《高等数学》(同济大学第七版)上册知识点总结(20200322170013)
同济第七版上册高数考试要点(大一上)

1)已知 f (x) 表达式,求解 xf (x)d之x 类型--分部积分
2)已知 f ((x))表达式,求解f (x)--整体代换先求 f (t)
2021/11/14
6
第五章 定积分
• 1、掌握定积分的概念、几何意义;定积分的性质 及定积分中值定理
• 2、掌握牛顿—莱布尼茨公式; • 3、变上限定积分定义的函数,及其求导数定理
• 5、能够求出函数在某个区间的极值和最值;实际应 用问题中求最值;
• 6、会求函数的弧微分和曲率。
2021/11/14
5
第四章 不定积分
• 1、熟悉不定积分的性质及24个基本公式; • 2、换元积分法(第一、第二)与分部积分法(反
对幂三指); • 3、求有理函数(真分式化为部分分式之和)、 • 三角函数有理式(万能公式)和简单无理函数
2021/11/14
3
第二章 导数与微分
• 1、研究函数(分段函数)在一个点是否可导, 可导的依据:左导数和右导数同时存在且相等; • 2、复合函数(在某点)的导数; • 3、隐函数求导和参数方程确定的函数的导 数,
求导要求能够求到二阶导数; • 4.求函数的微分; • 几何题型:求过某点的切线和法线方程; • 特殊类型:幂指函数,积分上限函数。
(各种变形),变上限积分的求极限; • 4、定积分的换元积分法分部积分法;(注意绝对
值函数和分段函数的积分;注意积分区间为对称 区间时可利用奇偶性;) • 5、能够判断反常积分的敛散性。
2021/11/14
7
2021/11/14Fra bibliotek2极限其它题型:研究函数(分段函数)在一个 点的极限是否存在
存在的依据:左极限和右极限同时存在并且相等。
数学笔记-同济第七版高数(上)-第二章-导数与微分-函数的微分

数学笔记-同济第七版高数(上)-第二章-导数与微分-函数的微分一、定义y=f(x),(x∈D), x0∈D, x0+Δx∈DΔy=f(x0+Δx)-f(x0)若Δy=AΔx+o(Δx),称y=f(x)在x=x0可微意思是Δy若能表示为一个常数乘以Δx和一个Δx的高阶无穷小的和,就称y=f(x)在x=x0可微称AΔx为y=f(x)在x=x0这点的微分dy|x=x0=AΔx=Adx, dx也是微分二、Notes1、可导 <=> 可微证明:“=>”:设lim(Δx->0)f(x)=A则Δy/Δx=A+α, α->0(Δx->0)Δy=AΔx+Δxα,lim(Δx->0)[Δxα/Δx]=0,即Δxα=o(Δx)所以Δy=AΔx+o(Δx)所以y=f(x)在x=x0点可微“<=”:设Δy=AΔx+o(Δx)Δy/Δx=A+o(Δx)/Δx因为lim(Δx->0)[o(Δx)/Δx]=0所以Δy/Δx=A+α, α->0, (Δx->0)所以y=f(x)在x=x0点可导2、y=f(x),x=x0,Δy=AΔx+o(Δx),则A为f'(x0),A为该点导数3、y=f(x),x=x0,Δy=AΔx+o(Δx),则(dy|x=x0)=AΔx=f'(x0)Δx=f'(x0)dx若y=f(x)可导,dy=df(x)=f'(x)dx如:d(x^3)=(x^3)'dx=3x^2dxd(e^3x)=3e^3xdxx^2dx=d(1/3*x^3+C)1/(1+x^2)*dx=d(arctanx+C)4、若y=f(x)在x=x0可微,则:Δy=f'(x0)Δx+o(Δx), dy|x=x0 = f'(x0)dx=> Δy-dy=o(Δx)5、设y=f(x)在x=x0可微,则dy=f'(x)Δxf'(x)为y=f(x)在x=x0对应点的斜率三、微分的几大工具1、公式d(c)=0d(x^n)=nx^(n-1)dxd(a^x)=a^x*lna*dxd(sinx)=cosxdx, d(cosx)=-sinxdxd(loga(x))=1/(xlna)*dx......2、四则d(u±v)=du±dvd(uv)=dudvd(u/v)=(vdu-udv)/v^23、复合y=f(u)(1)dy=f'(u)du(2)若u=g(x), dy=f'(u)du=f'(u)g'(x)dx四、近似计算设y=f(x)在x=x0可微Δy=f(x0+Δx)-f(x0)=f'(x0)Δx+o(Δx)=>Δy≈f'(x0)Δx=>f(x0+Δx)≈f(x0)+f'(x0)Δx。
新版高等数学(同济第七版)上册-知识点总结-新版-精选.pdf

高等数学(同济第七版)上册-知识点总结第一章函数与极限一. 函数的概念1.两个无穷小的比较设0)(lim ,0)(lim x g x f 且lx g x f )()(lim (1)l = 0,称f (x)是比g(x)高阶的无穷小,记以 f (x) = 0[)(x g ],称g(x)是比f(x)低阶的无穷小。
(2)l ≠ 0,称f (x)与g(x)是同阶无穷小。
(3)l = 1,称f (x)与g(x)是等价无穷小,记以 f (x) ~ g(x) 2.常见的等价无穷小当x →0时sin x ~ x ,tan x ~ x ,x arcsin ~ x ,x arccos ~ x ,1-cos x ~ 2/2^x ,xe -1 ~ x ,)1ln(x ~ x ,1)1(x ~ x二.求极限的方法1.两个准则准则 1.单调有界数列极限一定存在准则 2.(夹逼定理)设g (x ) ≤ f (x ) ≤h (x )若A x h A x g )(lim ,)(lim ,则Ax f )(lim 2.两个重要公式公式11sin limx x x公式2ex xx /10)1(lim 3.用无穷小重要性质和等价无穷小代换4.用泰勒公式当x0时,有以下公式,可当做等价无穷小更深层次)()!12()1(...!5!3sin )(!...!3!2112125332n n nnnxxo n xx x xxx o n x x x x e)(!2)1(...!4!21cos 2242nnnx o n xxxx )()1(...32)1ln(132nnn x o n xxxxx )(!))1()...(1(...!2)1(1)1(2nnx o xn n xx x )(12)1( (5)3arctan 1212153n n n xo n xxxxx 5.洛必达法则定理1 设函数)(x f 、)(x F 满足下列条件:(1)0)(lim 0x f x x,0)(lim 0x F x x;(2))(x f 与)(x F 在0x 的某一去心邻域内可导,且0)(x F ;(3))()(limx F x f xx 存在(或为无穷大),则这个定理说明:当)()(limx F x f xx 存在时,)()(limx F x f xx 也存在且等于)()(limx F x f xx ;当)()(limx F x f x x为无穷大时,)()(limx F x f xx 也是无穷大.这种在一定条件下通过分子分母分别求导再求极限来确定未定式的极限值的方法称为洛必达(H L ospital )法则.型未定式定理2 设函数)(x f 、)(x F 满足下列条件:(1))(lim 0x f xx ,)(lim 0x F xx ;(2))(x f 与)(x F 在0x 的某一去心邻域内可导,且0)(x F ;(3))()(limx F x f xx 存在(或为无穷大),则注:上述关于0x x时未定式型的洛必达法则,对于x 时未定式型同样适用.使用洛必达法则时必须注意以下几点:(1)洛必达法则只能适用于“00”和“”型的未定式,其它的未定式须先化简变形成“00”或“”型才能运用该法则;)()(lim)()(limx F x f x F x f x xx x)()(lim)()(lim 0x F x f x F x f x xxx(2)只要条件具备,可以连续应用洛必达法则;(3)洛必达法则的条件是充分的,但不必要.因此,在该法则失效时并不能断定原极限不存在.6.利用导数定义求极限基本公式)()()(lim0'00x f xx f x x f x (如果存在)7.利用定积分定义求极限基本格式11)()(1limdx x f n kf nnk n(如果存在)三.函数的间断点的分类函数的间断点分为两类:(1)第一类间断点设0x 是函数y = f (x)的间断点。
高等数学(同济第七版)(上册)-知识点

WORD 格式可编辑版
...
第二章 导数与微分 一.基本概念
1.可微和可导等价,都可以推出连续,但是连续不能推出可微和可导。
∈[ a,b] ,有公式
,
, 称为拉格朗日余项 上面展开式称为以0(x) 为中心的n 阶泰勒公式。当 x0 =0 时,也称为n阶麦克劳林
WORD 格式可编辑版
...
公式。 常用公式( 前8个)
WORD 格式可编辑版
...
五.导数的应用
一.基本知识 设函数f ( x) 在 x0 处可导,且 x0 为f ( x) 的一个极值点,则 f '(x0) 0 。 我们称x 满足 f '(x0) 0 的 x0 称为 f (x) 的驻点,可导函数的极值点一定是驻点, 反之不然。极值点只能是驻点或不可导点,所以只要从这两种点中进一步去判断。
二.求导公式
三.常见求导
WORD 格式可编辑版
...
1. 复合函数运算法则 2. 由参数方程确定函数的运算法则
设x =( t) ,y =(t) 确定函数y = y( x) ,其中'(t),'(t) 存在,且'(t) ≠ 0,则 dy '(t)
dx '(t) 3. 反函数求导法则 设y = f ( x) 的反函数x = g( y) ,两者皆可导,且f ′( x) ≠ 0 则 g'( y) 1 1 ( f '(x) 0)
2. 第二充分条件
f (x) 在 x0 处二阶可导,且 f (x0) 0 ,f (x0 ) 0 ,则①若 f (x0 ) 0 , 则 x0 为极大值点;②若 f (x0 ) 0 ,则 x0 为极小值点.
高等数学第七版重点汇总

高等数学第七版重点汇总第一章 函数与极限●极限是函数在某一点x 0处的局部性质,与函数在此处是否有定义无关。
● 有限个无穷小的乘积也是无穷小 ● 常数与无穷小的乘积是无穷小 ●如果limf(x)=A,limg(x)=B,那么1) lim[f(x)±g(x)]=limf(x)±limg(x)=A ±B 2) lim[f(x)·g(x)]=limf(x)·limg(x)=A ·B 3) 若B ≠0,则BAx g x f x g x f ==)(lim )(lim )()(lim 数列也基本适用 ●如果limf(x)存在,而n 是正整数,那么 lim[f(x)]n =[limf(x)]n● 抓大头●当x →∞时,且a 0≠0,b 0≠0,m 和n 为非负整数⎪⎪⎩⎪⎪⎨⎧∞=+⋅⋅⋅+++⋅⋅⋅++∞→--0lim 0110110b a b x b x b a x a x a x nn n m m m m <n m >n m n 当当当= ● 夹逼准则 ●等价无穷小sinx ~x arcsinx ~x 11-+n x ~x tanx ~x arctanx ~x a x -1~a x ln ln(1+x)~x e x -1~x 1-cosx ~221x● 1∞型=e ●如果=αβlim0,β是α的高阶无穷小,记作()αβo =; 如果=αβlim∞,β是α的低阶无穷小; 如果=αβlim c ≠0,β是α的同阶无穷小;如果0≠lim c k =αβ,k >0,β是α的k 阶无穷小;如果=αβlim 1,β是α的等价无穷小,记作α~β.若β是α的同阶无穷小,则()ααβo +=(充要条件) ● 函数连续,()00)(lim x f x f x x =→● 连续则极限存在,极限存在不一定连续 ●间断点: 1) 情况:① 函数在x=x 0处没有定义 ② 在x=x 0处有定义,但)(lim 0x f x x →不存在③ 函数在x=x 0处有定义,)(lim 0x f x x →存在,但()00≠)(lim x f x f x x →2) 分类① 第一类:跳跃 可去 ② 第二类:无穷 震荡 ●基本初等函数在其定义域内都是连续的,包括三角函数x x x x x x csc ,sec ,cot ,tan ,cos ,sin●基本初等函数的反函数在其定义域内都是连续的,包括反三角函数●复合函数连续,且()00x g u =,则()[]()000lim u f x g f x x =→=()[]0x g f●幂指函数连续,且()a x u =lim >0()b x v =lim ,,则b x v a x u =)()(lim● 介值定理(零点定理的推广)设函数()x f y =在闭区间[]b a ,上连续,则在这区间端点处取值不同时,即:()()B b f A a f ==,,且B A ≠。
高等数学教材第七版同济

高等数学教材第七版同济高等数学是大学数学课程中的一门重要课程,涵盖了微积分、线性代数、概率论与数理统计等内容。
同济大学出版社出版的《高等数学教材第七版》是一本经典的教材,被广大学生和教师广泛使用。
第一章微分学微分学是高等数学中的重要分支,研究函数的局部变化规律和相关概念与定理。
微分学的基本概念包括导数和微分,导数表示函数在某一点的瞬时变化率,微分表示函数在某一点附近的线性逼近。
第二章积分学积分学是高等数学中另一重要分支,主要研究函数的整体特征和相关定理。
常见的积分有定积分和不定积分,定积分表示函数在一定区间上的面积或曲线长度,不定积分求出函数的原函数。
第三章无穷级数无穷级数是高等数学中的一个重要概念,指由无穷多个数相加或相乘所得到的数列或数列的极限。
常见的无穷级数包括等比级数、调和级数等,对于收敛级数可以求和,对于发散级数可以研究其性质和敛散性。
第四章常微分方程常微分方程是高等数学中的一门重要课程,研究函数的导数与自变量之间的关系。
常微分方程可分为一阶、二阶以及高阶常微分方程,通过求解常微分方程可以得到函数的解析解或数值解。
第五章多元函数微分学多元函数微分学是高等数学中的一门重要课程,研究多元函数的导数、偏导数和方向导数等。
通过多元函数微分学的学习,可以深入理解函数的局部变化规律和极值问题。
第六章重积分重积分是高等数学中的一个重要概念,用于研究多元函数在闭区域上的积分。
常见的重积分包括二重积分和三重积分,可以求解曲面面积、质量、重心等问题。
第七章曲线积分与曲面积分曲线积分和曲面积分是高等数学中的两个重要内容,分别用于研究曲线和曲面上的积分问题。
曲线积分常常用于计算力学中的功和电磁学中的电场强度,曲面积分常常用于计算流体力学中的流量和电磁学中的电通量。
第八章数列和序列数列和序列是高等数学中的基础内容,研究数的无限排列和乘积。
数列是按照一定规律排列的数的集合,序列是取数列的有限个数而得到的结果。
第九章空间解析几何空间解析几何是高等数学中的一门重要课程,研究空间中的点、直线、平面的位置关系和相关性质。
高等数学(同济第七版)上册-知识点总结

高等数学(同济第七版)上册-知识点总结第一章 函数与极限一. 函数的概念1.两个无穷小的比较设0)(lim ,0)(lim ==x g x f 且l x g x f =)()(lim(1)l = 0,称f (x)是比g(x)高阶的无穷小,记以f (x) = 0[)(x g ],称g(x)是比f(x)低阶的无穷小。
(2)l ≠ 0,称f (x)与g(x)是同阶无穷小。
(3)l = 1,称f (x)与g(x)是等价无穷小,记以f (x) ~ g(x)2.常见的等价无穷小 当x →0时sin x ~ x ,tan x ~ x ,x arcsin ~ x ,x arccos ~ x ,1− cos x ~ 2/2^x , x e −1 ~ x ,)1ln(x + ~ x ,1)1(-+αx ~ x α二.求极限的方法1.两个准则准则 1. 单调有界数列极限一定存在准则 2.(夹逼定理)设g (x ) ≤ f (x ) ≤ h (x )若A x h A x g ==)(lim ,)(lim ,则A x f =)(lim2.两个重要公式公式11sin lim 0=→x xx公式2e x x x =+→/10)1(lim3.用无穷小重要性质和等价无穷小代换 4.用泰勒公式当x 0→时,有以下公式,可当做等价无穷小更深层次)()!12()1(...!5!3sin )(!...!3!2112125332++++-+++-=++++++=n n n n nxx o n x x x x x x o n x x x x e )(!2)1(...!4!21cos 2242n n n x o n x x x x +-+++-= )()1(...32)1ln(132n nn x o nx x x x x +-++-=++ )(!))1()...(1(...!2)1(1)1(2n n x o x n n x x x +---++-++=+ααααααα)(12)1(...53arctan 1212153+++++-+-+-=n n n x o n x x x x x 5.洛必达法则定理1 设函数)(x f 、)(x F 满足下列条件:(1)0)(lim 0=→x f x x ,0)(lim 0=→x F x x ;(2))(x f 与)(x F 在0x 的某一去心邻域内可导,且0)(≠'x F ;(3))()(lim 0x F x f x x ''→存在(或为无穷大),则 这个定理说明:当)()(lim 0x F x f x x ''→存在时,)()(lim 0x F x f x x →也存在且等于)()(lim 0x F x f x x ''→;当)()(lim 0x F x f x x ''→为无穷大时,)()(lim 0x F x f x x →也是无穷大. 这种在一定条件下通过分子分母分别求导再求极限来确定未定式的极限值的方法称为洛必达(H L 'ospital )法则.∞∞型未定式 定理2 设函数)(x f 、)(x F 满足下列条件:(1)∞=→)(lim 0x f x x ,∞=→)(lim 0x F x x ;(2))(x f 与)(x F 在0x 的某一去心邻域内可导,且0)(≠'x F ;(3))()(lim 0x F x f x x ''→存在(或为无穷大),则 注:上述关于0x x →时未定式∞∞型的洛必达法则,对于∞→x 时未定式∞∞型同样适用.使用洛必达法则时必须注意以下几点:(1)洛必达法则只能适用于“00”和“∞∞”型的未定式,其它的未定式须)()(lim)()(lim 00x F x f x F x f x x x x ''=→→)()(lim )()(lim 00x F x f x F x f x x x x ''=→→先化简变形成“00”或“∞∞”型才能运用该法则; (2)只要条件具备,可以连续应用洛必达法则;(3)洛必达法则的条件是充分的,但不必要.因此,在该法则失效时并不能断定原极限不存在. 6.利用导数定义求极限基本公式)()()(lim 0'000x f xx f x x f x =∆-∆+→∆(如果存在)7.利用定积分定义求极限基本格式⎰∑==∞→101)()(1lim dx x f n kf n n k n (如果存在)三.函数的间断点的分类函数的间断点分为两类:(1)第一类间断点设0x 是函数y = f (x )的间断点。
高等数学(同济第七版)(上册)_知识点总结

...高等数学(同济第七版)上册-知识点总结第一章函数与极限一.函数的概念1.两个无穷小的比较f(x)设l imf(x)0,limg(x)0且llimg(x)(1)l=0,称f(x)是比g(x)高阶的无穷小,记以f(x)=0[g(x)],称g(x) 是比f(x)低阶的无穷小。
(2)l≠0,称f(x)与g(x)是同阶无穷小。
(3)l=1,称f(x)与g(x)是等价无穷小,记以f(x)~g(x)2.常见的等价无穷小当x→0时sinx~x,tanx~x,arcsinx~x,arccosx~x,1-cosx~x^2/2,xe-1~x,ln(1x)~x,(1x)1~x二.求极限的方法1.两个准则准则1.单调有界数列极限一定存在准则2.(夹逼定理)设g(x)≤f(x)≤h(x)若limg(x)A,limh(x)A,则l imf(x)A2.两个重要公式sinx公式11limx0x1/x公式2xelim(1)x03.用无穷小重要性质和等价无穷小代换4.用泰勒公式当x0时,有以下公式,可当做等价无穷小更深层次xe 1x2x2!3x3!...nxn!no(x )sinxx3x3!5x5!... (n1)(2nx2n11)!2no(x1)WORD格式可编辑版...cosx12x2!4x4!... (2nxnox2n1)(2n!)ln(1x)x2x23x3... (nxnox n11)(n)(1x)1x (1)2!2x n ox n(1)...((n1))x...(n!)arctanxx3x35x5... (2n1xnox2n11)(2n11)5.洛必达法则定理1设函数f(x)、F(x)满足下列条件:(1)lim()0fxxx0 ,limF(x)0xx;(2)f(x)与F(x)在x的某一去心邻域内可导,且F(x)0;(3)f(x)limxx0Fx)(f(x)f(x)存在(或为无穷大),则limlimxx0FFx(x)xx()这个定理说明:当f(x)limx0Fxx()存在时,f(x)limxx0Fx()也存在且等于f(x)limxx0F(x);当f(x) limxx()0Fx 为无穷大时,f(x)limx()x0Fx也是无穷大.这种在一定条件下通过分子分母分别求导再求极限来确定未定式的极限值的方法称为洛必达(LHospital)法则.型未定式定理2设函数f(x)、F(x)满足下列条件:(1)lim()fxxx0 ,limF(x)xx;(2)f(x)与F(x)在x的某一去心邻域内可导,且F(x)0;(3)f(x)limx)x0F(x存在(或为无穷大),则f(x)f(x)limlimxx0F(x)x x F(x)注:上述关于x时未定式型的洛必达法则,对于x时未定式型x同样适用.使用洛必达法则时必须注意以下几点:(1)洛必达法则只能适用于“0”和“”型的未定式,其它的未定式须先化简变形成“0”或“”型才能运用该法则;(2)只要条件具备,可以连续应用洛必达法则;(3)洛必达法则的条件是充分的,但不必要.因此,在该法则失效时并不能断定原极限不存在.6.利用导数定义求极限WORD格式可编辑版...f(xx)f(x)00'基本公式()limfx0x0x(如果存在)3.利用定积分定义求极限基本格式1n1klimf()f(x)dxnnnk1(如果存在)三.函数的间断点的分类函数的间断点分为两类:(1)第一类间断点设x是函数y=f(x)的间断点。