚的数量为 94 70 = 24 只。

为什么会少算呢?因为每把一只兔当成鸡就会少算 4 2 = 2 只脚。

那少算的 24 只脚里面有几个 2 只脚,就有几只兔。

所以兔的数量就是 24÷2 = 12 只。

鸡的数量就是 35 12 = 23 只。

同样的,咱们也可以先假设笼子里全部都是兔。

每只兔有 4 只脚,35 只兔就应该有 35×4 = 140 只脚。

但实际上只有 94 只脚,多算了 140 94 = 46 只脚。

每把一只鸡当成兔就会多算 4 2 = 2 只脚。

多算的 46 只脚里面有几个 2 只脚,就有几只鸡。

所以鸡的数量就是 46÷2 = 23 只,兔的数量就是 35 23 = 12 只。

解法二:方程法设鸡的数量为 x 只,兔的数量就是 35 x 只。

因为每只鸡有 2 只脚,每只兔有 4 只脚,总共 94 只脚,所以可以列出方程 2x + 4×(35 x) = 94 。

先计算括号里的式子:2x + 140 4x = 94 。

移项可得:4x 2x = 140 94 。

合并同类项:2x = 46 。

解得:x = 23 ,所以鸡有 23 只,兔有 35 23 = 12 只。

咱们也可以设兔的数量为 y 只,那么鸡的数量就是 35 y 只,列出方程 4y + 2×(35 y) = 94 ,按照同样的步骤也能求出兔有 12 只,鸡有 23 只。

鸡兔同笼问题的三种解法

鸡兔同笼问题的三种解法

鸡兔同笼问题的三种解法一、方法与技巧解决鸡兔同笼问题主要有三个解题方法:方程法、十字交叉法和假设法。

(1)方程法:通过一元一次方程或者二元一次方程组求解;(2)十字交叉图法:第一部分的平均值总数量的平均11则可得两部分的数量比为总量-第—部分的平均值兀总个数竿一翊八苹几抽第二部分的平均値—第一部分的平均值—床—即'纱、鸡兔同笼问题举例例:现有鸡兔同笼,已知鸡兔数头35,数脚94,求鸡和兔的个数。

(鸡兔同笼原型)方程法:设鸡的个数为x,则兔的个数为35-x,则有2x 4(35-x)=94,解得x=23。

故有鸡23只,兔12只。

第二却分的平均值h假设求法;十字交叉法:平均每个头对应澄只脚,根据十字交叉團法,有:所加兔的个数之比为:鸡1兔= ^<|| = 23J2,所以漏的个数为 廿冥」_“3,所以兔的个数为3%丄诂12+23 12+2^假设法:假设35只都罡馮 刑用公式解題;兔的只数=/.=12,则漓有4-2三、鸡兔同笼解题技巧的运用例:某地劳动部门租用甲、乙两个教室开展农村实用人才培训。

两教室均有5排座位,甲教室每排可坐10人,乙教室每排可坐9人。

两教室当月共举办该培训 27次,每次培训均 座无虚席,当月共培训 1290人次。

问甲教室当月共举办了多少次这项培训【答案】D【方程法】甲教室一次可坐 10X 5=50人,乙教室一次可坐 9X 5=45人,设甲教室举办 了 x 次培训,则有: 50x 45(27-x)=1290 ,解得 x=15。

故选 D【公式法】根据题意,甲教室一次可坐 10X 5=50人,乙教室一次可坐 9X 5=45人,则 由鸡兔同笼公式可知:甲教室举办的培训次数=94 3594 35463524 35实际垮训总人决-全部用乙載室的垮训人次 -1290 —= 15次召甲竅宣華应鬲曲人次-乙教童華次的培训人次50 -45"宀12QD 1^0人』根擔十字交夏厨E 有叶字交叉法】平均毎次培训対譬 三予田教室乙教室则甲、乙妲举办驱之比为罟:¥之4,故甲教室举办沁=15 次*故选肌27。

鸡兔同笼解法

鸡兔同笼解法

鸡兔同笼解法鸡兔同笼是中国古代著名的数学趣题之一,也是小学数学中常见的一类问题。

它的表述通常是:在一个笼子里,有若干只鸡和兔子,从上面数有若干个头,从下面数有若干只脚,求鸡和兔子各有多少只。

解决鸡兔同笼问题,有多种方法,下面为大家介绍几种常见且易懂的解法。

第一种方法是假设法。

假设笼子里全是鸡,那么每只鸡有 2 只脚。

如果笼子里一共有 n 个头,那么按照全是鸡来算,脚的总数就是 2n 只。

但实际上脚的总数不止这么多,假设实际脚的总数是 m 只,那么多出来的脚的数量就是 m 2n 只。

这是因为把兔子当成鸡来算了,每只兔子有 4 只脚,当成鸡就少算了 2 只脚,所以多出来的脚的数量除以 2 就是兔子的数量,即(m 2n)÷ 2 就是兔子的数量,用头的总数 n 减去兔子的数量,就得到鸡的数量。

举个例子来说,笼子里有 35 个头,94 只脚。

假设全是鸡,那么脚的总数就是 35×2 = 70 只。

但实际有 94 只脚,多出来的脚的数量就是94 70 = 24 只。

每只兔子少算了 2 只脚,所以兔子的数量就是 24÷2 =12 只,鸡的数量就是 35 12 = 23 只。

第二种方法是方程法。

我们可以设鸡的数量为 x 只,兔子的数量为y 只。

因为头的总数等于鸡和兔子的数量之和,所以x +y =总头数。

又因为鸡有 2 只脚,兔子有 4 只脚,所以 2x + 4y =总脚数。

这样就得到了一个方程组,通过解方程组就能求出 x 和 y 的值,也就是鸡和兔子各自的数量。

还是以上面的例子为例,设鸡有 x 只,兔子有 y 只。

则 x + y = 35,2x + 4y = 94。

由第一个方程可得 x = 35 y,将其代入第二个方程,得到 2×(35 y) + 4y = 94,70 2y + 4y = 94,2y = 24,y = 12。

把y = 12 代入 x = 35 y ,得到 x = 23。

鸡兔同笼问题

鸡兔同笼问题

鸡兔同笼解法一:(兔的脚数×总只数-总脚数)÷(兔的脚数-鸡的脚数)=鸡的只数,总只数-鸡的只数=兔的只数;解法二:(总脚数-鸡的脚数×总只数)÷(兔的脚数-鸡的脚数)=兔的只数,总只数-兔的只数=鸡的只数;解法三:总脚数÷2—总头数=兔的只数,总只数—兔的只数=鸡的只数。

例题:有若干只鸡兔同在一个笼子里,从上面数,有35个头,从下面数,有94只脚。

问笼中各有多少只鸡和兔?(总脚数-总头数×鸡的脚数)÷(兔的脚数-鸡的脚数)=兔的只数(94-35×2)÷2=12(兔子数) 总头数(35)-兔子数(12)=鸡数(23)解释:让兔子和鸡同时抬起两只脚,这样笼子里的脚就减少了总头数×2只,由于鸡只有2只脚,所以笼子里只剩下兔子的两只脚,再÷2就是兔子数。

一、折叠假设法:假设全是鸡:2 ×35 = 70 (条),鸡脚比总脚数少:94 - 70 = 24 (只)兔子比鸡多的脚数:4 - 2 = 2(只)兔子的只数:24 ÷2 = 12 (只)鸡的只数:35 - 12 = 23(只)假设全是兔子:4 ×35 = 140(只)兔子脚比总数多:140 - 94 = 46(只) 兔子比鸡多的脚数:4 - 2 = 2(只)鸡的只数:46 ÷2 = 23(只)兔子的只数:35 - 23 = 12(只)方程法:一元一次方程(一)解:设兔有x只,则鸡有(35-x)只。

列方程:4X+2(35-x)=94解方程:4X+2×35-2X=942X+70=942X=94-702X=24解得:X=12则鸡有:35 - 12 = 23 只(二)解:设鸡有x只,则兔有(35-x)只。

列方程:2X+4(35-x)=94解方程:2X+4×35-4X=94140-2X=942X=140-942X=46解得:X=23则兔有:35 - 23 = 12(只)答:兔子有12只,鸡有23只。

鸡兔同笼问题的三种解法

鸡兔同笼问题的三种解法

鸡兔同笼问题的三种解法
一、方法与技巧
解决鸡兔同笼问题主要有三个解题方法:方程法、十字交叉法和假设法..
1方程法:通过一元一次方程或者二元一次方程组求解;
2十字交叉图法:
二、鸡兔同笼问题举例
例:现有鸡兔同笼;已知鸡兔数头35;数脚94;求鸡和兔的个数..鸡兔同笼原型方程法:设鸡的个数为x;则兔的个数为35-x;则有2x435-x=94;解得x=23..故有鸡23只;兔12只..
三、鸡兔同笼解题技巧的运用
例:某地劳动部门租用甲、乙两个教室开展农村实用人才培训..两教室均有5排座位;甲教室每排可坐10人;乙教室每排可坐9人..两教室当月共举办该培训27次;每次培训均座无虚席;当月共培训1290人次..问甲教室当月共举办了多少次这项培训
A.8
B.10
C.12
D.15
答案D
方程法甲教室一次可坐10×5=50人;乙教室一次可坐9×5=45人;设甲教室举办了x次培训;则有:50x4527-x=1290;解得x=15..故选D..
公式法根据题意;甲教室一次可坐10×5=50人;乙教室一次可坐9×5=45人;则由鸡兔同笼公式可知:甲教室举办的培训次数=。

鸡兔同笼问题的13种解决方法

鸡兔同笼问题的13种解决方法

鸡兔同笼问题的13种解决方法鸡兔同笼问题是一道经典的数学问题,许多人在学习数学的初级阶段都会遇到。

此问题的目标是根据给定的头数和脚数,计算出鸡和兔的数量。

在本文中,我们将介绍鸡兔同笼问题的13种解决方法,从简单到复杂,帮助你更全面地理解这个问题。

方法一:穷举法最简单的方法是使用穷举法来解决鸡兔同笼问题。

我们从给定的头数和脚数开始,逐个尝试鸡和兔的组合数量,直到找到满足条件的解。

这种方法的缺点是计算量大,尤其是当给定的头数和脚数较大时。

方法二:代数方程法我们可以将鸡和兔的数量表示为变量,使用代数方程组来解决鸡兔同笼问题。

假设鸡的数量为x,兔的数量为y,根据头数和脚数的关系可以得到两个方程:x + y = 头数,2x + 4y = 脚数。

通过解这个方程组,我们可以得到鸡和兔的具体数量。

方法三:二次方程法如果给定的头数和脚数是完全平方数,我们可以使用二次方程来解决鸡兔同笼问题。

首先,我们假设鸡的数量为x,兔的数量为y,根据头数和脚数的关系可以得到两个方程:x + y = 头数,2x + 4y = 脚数。

将第一个方程代入第二个方程,得到一个只包含鸡或兔数量的二次方程。

通过解这个二次方程,我们可以得到鸡和兔的具体数量。

方法四:列方程法我们可以通过列方程的方法来解决鸡兔同笼问题。

假设鸡的数量为x,兔的数量为y,根据头数和脚数的关系可以得到两个方程:x + y = 头数,2x + 4y = 脚数。

通过解这个方程组,我们可以得到鸡和兔的具体数量。

方法五:二进制法我们可以使用二进制法来解决鸡兔同笼问题。

将鸡和兔的数量用二进制表示,每个头对应一个二进制位,每个脚对应一个二进制位。

通过遍历所有可能的二进制组合,找到满足条件的解。

这种方法适用于给定的头数和脚数较小的情况。

方法六:因式分解法如果给定的头数和脚数是正整数且具有公因式,我们可以使用因式分解法来解决鸡兔同笼问题。

将头数和脚数分别进行因式分解,找到它们的公因式,然后通过计算得到鸡和兔的具体数量。

鸡兔同笼解方程

鸡兔同笼解方程
常用的鸡兔同笼方程公式
1、(总足数-鸡足数×总只数)÷每只鸡兔足数的差=兔数
2、兔子只数=(总腿数-总头数×2)÷2
3、鸡的只数=(总头数×4-总腿数)÷2
4、(兔足数×总只数-总足数)÷每只鸡兔足数的差=鸡数
鸡兔同笼方程解题方法
设有鸡x只,则兔有(总数-x)只,因为每只兔有4只脚,每只鸡有2只脚。

因此有鸡脚2x只,兔脚4(总数-x)只。

所以可以得到方程:2x+4(总数-x)=总足数。

鸡兔同笼是中国古代的数学名题之一。

大约在1500年前,《孙子算经》中就记载了这个有趣的问题。

书中是这样叙述的:有若干只鸡兔同在一个笼子里,从上面数,有35个头,从下面数,有94只脚。

问笼中各有多少只鸡和兔?
鸡兔同笼最简单的算法:(总脚数-总头数×鸡的脚数)÷(兔的脚数-鸡的脚数)=兔的只数,即(94-35×2)÷2=12(兔子数)。

总头数(35)-兔子数(12)=鸡数(23)。

一元一次方程解法:①设兔有x只,则鸡有(35-x)只。

4x+2(35-x)=94,解得x=12。

鸡:35-12=23(只)。

②设鸡有x只,则兔有(35-x)只。

2x+4(35-x)=94,解得x=23.兔:35-23=12(只)。

二元一次方程解法:设鸡有x只,兔有y只。

方程组为:x+y=35 2x+4y=94。

解得x=23,y=12。

答:兔子有12只,鸡有23只。

鸡兔同笼的几种解法

鸡兔同笼的几种解法鸡兔同笼是中国古代著名的数学趣题,也是小学数学中常见的题型。

这个问题看似简单,却蕴含着丰富的数学思维和解题方法。

下面就为大家介绍几种常见的解法。

一、假设法假设法是解决鸡兔同笼问题最常用的方法之一。

我们可以先假设笼子里全部都是鸡或者全部都是兔,然后根据实际的脚数与假设情况下的脚数差异来进行计算。

假设全是鸡,那么每只鸡有 2 只脚,笼子里脚的总数就应该是鸡的数量乘以 2。

但实际上脚的数量比这个假设的总数要多,这是因为把兔当成鸡来算,每只兔少算了 2 只脚。

用实际脚数与假设脚数的差值除以每只兔少算的 2 只脚,就能得到兔的数量。

例如,笼子里有鸡和兔共 35 只,脚有 94 只。

假设全是鸡,那么脚的总数就是 35×2 = 70 只。

但实际有 94 只脚,多了 94 70 = 24 只脚。

每只兔比鸡多 4 2 = 2 只脚,所以兔的数量就是 24÷2 = 12 只,鸡的数量就是 35 12 = 23 只。

假设全是兔的情况与假设全是鸡类似,只是计算时是用脚数的差值除以每只鸡多算的 2 只脚来得到鸡的数量。

二、方程法方程法是一种比较直观和通用的解题方法。

我们可以设鸡的数量为x 只,兔的数量为 y 只,然后根据题目中的条件列出方程组。

通常根据鸡和兔的总数以及脚的总数来列方程。

比如还是前面那个例子,鸡和兔共 35 只,脚有 94 只。

可以列出方程组:x + y = 35 (鸡兔总数为 35 只)2x + 4y = 94 (鸡有 2 只脚,兔有 4 只脚,总脚数为 94 只)通过解方程组,可以求出 x 和 y 的值,从而得到鸡和兔的数量。

三、列表法列表法是一种比较直观但相对繁琐的方法。

我们可以从鸡 0 只、兔35 只开始,逐步增加鸡的数量,减少兔的数量,计算相应的脚数,直到找到符合条件的答案。

比如:鸡 0 只,兔 35 只,脚数 140 只(不符合)鸡 1 只,兔 34 只,脚数 138 只(不符合)……鸡 23 只,兔 12 只,脚数 94 只(符合)这种方法虽然比较笨,但对于理解问题的本质和培养耐心很有帮助。

鸡兔同笼的五种解法

鸡兔同笼的五种解法鸡兔同笼,是一道经典的数学问题。

问题描述为:在一个笼子里,有若干只鸡和若干只兔子,它们的头和脚数加起来共有多少个?这个问题可以通过数学方程式来解决,但也可以通过逻辑推理来得到五种解法。

第一种解法:画图法我们可以画一张笼子的图,用圆圈代表鸡,用方块代表兔子,然后根据题目中给出的头和脚数,来确定圆圈和方块的数量。

最后,将圆圈和方块的数量相加,就能得到答案。

第二种解法:代数法我们可以用代数的方法来解决这个问题。

设鸡的数量为x,兔子的数量为y,根据题目中给出的头和脚数,我们可以得到以下方程组:x + y = 头数2x + 4y = 脚数通过解方程组,就能得到鸡和兔子的数量,从而得到答案。

第三种解法:矩阵法我们可以用矩阵的方法来解决这个问题。

设鸡和兔子的数量构成一个2x1的矩阵,头和脚数构成一个2x2的矩阵,通过矩阵运算,就能得到鸡和兔子的数量,从而得到答案。

第四种解法:枚举法我们可以通过枚举的方法来解决这个问题。

从鸡和兔子数量都是0开始,逐步增加鸡或兔子的数量,直到头和脚数符合题目中给出的条件为止。

这种方法虽然比较麻烦,但可以帮助我们更好地理解问题的本质。

第五种解法:数学归纳法我们可以用数学归纳法来解决这个问题。

假设我们已经知道了笼子里有n只鸡和兔子时的头和脚数,那么当笼子里再加入一只鸡和一只兔子时,头和脚数的变化可以通过数学公式来计算。

通过数学归纳,我们可以得到笼子里有任意数量的鸡和兔子时的头和脚数,从而得到答案。

以上五种解法,都可以用来解决鸡兔同笼的问题。

不同的解法,可以帮助我们更全面地理解这个问题,也可以帮助我们更好地锻炼逻辑思维能力。

在学习数学时,我们应该尝试不同的方法,从不同的角度来理解问题,这样才能真正掌握数学的精髓。

(完整版)鸡兔同笼公式

鸡兔同笼公式解法1:(兔的脚数×总只数-总脚数)÷(兔的脚数-鸡的脚数)=鸡的只数总只数-鸡的只数=兔的只数解法2:(总脚数-鸡的脚数×总只数)÷(兔的脚数-鸡的脚数)=兔的只数总只数-兔的只数=鸡的只数解法3:总脚数÷2—总头数=兔的只数总只数—兔的只数=鸡的只数例1 (古典题)鸡兔同笼,头共46,足共128,鸡兔各几只?分析如果46只都是兔,一共应有4×46=184只脚,这和已知的128只脚相比多了184-128=56只脚.如果用一只鸡来置换一只兔,就要减少4-2=2(只)脚.那么,46只兔里应该换进几只鸡才能使56只脚的差数就没有了呢?显然,56÷2=28,只要用28只鸡去置换28只兔就行了.所以,鸡的只数就是28,兔的只数是46-28=18。

解:①鸡有多少只?(4×6-128)÷(4-2)=(184-128)÷2=56÷2=28(只)②免有多少只?46-28=18(只)答:鸡有28只,免有18只。

我们来总结一下这道题的解题思路:先假设它们全是兔.于是根据鸡兔的总只数就可以算出在假设下共有几只脚,把这样得到的脚数与题中给出的脚数相比较,看相差多少.每差2只脚就说明有一只鸡;将所差的脚数除以2,就可以算出共有多少只鸡.我们称这种解题方法为假设法.概括起来,解鸡兔同笼问题的基本关系式是:鸡数=(每只兔脚数×兔总数- 实际脚数)÷(每只兔子脚数-每只鸡的脚数)兔数=鸡兔总数-鸡数当然,也可以先假设全是鸡。

例2 鸡与兔共有100只,鸡的脚比兔的脚多80只,问鸡与兔各多少只?分析这个例题与前面例题是有区别的,没有给出它们脚数的总和,而是给出了它们脚数的差.这又如何解答呢?假设100只全是鸡,那么脚的总数是2×100=200(只)这时兔的脚数为0,鸡脚比兔脚多200只,而实际上鸡脚比兔脚多80只.因此,鸡脚与兔脚的差数比已知多了(200-80)=120(只),这是因为把其中的兔换成了鸡.每把一只兔换成鸡,鸡的脚数将增加2只,兔的脚数减少4只.那么,鸡脚与兔脚的差数增加(2+4)=6(只),所以换成鸡的兔子有120÷6=20(只).有鸡(100-20)=80(只)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

鸡兔同笼问题的三种解法 The latest revision on November 22, 2020
鸡兔同笼问题的三种解法
一、方法与技巧
解决鸡兔同笼问题主要有三个解题方法:方程法、十字交叉法和假设法。

(1)方程法:通过一元一次方程或者二元一次方程组求解;
(2)十字交叉图法:
二、鸡兔同笼问题举例
例:现有鸡兔同笼,已知鸡兔数头35,数脚94,求鸡和兔的个数。

(鸡兔同笼原型)方程法:设鸡的个数为x,则兔的个数为35-x,则有2x4(35-x)=94,解得x=23。

故有鸡23只,兔12只。

三、鸡兔同笼解题技巧的运用
例:某地劳动部门租用甲、乙两个教室开展农村实用人才培训。

两教室均有5排座位,甲教室每排可坐10人,乙教室每排可坐9人。

两教室当月共举办该培训27次,每次培训均座无虚席,当月共培训1290人次。

问甲教室当月共举办了多少次这项培训
A.8
B.10
C.12
D.15
【答案】D
【方程法】甲教室一次可坐10×5=50人,乙教室一次可坐9×5=45人,设甲教室举办了x次培训,则有:50x45(27-x)=1290,解得x=15。

故选D。

【公式法】根据题意,甲教室一次可坐10×5=50人,乙教室一次可坐9×5=45人,则由鸡兔同笼公式可知:甲教室举办的培训次数=。

相关文档
最新文档