高数上册8

合集下载

高数第八章

高数第八章

第25,26讲 第八章 重 积 分上一章把一元函数微分学推广到多元函数情形.现在要把一元函数定积分推广为多元函数的多重积分、曲线积分和曲面积分.定积分(特定构造的和式极限,“高级和”)所讨论的是分布在某区间上的几何量(曲边梯形面积)或物理量(变速直线运动路程)的积累问题.而多重积分,曲线、曲面积分则能求出分布在平面区域,平面曲线,空间曲面上的整体量,以扩大积分学的应用范围.第一节 二重积分的概念和性质一、二重积分的概念 1.两个实例例1 求曲顶柱体的体积.曲顶柱体是指:以平面上的有界闭区域D 为底,以D 上方的曲面S 为顶,周围是母线平行于z 轴的柱面(见P.306图8-1)今设曲顶方程为(,),(,)z f x y x y D =∈,且设(,)f x y 连续,,(,)0f x y ≥,求该曲顶柱体的体积.V 解 第一步 :“分割”— 化整为零.用一组曲线网将区域D 分成n 个小区域:12,,,n σσσ∆∆∆ ,并用它们记各小区域的面积.,于是大体积相应被分割为n 个曲顶柱体,记体积为:12,,,n v v v ∆∆∆ (见P.306图8-2).第二步:“近似代替”— 以平代曲.i σ∆上任意取一点(,)i i ξη,(,)f x y 在D 上连续,∴当分割充分细小时,可用小平顶柱体体积,()i i i f ξησ∆近似代替小曲顶柱体的体积(,)(1,2,,).i i i i v f i n ξησ∆≈∆= 第三步:“求和”— 积零为整. 11(,)nni i i i i i V v f ξησ===∆≈∆∑∑.第四步:“取极限”— 由近似到精确.1l i m (,)ni i i i V f λξησ→==∆∑,其中λ是n 个小区域i σ∆的直径最大者,即 1max ()i i nd λσ≤≤=∆.例2 求不均匀平面薄板的质量(薄即厚度可忽略不计).设有一块质量分布不均匀的薄板,在xoy 平面上占有区域D (见P.307图8-3), 面密度为ρ(,)x y ,求该薄板 的质量M .解 也分四步完成.“ 分割”: 在xoy 平面上将薄板D 分割为n 小块:12,,,n σσσ∆∆∆ .“近似代替”:在i σ∆上任取一点(,)i i ξη,将此小块近似看作是均匀的,则小块质量为: i M ∆≈ρ(,),(1,2,,)i i i i n ξησ∆= . “求和”: 11nni i i M M ===∆≈∑∑ρ(,)i i i ξησ∆.“取极限”:01lim ni M λ→==∑ρ(,)i i i ξησ∆.以上两例,虽内容不同,但解决问题的方法是一样的,都归结为求一种具有相同结构的“和式的极限”,我们把它抽象出来,得到2.二重积分的定义设二元函数(,)z f x y =在有界闭区域D 上有定义,用任意的曲线网分D 为n 个小区域 12,,,n σσσ∆∆∆ , 并用它们记小区域的面积. 又记 i σ∆的直径为()i d σ∆,并令1max ()i i nd λσ≤≤=∆,在i σ∆上任取一点(,)i i ξη,作乘积 (,),(1,2,,)i i i f i n ξησ∆= , 作和数(称为积分和,或Rimann 和)1(,)nn i i i i S f ξησ==∆∑,令0λ→,若积分和有极限 Ⅰ(它不依赖于区域D 的分法及中间点的取法),则称此极限值为函数(,)z f x y =在区域D 上的二重积分,记作:Ⅰ=01lim (,)(,)ni i i i Df f x y d λξησσ→=∆=∑⎰⎰ (1)其中D 称为积分区域,(,)f x y 称为被积函数,(,)f x y d σ称为被积表达式,d σ称为面积元素.若二重积分(,)Df x y d σ⎰⎰存在,则称(,)z f x y =在区域D 上可积.重要结论:二元连续函数是可积的.(不证)由二重积分的定义知:例1中取顶柱体的体积V 是曲顶柱体函数(,)f x y 在底面区域D 上的二重积分,即 (,)DV f x y d σ=⎰⎰.例2中平面薄板的质量M 是面密度函数ρ(,)x y 在所占区域D 上的二重积分, 即 DM =⎰⎰ρ(,)x y d σ.3.二重积分的几何意义 (1)当(,)0f x y ≥时,则(,)Df x y ⎰⎰d σ表示以(,)z f x y =为顶,以D 为底的曲顶柱体的体积.(2)当(,)0f x y ≤时,则(,)Df x y d σ⎰⎰表示曲顶柱体体积前面加了一个负号.(但不能说是负体积)(3)当(,)1f x y ≡时,(,)DDf x y d d σσσ==⎰⎰⎰⎰为D 的面积.二、二重积分的性质 (P.308)性质1 “常数因子提出来” 若(,)f x y 在区域D 上连续,则(,)(,),(DDkf x y d k f x y d k σσ=⎰⎰⎰⎰为常数)性质2 “一项一项分开积” 若(,),(,)f x y g x y 在D 上连续,则[](,)(,)(,)(,)DDDf x yg x y d f x y d g x y d σσσ±=±⎰⎰⎰⎰⎰⎰.性质3 设区域D 由1D 与2D 组成,且1D 与2D 除边界上点外无公共点,又(,)f x y 在D 上连续,则12(,)(,)(,).DD D f x y d f x y d f x y d σσσ=+⎰⎰⎰⎰⎰⎰性质4 若(,),(,)f x y g x y 在D 上连续,且 (,)(,)f x y g x y ≤,则有不等式(,)(,)DDf x y dg x y d σσ≤⎰⎰⎰⎰特殊地,由于(,)(,)(,)f x y f x y f x y -≤≤,又有不等式(,)(,).DDf x y d f x y d σσ≤⎰⎰⎰⎰性质5 设M ,m 分别是(,)f x y 在D 上的最大值和最小值,σ是D 的面积,则有 (,)Dm f x y d M σσσ≤≤⎰⎰ (估值不等式)性质6 (二重积分的中值定理)设(,)f x y 在闭区域D 上连续,σ为D 的面积,则在D 上至少存在一点(,)ξη,使得(,)(,)Df x y d f σξησ=⋅⎰⎰习 题 8-14 (1)—(4)5 (1)—(4)4. 根据二重积分的性质,比较下列积分的大小:(1) 2()d Dx y σ+⎰⎰与3()d Dx y σ+⎰⎰,其中积分区域D 是由x 轴、y 轴与直线1x y +=所围成;(2) 2()d Dx y σ+⎰⎰与3()d Dx y σ+⎰⎰,其中积分区域D 是由圆周22(2)(1)2x y -+-=所围成;(3)ln()d Dx y σ+⎰⎰与2[ln()]d Dx y σ+⎰⎰,其中D 是三角形闭区域,三顶点分别为(1,0),(1,1),(2,0);(4) ln()d Dx y σ+⎰⎰与2[ln()]d Dx y σ+⎰⎰,其中{(,)35,01}D x y x y =≤≤≤≤.解 (1) 在积分区域D 上,01x y ≤+≤,故有32()()x y x y +≤+,根据二重积分的性质4,可得32()d ()d .DDx y x y σσ+≤+⎰⎰⎰⎰(2) 由于积分区域D 位于半平面{(,)|1}x y x y +≥内,故在D 上有23()()x y x y +≤+.从而23()d ()d .DDx y x y σσ+≤+⎰⎰⎰⎰(3) 由于积分区域D 位于条形区域{(,)|12}x y x y ≤+≤内,故知D 上的点满足0l n ()1x y ≤+≤,从而有2[ln()]ln()x y x y +≤+.因此2[ln()]d ln()d .DDx y x y σσ+≤+⎰⎰⎰⎰ (4) 由于积分区域D 位于半平面{(,)|e}x y x y +≥内,故在D 上有ln()1x y +≥,从而有2[ln()]ln()x y x y +≥+.因此2[ln()]d ln()d .DDx y x y σσ+≥+⎰⎰⎰⎰5. 利用二重积分的性质估计下列积分的值:(1) ()d DI xy x y σ=+⎰⎰其中{(,)01,01}D x y x y =≤≤≤≤;(2) 22sin sin d DI x y σ=⎰⎰其中{(,)0,0}D x y x y ππ=≤≤≤≤;(3) (1)d DI x y σ=++⎰⎰其中{(,)01,02}D x y x y =≤≤≤≤;(4) 22(49)d DI x y σ=++⎰⎰其中22{(,)4}D x y x y =+≤.解 (1) 在积分区域D 上,01x ≤≤,01y ≤≤,从而0()2xy x y ≤+≤,又D 的面积等于1,因此0()d 2.Dxy x y σ≤+≤⎰⎰(2) 在积分区域D 上,0sin 1x ≤≤,0sin 1y ≤≤,从而220sin sin 1x y ≤≤,又D 的面积等于2π,因此2220sin sin d π.Dx y σ≤≤⎰⎰(3) 在积分区域D 上,014x y ≤++≤,D 的面积等于2,因此2(1)d 8.Dx y σ≤++≤⎰⎰(4) 在积分区域D 上,2204x y ≤+≤,从而22229494()925,x y x y ≤++≤++≤,又D 的面积等于4π,因此2236π(49)d 100π.Dx y σ≤++≤⎰⎰第27,28讲 第二节 二重积分的计算方法— 化为两个定积分,即累次积分. 一、在直角坐标系下计算二重积分当(,)f x y 在区域D 上可积时,其积分值与分割方法无关,因此取特殊的分割法来计算二重积分1.用两组分别平行于x 轴,y 轴的直线分割区域D ,这时面积元素d dxdy σ=, 从而(,)(,)DDf x y d f x y dxdy σ=⎰⎰⎰⎰.2.化二重积分为累次积分 设(,)0f x y ≥,则(,)Df x y dxdy ⎰⎰表示曲顶柱体的体积V ,用“切片法”求V(1)设区域D 由直线,x a x b == 及曲线12(),()y x y x ϕϕ==围成: 12()()x y x a x bϕϕ≤≤⎧⎨≤≤⎩(这称x -型区域)回忆:已知平行截面面积,求立体体积公式 8-4 ()a ()baV A x dx =⎰, ()A x 是平行截面面积.现用平行于yoz 的平面0x x =去截曲顶柱体,得截面,其面积为A 0()x (图8-5)是一个曲边梯形,曲边方程为:0(,)z f x y =,因此,由定积分的几何意义,2010()00()()(,)x x A x f x y dy ϕϕ=⎰ (1)'让0x 取遍整个[],a b ,得到截面面积 21()()()(,)x x A x f x y dy ϕϕ=⎰ (1)''于是,由“已知平行截面面积求立体体积公式”⇒ 22111()()()()()(,)(,)bbx b x aax a x V A x dxf x y dy dx dx f x y dy ϕϕϕϕ''⎡⎤===⎢⎥⎣⎦⎰⎰⎰⎰⎰()代入 (1)这叫累次积分.第一次对y 的积分,是求x 处的截面面积()A x ,将x 看作常数,第二次对x 积分,是沿x 轴加这些薄片的体积()A x dx ,这时x 是积分变量.注 公式(1)成立的条件是“(,)f x y 在D 上连续”,并不要求(,)0.f x y ≥公式(1)是在x -型积分域下,将二重积分化为先对y 后对x 的两次定积分.如何确定两次的积分限呢?先用平行于y 轴的直线在[],a b 内一点x 处穿入D 的下边界,穿出上边界,其交点的坐标12(),()x x ϕϕ为第一次先对y 积的下限与上限,再将D 投影到x 轴上,得交点,a b 为第二次对x 积分的下限与上限.(称“穿口法”,定限口诀是:后积先定限(常数),限内画条线,先交下限写,后交上限见.) 例1 化二重积分(,)Df x y d σ⎰⎰为累次积分.其中;(1) D 由1,2,0,2x x y y =-===围成; (2)D 由2,y x =及2x y =围成. (3)D 由2,,2y x y x y x ==-=-围成. 解 计算二重积分时,先画好积分区域的草图.(1)积分域是x -型的矩型域,由公式(1)⇒221(,)(,)Df x y d dx f x y dy σ-=⎰⎰⎰⎰.(2)解方程组求交点,画积分域草图2201,01x x y x y y x y ==⎧=⎧⎧⇒⎨⎨⎨===⎩⎩⎩这时x -型积分域,由公式(1)⇒(先对y 积分,将x 看作常数,积分限是x 的函数,第二次对x 积分,积分限为常数)21(,)(,).xDf x y d f x y d yσ=⎰⎰⎰(3)解方程组求交点,画积分区域草图1212y x x y x =-⎧⇒=-⎨=-⎩, 2212y xx y x =⎧⇒=⎨=-⎩如先对y 积分时,用平行y 轴的直线不能一次穿过区域D 时,需将D 分为1D 域2D ,然后由积分的可加性质3及公式(1),得到22122121(,)(,)(,).x x xxDD D f x y d dx f x y dy dx f x y dy σ----=+=+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰例2 求ⅠDxyd σ=⎰⎰,其中D 由,y x =与2y x =围成. 解 解方程组求交点,画区域草图 1220,1y xx x y x=⎧⇒==⎨=⎩由公式(1)⇒222111350()211().224x x x xDy xyd xdx ydy x dxx x dx σ===-=⎰⎰⎰⎰⎰⎰例3 求Ⅰ(32),D x y d D σ=+⎰⎰由2x y +=及,x y 轴围成.解 由积分区域草图及定理1 Ⅰ2222222020(32)(3)2(2).3xx dx x y dy xy y dx x x dx --=+=+=+-=⎰⎰⎰⎰(2)若积分区域D 是由,y c y d ==及12(),()x y x y ψψ==围成,这称y -型积分域. 二重积分化为累次积分时,应先对x 后对y 积分,这时积分公式为: 21()()(,)(,)dy cy Df x y d dy f x y dx ψψσ=⎰⎰⎰⎰(2)对y -型积分域,如何确定两次的积分限呢? 图8-6 ()a 先用平行于x 轴的直线在[],c d 内一点y 处,穿入D 的左边界,穿出右边界,交点的坐标12(),()y y ψψ为第一次先对x 积分的下限与上限(是y 的函数),然后将D 投影到y 轴上得交点,c d 为第二次对y 积分的下限与上限(是常数).例4 求Ⅰ22Dx d yσ=⎰⎰,其中D 由2,,1y y x xy ===围成.解 解方程组求交点的坐标,画出积分域的草图11x yy xy =⎧⇒=⎨=⎩ 这是y -型积分域,先选择对x 后对y 积分, 及公式(2)⇒Ⅰ224222235122111111111127().3332464yy yyy y dy x dx x dy y y dy y y --⎡⎤⎡⎤===-=+=⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰⎰⎰ 注 如若选择先对y 积分时,需把D 分块,则繁. 例5求ⅠDxyd σ=⎰⎰其中D 由抛物线2y x =及直线2y x =-围成. 解 解方程组求交点,画积分域草图214,122x x y xy y y x ⎧===⎧⎧⇒⎨⎨⎨=-==-⎩⎩⎩ 强调 积分次序的选择原则:① 考虑积分域的特点; ② 被积函数(下例说明)本题D 即是x -型域,又是y -型域,这时,根据D 的特点,应选择先对x 积分(因为平行x 轴直线可一次穿过D 的左,右边界,而先对y 积分时,D 应分块). 故由公式(2)⇒ Ⅰ222222211145().28y y y y ydy xdx y x dy ++--===⎰⎰⎰例6 求Ⅰsin Dy d yσ⎰⎰,其中D 由2y x =及y x =围成.解 解方程组求交点,画出积分区域草图 20,1y xy y y x=⎧⇒==⎨=⎩这时不能选择先对y 积分,因考虑到被积函数,积不出来,故应先对x 积分,由公式(2)⇒ Ⅰ2211sin sin 1y yy yy y dy dx dy dx yy==⋅⎰⎰⎰⎰11120sin ()sin sin y y y dy ydy y ydy y=-=-⎰⎰⎰110cos11cos cos y yydy =-++-⎰cos11cos1sin11sin10.1585.=-++-=⋅≈习 题 8-21 (1)(3) 2(2)(4) 4(1)(3)(5)1. 计算下列二重积分:(1) 22()d D xy σ+⎰⎰,其中{(,)|||1,||1}D x y x y =≤≤;(2) (32)d Dx y σ+⎰⎰,其中D 是由两坐标轴及直线2x y +=所围成的闭区域; (3)323(3)d D xx y y σ++⎰⎰,其中{(,)|01,01}D x y x y =≤≤≤≤;(4) cos()d Dx x y σ+⎰⎰其中D 是顶点分别为(0,0),(π,0)和(π,π)的三角形闭区域.解 (1) 1311112222221111128()d d ()d d (2)d .333Dy x y x x y y x y x x x σ-----⎡⎤+=+=+=+=⎢⎥⎣⎦⎰⎰⎰⎰⎰⎰ (2) D 可用不等式表示为03,02y x x ≤≤-≤≤,于是2222200022(32)d d (32)d [3]d 20(422)d .3xxDx y x x y y xy y xx x x σ--+=+=+=+-=⎰⎰⎰⎰⎰⎰(3)11323323(3)d d (3)d Dx x y y y x x y y x σ++=++⎰⎰⎰⎰ 1411333001d ()d 1.44x x y y x y y y y ⎡⎤=++=++=⎢⎥⎣⎦⎰⎰(4) D 可用不等式表示为0,0πy x x ≤≤≤≤,于是ππ00πcos()d d cos()d [sin()]d 3(sin 2sin )d π.2xxDx x y x x x y y x x y xx x x x σ+=+=+=-=-⎰⎰⎰⎰⎰⎰2. 画出积分区域,并计算下列二重积分:(1) Dσ⎰⎰,其中D是由两条抛物线y =,2y x =所围成的闭区域;(2)2d Dxy σ⎰⎰,其中D 是由圆周224xy +=及y 轴所围成的右半闭区域;(3) e d x y Dσ+⎰⎰,其中{(,)|||||1}D x y x y =+≤; (4)22()d Dxy x σ+-⎰⎰,其中D 是由直线2y =,y x =及2y x =所围成的闭区域.解 (1) D可用不等式表示为201x y x ≤≤≤≤,于是237111424000226d d (-)d .3355Dx x x y x y x x x x σ⎡====⎢⎥⎣⎦⎰⎰⎰⎰⎰(2) D可用不等式表示为022x y ≤≤-≤≤,于是22222222164d d d (4)d .215Dxy y y x y y y σ--==-=⎰⎰⎰⎰(3) 12D D D = ,其中1{(,)|11,10}D x y x y x x =--≤≤+-≤≤,1{(,)|11,01}D x y x y x x =-≤≤-+≤≤,于是121111101012112111e d e d e d e d e d e d e d (e e )d (e e )d e e .x y x y x yD D D x x x y x y x x x x x y x y x x σσσ+++++----+----=+=+=-+-=-⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰(4) D 可用不等式表示为,022y x y y ≤≤≤≤,于是22222023222232002()d d ()d 19313d d .322486yy Dyy x y x y x y x xx x y x y y y y σ+-=+-⎡⎤⎛⎫=+-=-=⎢⎥ ⎪⎝⎭⎣⎦⎰⎰⎰⎰⎰⎰4. 改换下列二次积分的积分次序:(1) 1d (,)d yy f x y x ⎰⎰ ; (2)2220d (,)d y y y f x y x ⎰⎰;(3) 10d (,)d y f x y x ⎰;(4)212d (,)d xx f x y y -⎰;(5)eln 1d (,)d xx f x y y ⎰⎰; (6)πsin 0sin2d (,)d xx x f x y y -⎰⎰.解 (1) 所给二次积分等于二重积分(,)d Df x y σ⎰⎰,其中{(,)|0,01}D x y x y y =≤≤≤≤,D 可改写为{(,)|1,01}x y x y x ≤≤≤≤,于是原式11d (,)d .xx f x y y =⎰⎰(2) 所给二次积分等于二重积分(,)d Df x y σ⎰⎰,其中2{(,)|2,02}D x y y x y y =≤≤≤≤,D可改写为{(,)|04}2x x y y x ≤≤≤≤,于是原式42d (,)d .x x f x y y =⎰⎰(3) 所给二次积分等于二重积分(,)d Df x y σ⎰⎰,其中{(,)|01}D x y x y =≤≤≤,D可改写为{(,)|011}x y y x ≤≤-≤≤,于是原式110d (,)d .x f x y y -=⎰(4) 所给二次积分等于二重积分(,)d Df x y σ⎰⎰,其中{(,)|212}D x y x y x =-≤≤≤≤,D可改写为{(,)|2101}x y y x y -≤≤+≤≤,于是原式1102d (,)d .yy f x y x -=⎰⎰(5) 所给二次积分等于二重积分(,)d Df x y σ⎰⎰,其中{(,)|0ln ,1e}D x y y x x =≤≤≤≤,D 可改写为{(,)|e e,01}y x y x y ≤≤≤≤,于是原式1ee d (,)d .yy f x y x =⎰⎰(6) 所给二次积分等于二重积分(,)d Df x y σ⎰⎰,将D 表示为12D D ,其中1{(,)|arcsin πarcsin ,01}D x y y x y y =≤≤-≤≤,2{(,)|2arcsin π,10}D x y y x y =-≤≤-≤≤,于是原式1πarcsin 0π0arcsin 12arcsin d (,)d d (,)d .yyyy f x y x y f x y x ---=+⎰⎰⎰⎰第29,30讲 二、在极坐标系下计算二重积分复习:直角坐标与极坐标(参见教材P.476附录4)的关系: (,)x y (,)r θcos sin x r y r θθ==tan r y xθ==1 圆心在极点,半径为a 的圆周222x y a += ,02r a θπ=≤≤ 2 圆心在(,0)a ,半径为a 的圆周222()x a y a -+= 22cos r ar θ= 222x y ax += 2cos ,22r a ππθθ=-≤≤3 圆心在(0,)a ,半径为a 的圆周22222()2x y a a x y ay+-=+=22sin 2sin ,0r ar r a θθθπ==≤≤在极坐标系下计算二重积分,需将被积函数(,)f x y ,积分域D 及面积元素d σ都用极坐标表示 :(,)f x y 的极坐标形式为 (cos ,sin )f r r θθ,为了得到极坐标系下面积元素d σ, 可用坐标曲线网去分割区域D , 即用 r =常数(一组同心圆) θ=常数 (一束射线),去分割D 面积元素可近似看作小矩形:两边长分别为dr 和(弧长)=rd θ(半径⨯圆心角) (见P.315图8-14) 所以 ()d rd dr rdrd σθθ=⋅=, 于是⇒ (,)(cos ,sin )DDf x y d f r r rdrd σθθθ=⎰⎰⎰⎰ (4)(ⅰ)当极点o 在D 的外部: 一般先对r 后对θ积分,定限时,用从极点出发的射线穿入区域, 入口的交线1()r θ,穿出区域出口的交线2()r θ为对r 积分的下限与上限,而θ的变范围则是后对θ积分的下限与上限. 图8-15(a )21()()(,)(cos ,sin (cos ,sin )DDr r f x y d f r r rdrd d f r r rdrβθαθσθθθθθθ⇒==⎰⎰⎰⎰⎰⎰(5)(ⅱ)当极点o 在D 的边界上,D 为曲边扇形()(cos ,sin ).r Dd f r r rdr βθαθθθ⇒=⎰⎰⎰⎰(6) 图8-17(ⅲ)当极点o 在D 的内部2()(cos ,sin ).r Dd f r r rdr πθθθθ⇒=⎰⎰⎰⎰(7)例1 化二重积分为累次积 图8-1822:,(0)D x y Rx R +=>解 222()()22RRx y -+= 这是圆心在(,0)2R ,半径为2R的圆,极坐标方程为:cos ,22r R ππθθ=-≤≤,这是极点在D 的边界上.由公式(6)⇒ cos 202(cos ,sin ).R Dd f r r rdr πθπθθθ-=⎰⎰⎰⎰例2 求Ⅰ=2Dxy d σ⎰⎰其中D 为 圆 221,x y +=和224x y +=之间在第一象限的部分(圆环) 解 这是极点在域D 外部的情形,由公式(5)⇒ Ⅰ=2cos (sin )Dr r rdrd θθθ⎰⎰=24221cos sin d r dr πθθθ⎰⎰=22421sin cos d r drπθθθ⎰⎰=用凑微分31.15例3 求Ⅰ=22x y De d σ--⎰⎰,其中D 是222,(0)x y a a +≤>在第一象限的部分. 解 因为 22,x y ee --的原函数不是初等函数,故在直角坐标系下积不出来.但D 是圆域,故可采用极坐标系.由于极点在边界上,由公式(6),得到 Ⅰ=2222(1).4ar r a oDe rdrd d e rdr e ππθθ--==-⎰⎰⎰⎰(这里用凑微分积) 利用此结果,可计算无穷积分(广义积分):2x e dx +∞-⎰(概率积分).例4利用二重积分证明概率积分22x e dx +∞-=⎰.(求正态分布的方差时用)证明22limax x a edx e dx +∞--→+∞=⎰⎰‘考虑正方形区域D ,在D 上计算二重积分 2222a axy x y De dxdy e dx e dy ----=⎰⎰⎰⎰=220a x e dx -⎡⎤⎢⎥⎣⎦⎰ 图8-19为了求出左端的二重积分,可以a (正方形对角线)为半径画圆,得到图中的区域12D D D ⊂⊂, 220xy e --> 22222212xy xy xy D DD e d e d e d σσσ------∴≤≤⎰⎰⎰⎰⎰⎰由例3知:22222(1)(1)44a xy a De e dxdy e ππ-----≤≤-⎰⎰(=22ax edx -⎡⎤⎢⎥⎣⎦⎰)令a →+∞,有 220lim 44a x a e dx ππ-→+∞⎡⎤≤≤⎢⎥⎣⎦⎰,即22044x e dx ππ+∞-⎡⎤≤≤⎢⎥⎣⎦⎰ 由极限的夹逼准则,所以 2204x e dx π+∞-⎡⎤=⎢⎥⎣⎦⎰ ,202x e dx +∞-==⎰例5 求球体22224x y z a ++≤被圆柱面222,(0)x y ax a +=>所截得部分的体积. 解 将圆柱面的方程化为:2222()x a y a -+= 被球面22224x y z a ++=所截,有对称性,只须求出图中第一卦限的体积1V ,再4倍,1V 的曲顶为z =11D V ⇒=其中 1D 如右图所示 采用极坐标系111D D V θ⇒==⎰⎰⎰⎰ 图8-20(a )(b )2cos 202cos 122222200322222cos 3320233301(4)(4)2128(4)((1sin )233882(sin )().32323a a a d d a r d a r a r d a d a d a πθπθππθπθθθθθππθθ==---=--⋅=-=-=-⎰⎰⎰⎰⎰⎰⎰所以 13224().323V V π==- 递推公式:3n =为奇数 Ⅰ212!!,1(21)!!m m m m +==+小结:何时用极坐标系计算二重积分? ① 积分区域是圆形或环形; ② 被积函数含22x y +.习 题 8-28(1)(3) 9(1)(4) 10(1)8. 化下列二次积分为极坐标形式的二次积分: (1) 11d (,)d x f x y y ⎰⎰ ;(2)2d (,)d xx f x y y ⎰;(3)11d (,)d xx f x y y -⎰ ; (4)21d (,)d x x f x y y ⎰⎰.解 (1) 用直线y x =将积分区域D 分成1D 、2D 两部分:1π{(,)|0sec ,0}4D ρθρθθ=≤≤≤≤,2ππ{(,)|0c ,}.42D cs ρθρθθ=≤≤≤≤, 于是原式sec csc 4204d (cos ,sin )d d (cos ,sin )d .f f ππθθπθρθρθρρθρθρθρρ=+⎰⎰⎰⎰(2) 在极坐标中,直线2,x y x ==和y =的方程分别是π2sec ,4ρθθ==和3πθ=。

高等数学(上) 第2版教案8

高等数学(上) 第2版教案8

教 案 序号8 授课日期 班级 项目(章节)第3节 函数极限的运算(2) 授课时数 2小时教学目标与要求掌握两个重要极限公式及用法 1. 0sin lim 1→=x x x 2.101lim(1),lim(1)→∞→+=+=x x x x e x e x 教学难点与重点教学重点:两个重要极限 难点:两个重要极限的用法 授课方法 案例教学法 讲练结合作 业 第14页 1、2、3、4、5教 学 内 容 及 过 程 时间分配一、复习极限的四则运算法则二、两个重要极限1.0sin lim 1→=x x x 分析:(1)00型 (2)上面是sin ,下面是自变量 例1 计算下列极限(1)0sin 3lim 2→x x x (2)0tan lim →x x x (3)0sin 6lim sin 5→x x x (4)201cos lim →-x x x(5)223lim sin →∞⋅x x x (6)sin lim →∞x x x 练习:第22页 5、(1)—(5)二、极限1lim(1)→∞+=x x e x的用法 使用变量代换,上式变为10lim(1)→+=xx x e 分析:①1∞型 ②1()[1()],()0ϕϕϕ+→x x x例2 求下列函数的极限 (1)31lim(1)→∞+x x x (2)lim()x x x 13012-→- (3)23lim()1+→∞+-x x x x 练习:第22页 5、(7)—(10)作业:求下列函数的极限(1)0sin 6lim 3→x x x (2)1lim sin 4→∞x x x (3)0tan 3lim sin 5→x x x(4)21lim(1)3→∞+x x x(5)10lim(13)→-x x x (6)231lim()2+→∞++x x x x (7)201cos 2lim3→-x x x小结: (1)重要极限0sin lim1→=x x x 的用法 (2)重要极限1lim(1)→∞+=x x e x的用法。

大学高等数学上册:8-1(2)

大学高等数学上册:8-1(2)
①对通项un中含有阶乘或其它连乘运算, 指数函数, 幂指函数等因式的情况, 可考虑使用比值判别法.
② 对通项un中含有指数函数,幂指函数等因式, 但不含阶乘因式的情形,可考虑使用根值判别法.
③ 对于以n的幂有理式为通项的情形, 可考虑 使用比较判别法, 且以p级数为比较对象.
例: 判断
2 n 1
的敛散性.
n1
n1
(ii). lim vn 1或 lim vn 0,
u n n
l
u n n
假定 un收敛,
n1
则由(i)得 vn收敛,矛盾,故un发散.
n1
n1
上例再解:
(1). lim 1 / 1 1 且 1发散,
n n(n 1) n
n1 n
级数
1 发散;
n1 n(n 1)
(2).lim sin n

n1
1 n
ln 1
1 n
收敛
用比较判别法判断正项 级数的敛散性 , 需先断定其敛散性, 然后选择一恰当的级数 与之比较,一般可考虑级数项的等价无穷小. 然而这一步并非易事, 故有必要寻求 更有效的判别法, 最好能由级数自身 来判定, 无需另找比较对象. 下面介绍的积分,比值, 根值判别法 就具有这种特点.
n
n
解 :
考察正项级数
n!sin 2 n
n1
n
lim
un1
lim
(n
1)!s in
2
n
1
/
n!s
in
2
n
n un
n
n 1 n
lim
n
2nn (n 1)n
2 e
1
级数 n!sin 2 n 收敛.

高数(上)第八单元课后习题答案8-7

高数(上)第八单元课后习题答案8-7

习题8-71. 求函数z =x 2+y 2在点(1, 2)处沿从点(1, 2)到点)32 ,2(+的方向的方向导数 解 因为从点(1, 2)到点)32 ,2(+的向量为)3 ,1(=l , 故)c o s ,(c o s )23 ,21(||βα===l l e l . 又因为22)2,1()2,1(==∂∂x x z , 42)2,1()2,1(==∂∂y y z , 故所求方向导数为321234212c o s c o s +=⋅+⋅=∂∂+∂∂=∂∂βαy z x z l z . 2. 求函数z =ln(x +y )在抛物线y 2=4x 上点(1, 2)处, 沿这抛物线在该点处偏向x 轴正向的切线方向的方向导数.解 方程y 2=4x 两边对x 求导得2yy '=4, 解得yy 2='. 在抛物线y 2=4x 上点(1, 2)处, 切线的斜率为y '(1)=1, 切向量为l =(1, 1), 单位切向量为)cos ,(cos )21 ,21(βα==l e . 又因为31 1)2,1()2,1(=+=∂∂y x x z , 31 1)2,1()2,1(=+=∂∂y x y z , 故所求方向导数为3221312131c o s c o s =⋅+⋅=∂∂+∂∂=∂∂βαy z x z l z . 3. 求函数)(12222b y a x z +-=在点)2,2(b a 处沿曲线12222=+b y a x 在这点的内法线方向的方向导数.解 令1),(2222-+=b y a x y x F , 则22a x F x =, 22b y F y =. 从而点(x , y )处的法向量为)2 ,2() ,(22by a x F F y x ±=±=n . 在)2,2(b a 处的内法向量为 )2 ,2()2 ,2()2,2(22ba b y a xb a -=-=n , 单位内法向量为)c o s ,(c o s ) ,(2222βα=+-+-=b a a b a b n e . 又因为a a x x zb a b a 22)2,2(2)2,2(-=-=∂∂, bb y y z b a b a 22)2,2(2)2,2(-=-=∂∂, 所以 222222222c o s c o s b a abb a a b b a b a y z x z n z +=+⋅++⋅=∂∂+∂∂=∂∂βα. 4. 求函数u =xy 2+z 3-xyz 在点(1, 1, 2)处沿方向角为3 πα=, 4πβ=, 3 πγ=的方向的方向导数.解 因为方向向量为)21 ,22 ,21()cos ,cos ,(cos ==γβαl , 又因为 1)()2,1,1(2)2,1,1(-=-=∂∂yz y x u, 0)2()2,1,1()2,1,1(=-=∂∂xz xy y u , 11)3()2,1,1(2)2,1,1(=-=∂∂xy z z u, 所以 5211122021)1(cos cos cos =⋅+⋅+⋅-=∂∂+∂∂+∂∂=∂∂γβαz u y u x u l u .5. 求函数u =xyz 在点(5,1,2)处沿从点(5, 1, 2)到点(9, 4, 14)的方向的方向导数.解 因为l =(9-5, 4-1, 14-2)=(4, 3, 12), )1312 ,133 ,134(||==l l e l , 并且 2)2,1,5()2,1,5(==∂∂yz x u , 10)2,1,5()2,1,5(==∂∂xz y u , 5)2,1,5()2,1,5(==∂∂xy z u , 所以 139813125133101342cos cos cos =⋅+⋅+⋅=∂∂+∂∂+∂∂=∂∂γβαz u y u x u l u . 6. 求函数u =x 2+y 2+z 2在曲线x =t , y =t 2, z =t 3上点(1, 1, 1)处, 沿曲线在该点的切线正方向(对应于t 增大的方向)的方向导.解 曲线x =t , y =t 2, z =t 3上点(1, 1, 1)对应的参数为t =1, 在点(1, 1, 1)的切线正向为)3 ,2 ,1()3 ,2 ,1(12===t t t l , )143,142,141(||==l l e l , 又 22)1,1,1()1,1,1(==∂∂x x u , 22)1,1,1()1,1,1(==∂∂y y u , 22)1,1,1()1,1,1(==∂∂z z u , 所以 1412143214221412cos cos cos )1,1,1(=⋅+⋅+⋅=∂∂+∂∂+∂∂=∂∂γβαz u y u x u l u. 7. 求函数u =x +y +z 在球面x 2+y 2+z 2=1上点(x 0, y 0, z 0)处, 沿球面在该点的外法线方向的方向导数.解 令F (x , y , z )=x 2+y 2+z 2-1, 则球面x 2+y 2+z 2=1在点(x 0, y 0, z 0)处的外法向量为)2 ,2 ,2() , ,(000),,(000z y x F F F z y x z y x ==n , )c o s ,c o s ,(c o s ) , ,(||000γβα===z y x n n n e , 又 1=∂∂=∂∂=∂∂zu y u x u , 所以 000000111c o s c o s c o s z y x z y x zu y u x u n u ++=⋅+⋅+⋅=∂∂+∂∂+∂∂=∂∂γβα. 8. 设f (x , y , z )=x 2+2y 2+3z 2+xy +3x -2y -6z , 求grad f (0, 0, 0)及grad f (1, 1, 1).解32++=∂∂y x x f , 24-+=∂∂x y y f , 66-=∂∂z zf . 因为3)0,0,0(=∂∂x f , 2)0,0,0(-=∂∂y f , 6)0,0,0(-=∂∂z f , 6)1,1,0(=∂∂x f , 3)1,1,0(=∂∂y f , 0)1,1,0(=∂∂z f , 所以 grad f (0, 0, 0)=3i -2j -6k , grad f (1, 1, 1)=6i +3j .9. 设u , v 都是 x , y , z 的函数, u , v 的各偏导数都存在且连续, 证明(1) grad (u +v )=grad u + grad v ;解 k j i zv u y v u x v u v u ∂+∂+∂+∂+∂+∂=+)()()()(grad k j i )()()(zv z u y v y u x v x u ∂∂+∂∂+∂∂+∂∂+∂∂+∂∂= )()(k j i k j i zv y v x v z u y u x u ∂∂+∂∂+∂∂+∂∂+∂∂+∂∂= v u g r a d g r a d +=.(2) grad (uv )=v grad u +u grad v ;解 k j i zuv y uv x uv uv ∂∂+∂∂+∂∂=)()()()(grad k j i )()()(zv u z u v y v u y u v x v u x u v ∂∂+∂∂+∂∂+∂∂+∂∂+∂∂= )()(k j i k j i zv y v x v u z u y u x u v ∂∂+∂∂+∂∂+∂∂+∂∂+∂∂= =v grad u +u grad v .(3) grad (u 2)=2u grad u .解 k j i zu y u x u u ∂∂+∂∂+∂∂=2222)(grad k j i z u u y u u x u u ∂∂+∂∂+∂∂=222 u u zu y u x u u g r a d 2)(2=∂∂+∂∂+∂∂=k j i .10. 问函数u =xy 2z 在点p (1, -1, 2)处沿什么方向的方向导数最大? 并求此方向导数的最大值.解 k j i k j i 222 xy xyz z y zu y u x u u ++=∂∂+∂∂+∂∂=grad , k j i k j i +-=++=--42)2()2 ,1 ,1( )2,1,1(22xy xyz z y u grad . grad u (1, -1, 2)为方向导数最大的方向, 最大方向导数为 211)4(2|)2 ,1 ,1( 222=+-+=-u grad |.。

高等数学a1上教材第八章

高等数学a1上教材第八章

高等数学a1上教材第八章第八章:多元函数微分学第一节:二元函数的极限和连续性在高等数学A1上教材的第八章中,我们将学习多元函数微分学的基础知识。

本章的第一节将介绍二元函数的极限和连续性。

1. 二元函数的极限在前几章中,我们已经学习了一元函数的极限,而二元函数的极限则更加复杂一些。

对于二元函数f(x,y),当自变量的取值趋近于某个点(x0,y0)时,如果函数值f(x,y)也趋近于一个确定的值L,我们就说函数在点(x0,y0)处有极限,并记作lim_{(x,y)→(x0,y0)}f(x,y)=L。

2. 二元函数的连续性当一个二元函数在其定义域上的每一点处都有极限,并且极限与函数值相等时,我们称该二元函数在定义域上连续。

在这种情况下,我们可以简单地说,对于函数f(x,y),当(x,y)→(x0,y0)时,f(x,y)→f(x0,y0)。

第二节:二元函数的偏导数与全微分在第八章的第二节中,我们将继续探讨二元函数的偏导数与全微分。

1. 二元函数的偏导数对于一个二元函数f(x,y),我们可以对其分别关于x和y求偏导数。

偏导数衡量了函数在某一点上沿着某个方向的变化率。

偏导数分为偏导数和哥伦布第二积分。

2. 二元函数的全微分全微分指的是二元函数在某一点附近的线性逼近。

通过全微分,我们可以用一个线性函数来近似描述二元函数的变化。

全微分也可以通过偏导数来计算。

第三节:多元函数的极值与条件极值第八章的第三节将详细介绍多元函数的极值和条件极值。

1. 多元函数的极值对于一个多元函数f(x1,x2,...,xn),如果存在一个点(x1,x2,...,xn),使得在其附近的任意点(x1+Δx1,x2+Δx2,...,xn+Δxn)上,函数值均小于等于f(x1,x2,...,xn),则称该点为函数f的极小值点。

同理,如果在其附近的任意点上,函数值均大于等于f(x1,x2,...,xn),则称该点为函数f的极大值点。

2. 多元函数的条件极值有时,我们需要在一定条件下寻找多元函数的极值点。

高等数学第八章解析几何(数学第八章平面解析几何)

高等数学第八章解析几何(数学第八章平面解析几何)

高等数学第八章解析几何(数学第八章平面解析几何)
双曲线的定义:
2.双曲线的标准方程
双曲线与椭圆的比较
以F1,F2所在直线为某轴,线段F1F2的垂直平分线为y轴,建立平
面直角坐标系某Oy,此时双曲线的焦点分别为F1(-c,0),F2(c,0)设
P(某,y)是双曲线上一点,则,(,PF1,-,PF2,),=2a,因为,PF1,
=√(〖(某c)〗^2y^2),,PF_2,=√(〖(某-c)〗^2y^2),所以√(〖(某c)〗^2y^2)-√((某-c)^2y^2)=±2a①
且②与①右边同时取正号或负号,①②整理得
将③式平方再整理得〖c^2-a〗^2/a^2 某^2-y^2= 〖c^2-a〗^2 ④因
为c>a>0,所以〖c^2-a〗^2>0设〖c^2-a〗^2=b^2且b>0,则④可化为某
^2/a^2 -y^2/b^2 =1 (a>0,b>0) 求双曲线的标准方程:与求椭圆的标准
方程的方法相似,可以先根据其焦点位置设出标准方程,然后用待定系数法
求出a,b的值.若焦点位置不确定,可按焦点在某轴和y轴上两种情况讨论
求解,此方法思路清晰,但过程复杂.若双曲线过两定点,可设其方程为m某
² ny²=1(mn<0),通过解方程组即可确定m,n,避免了讨论,从而简化求解过程.双曲线的几何性质
(1)双曲线与椭圆的六个不同点:
(2)等轴双曲线:是实轴和虚轴等长的双曲线,它的渐近线方程是
y=±某,离心率为√2.(3)共轭双曲线:以已知双曲线的虚轴为实轴,实轴为
虚轴的双曲线叫做原双曲线的共轭双曲线
私信我领取全套免费学习资料,。

高数(上)第八单元课后习题答案8-1

习题8-11. 判定下列平面点集中哪些是开集、闭集、区域、有界集、无界集?并分别指出它们的聚点所成的点集(称为导集)和边界.(1){(x , y )|x ≠0, y ≠0};解 开集, 无界集, 导集为R 2, 边界为{(x , y )|x =0或y =0}.(2){(x , y )|1<x 2+y 2≤4};解 既非开集, 又非闭集, 有界集, 导集为{(x , y )|1≤x 2+y 2≤4},边界为{(x , y )|x 2+y 2=1或x 2+y 2=4}.(3){(x , y )|y >x 2};解 开集, 区域, 无界集, 导集为{(x , y )| y ≥x 2}, 边界为{(x , y )| y =x 2}.(4){(x , y )|x 2+(y -1)2≥1}⋂{(x , y )|x 2+(y -2)2≤4}.解 闭集, 有界集, 导集与集合本身相同,边界为{(x , y )|x 2+(y -1)2=1}⋃{(x , y )|x 2+(y -2)2=4}.2. 已知函数yx xy y x y x f tan ),(22-+=, 试求f (tx , ty ). 解 )(tan )()()()(),(22tytx ty tx ty tx ty tx f ⋅⋅-+= ),(t a n 2222y x f t y x xy y x t =⎪⎭⎫ ⎝⎛-+=. 3. 试证函数F (x , y )=ln x ⋅ln y 满足关系式:F (xy , uv )=F (x , u )+F (x , v )+F (y , u )+F (y , v ).证明 F (xy , uv )=ln((x , y )⋅ln(uv )=(ln x +ln y )(ln u +ln v )=ln x ⋅ln u +ln x ⋅ln v +ln y ⋅ln u +ln y ⋅ln v=F (x , u )+F (x , v )+F (y , u )+F (y , v ).4. 已知函数f (u , v , w )=u w +w u +v , 试求f (x +y , x -y , xy ).解 f (x +y , x -y , xy )=(x +y )xy +(xy )(x +y )+(x -y )=(x +y )xy +(xy )2x .5. 求下列各函数的定义域:(1)z =ln(y 2-2x +1);解 要使函数有意义, 必须y 2-2x +1>0,故函数的定义域为D ={(x , y )|y 2-2x +1>0}.(2)yx y x z -++=11; 解 要使函数有意义, 必须x +y >0, x -y >0,故函数的定义域为D ={(x , y )|x +y >0, x -y >0}.(3)y x z -=;解 要使函数有意义, 必须y ≥0,0≥-y x 即y x ≥, 于是有x ≥0且x 2≥y , 故函数定义域为D ={(x , y )| x ≥0, y ≥0, x 2≥y }.(4)221)ln(yx x x y z --+-=; 解 要使函数有意义, 必须y -x >0, x ≥0, 1-x 2-y 2>0, 故函数的定义域为D ={(x , y )| y -x >0, x ≥0, x 2+y 2<1}.(5)222222221rz y x z y x R u -+++---=(R >r >0); 解 要使函数有意义, 必须R 2-x 2-y 2-z 2≥0且x 2+y 2+z 2-r 2>0, 故函数的定义域为D ={(x , y , z )| r 2<x 2+y 2+z 2≤R 2}.(6)22arccos yx z u +=. 解 要使函数有意义, 必须x 2+y 2≠0, 且1||22≤+y x z 即z 2≤x 2+y 2, 故函数定义域为D ={(x , y , z )|z 2≤x 2+y 2, x 2+y 2≠0}.6. 求下列各极限:(1)22)1,0(),(1limy x xy y x +-→; 解110011lim 22)1,0(),(=+-=+-→y x xy y x .(2)22)0,1(),()ln(lim yx e x y y x ++→; 解 2ln 01)1ln()ln(lim 22022)0,1(),(=++=++→e y x e x y y x . (3)xy xy y x 42lim)0,0(),(+-→; 解 xy xy y x 42lim)0,0(),(+-→)42()42)(42(lim )0,0(),(+++++-=→xy xy xy xy y x 41)42(1l i m )0,0(),(-=++-=→xy y x . (4)11lim )0,0(),(-+→xy xy y x ; 解 11lim )0,0(),(-+→xy xy y x )11)(11()11(lim )0,0(),(-+++++=→xy xy xy xy y x 2)11l i m )11(l i m )0,0(),()0,0(),(=++=++=→→xy xy xy xy y x y x . (5)y xy y x )sin(lim )0,2(),(→; 解 y xy y x )sin(lim )0,2(),(→221sin lim )0,2(),(=⋅=⋅=→x xyxy y x . (6)22)()cos(1lim 2222)0,0(),(yx y x e y x y x ++-→. 解 22221lim )cos(1lim )()cos(1lim )0,0(),(2222)0,0(),(2222)0,0(),(y x y x y x y x y x e y x y x e y x y x →→→⋅++-=++- 01s i nlim cos 1lim 00==-=→→t t t t t . 7. 证明下列极限不存在:(1)y x y x y x -+→)0,0(),(lim; 证明 如果动点p (x , y )沿y =0趋向(0, 0),则 1lim lim00)0,0(),(==-+→=→x x y x y x x y y x ; 如果动点p (x , y )沿x =0趋向(0, 0),则 1lim lim00)0,0(),(-=-=-+→=→y y y x y x y x y x . 因此, 极限y x y x y x -+→)0,0(),(lim不存在. (2)22222)0,0(),()(lim y x y x y x y x -+→. 证明 如果动点p (x , y )沿y =x 趋于(0, 0),则 1l i m )(l i m 44022222)0,0(),(==-+→=→x x y x y x y x x x y y x ; 如果动点p (x , y )沿y =2x 趋向(0, 0),则 044lim )(lim 2440222222 )0,0(),(=+=-+→=→x x x y x y x y x x xy y x . 因此, 极限22222)0,0(),()(lim y x y x y x y x -+→不存在. 8. 函数xy x y z 2222-+=在何处间断? 解 因为当y 2-2x =0时, 函数无意义,所以在y 2-2x =0处, 函数x y x y z 2222-+=间断. 9. 证明0lim 22)0,0(),(=+→yx xy y x .证明 因为22||||2222222222y x yx y x y x xy y x xy +=++≤+=+, 所以 02l i m ||l i m 022)0,0(),(22)0,0(),(=+≤+≤→→y x yx xy y x y x . 因此 0lim 22)0,0(),(=+→yx xy y x . 证明 因为2||22y x xy +≤, 故22||22222222y x yx y x y x xy +=++=+. 对于任意给定的ε>0, 取δ=2ε, 当δ<+<220y x 时恒有εδ=<+≤-+22|0|2222y x yx xy , 所以0lim 22)0,0(),(=+→yx xy y x . 10. 设F (x , y )=f (x ), f (x )在x 0处连续, 证明: 对任意y 0∈R , F (x , y )在(x 0, y 0)处连续.证明 由题设知, f (x )在x 0处连续, 故对于任意给定的ε>0, 取δ>0, 当|x -x 0|<δ时, 有|f (x )-f (x 0)|<ε.作(x 0, y 0)的邻域U ((x 0, y 0), δ), 显然当(x , y )∈U ((x 0, y 0), δ)时, |x -x 0|<δ, 从而 |F (x , y )-F (x 0, y 0)|=|f (x )-f (x 0)|<ε,所以F (x , y )在点(x 0, y 0)处连续.又因为y 0是任意的, 所以对任意y 0∈R , F (x , y )在(x 0, y 0)处连续.。

高数(上)第八单元课后习题答案8-3

习题8−31.求下列函数的全微分:(1)yx xy z +=;解dy y z dx x z dz ∂∂+∂∂=dy yxx dx y y )()1(2−++=.(2)x ye z =;解xdy e x dx e x y dy y z dx x z dz y x y 12+−=∂∂+∂∂=.(3)22yx y z +=;解因为2/3222322)()(21y x xy y x y x z +−=+−=∂∂−,2/3222222222)(y x x y x y x y y y x yz +=++⋅−+=∂∂,所以dy y x x dx y x xy dz 2/32222/322)()(+++−=)()(2/322xdy ydx y x x −+−=.(4)u =x yz .解因为1−⋅=∂∂yz x yz x u ,x zx y u yz ln =∂∂,x yx zu yz ln =∂∂,所以xdzyx xdy zx dx yzx du yz yz yz ln ln 1++=−2.求函数z =ln(1+x 2+y 2)当x =1,y =2时的全微分.解因为2212y x x x z ++=∂∂,2212y x y y z ++=∂∂,3121=∂∂==y x x z ,3221=∂∂==y x y z,所以dy dx dz y x 323121⋅+===.3.求函数xy z =当x =2,y =1,∆x =0.1,∆y =−0.2时的全增量和全微分.解因为x y x x y y z −∆+∆+=∆,y x x xy dz ∆+∆−=12,所以,当x =2,y =1,∆x =0.1,∆y =−0.2时,119.0211.02)2.0(1−=−+−+=∆z ,125.0)2.0(211.041−=−×+−=dz .4.求函数z =e xy 当x =1,y =1,∆x =0.15,∆y =0.1时的全微分.解因为y xe x ye y yz x x z dz xy xy ∆+∆=∆∂∂+∆∂∂=所以,当x =1,y =1,∆x =0.15,∆y =0.1时,ee e dz 25.01.015.0=⋅+⋅=*5.计算33)97.1()102(+的近似值.解设33y x z +=,由于y y z x x z y x y y x x ∆∂∂+∆∂∂++≈∆++∆+3333)()(332233233y x y y x x y x +∆+∆++=,所以取x =1,y =2,∆x =0.02,∆y =−0.03可得95.2212)03.0(2302.0321)97.1()02.1(32333=+−⋅⋅+⋅++≈+.*6.计算(1.97)1.05的近似值(ln2=0.693).解设z =x y ,由于y yz x x z x x x y y y ∆∂∂+∆∂∂+≈∆+∆+)(y x x x yx x y y y ∆+∆+=−ln 1,所以取x =2,y =1,∆x =−0.03,∆y =0.05可得(1.97)1.05≈2−0.03+2ln2⋅0.05+1.97+0.0693≈2.093.*7.已知边长为x =6m 与y =8m 的矩形,如果x 边增加5cn 而y 边减少10cm ,问这个矩形的对角线的近似变化怎样?解矩形的对角线为22y x z +=,)(122y y x x yx y dy dz x dx dz dz z ∆+∆+=∆+∆=≈∆,当x =6,y =8,∆x =0.05,∆y =−0.1时,05.0)1.0805.06(86122−=⋅−⋅+≈∆z .这个矩形的对角线大约减少5cm .*8.设有一无盖圆柱形容器,容器的壁与底的厚度均为0.1cm ,内高为20cm ,内半径为4厘米,求容器外壳体积的近似值.解圆柱体的体积公式为V =πR 2h ,∆V ≈dV =2πRh ∆R +πR 2∆h ,当R =4,h =20,∆R =∆h =0.1时,∆V ≈2×3.14×4×20×0.1+3.14×42×0.1≈55.3(cm 3)这个容器外壳的体积大约是55.3cm 3.*9.设有直角三角形,测得其两腰的长分别为7±0.1cm 和24±0.1cm ,试求利用上述二值来计算斜边长度时的绝对误差.解设两直角边的长度分别为x 和y ,则斜边的长度为22y x z +=.||||||||||||y y z x x z dz z ∆⋅∂∂+∆⋅∂∂≤≈∆|)|||(122y y x x yx ∆+∆+=.令x =7,y =24,|∆x |≤0.1,|∆y |≤0.1,则得斜边长度z 的绝对误差约为124.0)1.0241.07(247122=⋅+⋅+=z δcm .*10.测得一块三角形土地的两边长分别为63±0.1m 和78±0.1m ,这两边的夹角为60°±1°,试求三角形面积的近似值,并求其绝对误差和相对误差.解设三角形的两边长为x 和y ,它们的夹角z ,为则三角形面积为z xy s sin 21=.zdz xy zdy x zdx y dS cos 21sin 21sin 21++=||cos 21||sin 21||sin 21||||dz z xy dy z x dx z y dS S ++≤≈∆.令x =63,y =78,3π=z ,|dx |=0.1,|dy |=0.1,180π=dz ,则55.2718021278631.0232631.023278=××+×+×≈πδs ,82.21273sin 786321=⋅⋅⋅=πS ,%29.182.212755.27==S s δ,所以三角形面积的近似值为2127.82m 2,绝对误差为27.55m 2,相对误差为1.29%.*11.利用全微分证明:两数之和的绝对误差等于它们各自的绝对误差之和.证明设u =x +y ,则||||||||||||y x y x y yu x x u du u ∆+∆≤∆+∆=∆∂∂+∆∂∂=≈∆.所以两数之和的绝对误差|∆u |等于它们各自的绝对误差|∆x |与|∆y |的和.*12.利用全微分证明:乘积的相对误差等于各因子的相对误差之和;商的相对误差等于被除数及除数的相对误差之和.证明设u =xy ,yx v =,则∆u ≈du =ydx +xdy ,2y xdy ydx dv v −=≈∆,由此可得相对误差;y dy x dx xy xdy ydx u du u u +=+=≈∆y y x x y dy x dx ∆+∆=+≤;y dy x dx y xy xdy ydx v dv v v −=⋅−==∆2y y x x y dy x dx ∆+∆=+≤.。

大学高等数学上册:8-2(1)


n0
(2).利用反证法 .
假定 x3 , 有 x3 x2 , 且 cn x3n 收敛 . n0
由 (1) 得 cn x2n 绝对收敛 , 矛盾 , n0
所以当 cnxn 在点 x2 处发散, n0
必成立在 x x2 时发散.
幂级数 1 xn1,
n1 n
在x 1时成为
1 , 发散,
enx
的收敛域.
n1 n
解 : lim n
1
1
n2
enx
lim 1 1 n ex e1x
n n
n n
当e1x 1即x 1时,级数绝对收敛 ;
当e1x 1即x 1时,级数发散.
当x 1时,级数成为
1
1 n2 en ,
n1 n
由于 lim
1
1
n2
en
n n
n
lim
ln(1 x
x)
exp
lim
x0
x
ln 1
x2
x
(0 型) 0
1 1 1
exp lim x 1 e 2
x0 2x
e
lim
n
1
1
/
nn
n
1
e2
n0
1 x
1 x 1
定理1(阿贝尔Abel定理)
若 cnxn 在点 x1( 0) 处收敛, n0
则 cn xn 在 x1 , x1 内绝对收敛;
n0
若 cnxn 在点 x2 处发散, n0
则 cnxn 在 x x2 时发散. n0
证 :
(1).由 cn x1n
n0
收敛
,

幂级数

高等数学第八章课件.ppt

x x0 y y0 z z0 . x(t0 ) y(t0 ) z(t0 ) 切向量:切线的方向向量称为曲线的切向量.
T x(t0), y(t0), z(t0)
法平面:过M点且与切线垂直的平面.
x(t0 )(x x0 ) y(t0 )( y y0 ) z(t0 )(z z0 ) 0
限,记为
lim f( x, y) A,
( x, y x0 , y0 )
或 f(x,y) A,( x, y)( x0, y0 )
例 考察函数
g( x,
y)
xy
x2 y2
,
x2 y2 0 ,
0 , x2 y2 0
当 ( x, y ) ( 0 , 0 ) 时的极限
解 当 ( x, y ) 沿 y 轴趋向于原点,即当 y 0 而
若函数 u u(x, y), v v(x, y) 在点(x, y) 处有偏导 数,则 z f (u) 在对应点(u, v) 处有连续偏导数, 则复合函数 z f [u(x, y), v(x, y)] 在点(x, y) 处也存 在偏导数,并且
两种特殊情况:
(二) 隐函数的求导法则
设方程 F (x , y) = 0 确定了函数 y = y(x),两端 对 x 求导,得
f(x0,y0)=C
第二节 偏导数
一、偏导数的概念及几何意义 二、高阶偏导数 三、复合函数与隐函数的求导法则
一、偏导数的概念及几何意义
(一) 偏导数的概念
定义 设函数
在点
的某邻域内极限
存在,则称此极限为函数 的偏导数,记为
注意:
同样可定义对 y 的偏导数为
若函数 z f ( x, y)在域 D 内每一点 ( x, y)处对 x
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4. 函数 f x 在 - , 上连续,则 d (A) f x 5. (x)
x
f xdx等于(

(B) f x dx
t
(C) f x +C )
(D) f x dx
t 1e dt 有(
0
(A)极小值点 x -1 (C)极小值点 x 0
3.求由方程 y 5 3 y-x-3x 7 0 所确定的隐函数在 x 0 的导数 y x 0 .
x θ 1- sin θ dy 4. 求由参数方程 所确定函数的导数 dx y θ cos θ
3
五、计算下列积分(每小题 5 分,共 20 分)
1.

sin x cos x
石家庄经济学院 200 /200
《高等数学上(经济类) 》试题
学年第
共 6
学期

题 序 得 分 阅卷人



四五六ຫໍສະໝຸດ 总 分序号学院
专业
学号
姓名
一、选择题(每小题 2 分,共 10 分)
1.
1 1-x 2 是 1 - x 的( ) 2 (A)高阶无穷小 (B)同阶无穷小,但不等价 (C)等价无穷小 (D)低阶无穷小
x3 2. lim x x 0 e -1
2 x 3. lim x 1 x
3x
4. lim

0
sint 2 dt 2x
x
x 0
2
四、计算下列函数的导数(每小题 5 分。共 20 分)
1. y 2e x cos 2 x 2. y
1- ln x 1 ln x
x 1时,

2. 函数在点 x 0 处连续是在该点可微的( (A)必要条件 (C)充要条件

(B)充分条件 (D)既不充分也不必要条件 )
3. f(x) x sin x 在 0, 上是(
(A)先单调减少后单调增加 (C)单调减少
(B)先单调增加后单调减少 (D)单调增加
(B)极大值点 x -1 (D)极大值点 x 0
二、填空题(每小题 2 分,共 10 分)
1
1. 函数 y
x- x 的定义域是
2. 函数 y f x 2 ,设 f x 存在,则 y
y

x

3.
f xdx xe
f x =0 只有
C ,则 f x =
(6 分)
2. 计算由 y 2 2 x 与 y x-4 所围成图形的面积(作草图) 。(7 分)
5
3. 设函数 y x 3 - 3x 2 ,填写下表并作出函数图像.(7 分) 增区间 减区间 凹区间 凸区间 极值 拐点
6
4. 设 f x 在闭区间 a,b 上连续, f a f b 0 ,且 f x 单调增加,则方程 个根.
5.


0
dx = 1 x2
三、计算下列函数的极限(每小题 5 分,共 20 分)
1 1 1. lim 2- 1- 2 x x x
3
sin x- cos x
dx
2.
x
2
cos xdx
3.

2
1
1 x dx x
2
4.

x 1, x 1 f x dx ,其中 f x 1 2 x , x 1 0 2
2
4
六、解答题(共 20 分)
1 2 x sin , x 0 1. 讨论函数 f x 在 x 0 处的连续性与可导性. x 0 , x 0
相关文档
最新文档