物理斜面公式

合集下载

高中物理模型系列之斜面模型

高中物理模型系列之斜面模型

高中物理模型系列之斜面模型高中物理系列模型之斜面模型模型界定本模型涉及固定斜面或自由斜面的力学问题,包括斜面上的抛体或类抛体的动力学问题,以及环套在倾斜杆上的情形。

模型破解1.处理斜面上的受力问题时,可采用整体法和隔离法。

i)物体在斜面上处于静止或运动状态,斜面固定或不固定时,采用隔离法;反之则采用整体法,但通常需要结合使用。

ii)当物体运动中斜面也处于变速运动状态时,可利用矢量三角形处理斜面系统的变速运动。

iii)解决斜面问题时,应先进行受力分析。

当物体受力较多时,可建立正交坐标系,利用三大观点列方程求解。

iv)一些典型情景可利用固定结论解决:1.自由释放的滑块能在斜面上匀速下滑时,m与M之间的动摩擦因数μ=gtanθ。

2.在斜面上自由释放的滑块:I)静止或匀速下滑时,斜面M对水平地面的静摩擦力为零,对地面的压力等于整体重力;II)加速下滑时,斜面M对水平地面的静摩擦力水平向右,对地面的压力小于整体的重力;III)减速下滑时,斜面M对水平地面的静摩擦力水平向左,对地面的压力大于整体的重力。

3.在斜面上自由释放的滑块匀速下滑时,M对水平地面的静摩擦力为零。

在m上加上任何方向的作用力,M对水平地面的静摩擦力依然为零。

4.悬挂有物体的小车在斜面上滑行:I)向下的加速度a=gsinθ时,悬绳稳定时将垂直于斜面;II)向下的加速度a>gsinθ时,悬绳稳定时将偏离垂直方向向上;III)向下的加速度a<gsinθ时,悬绳将偏离垂直方向向下;IV)悬绳沿竖直方向时,加速度a=0;V)悬绳沿水平方向时,加速度a=g.sinθ。

5.如图4所示,当整体有向右的加速度a=gtanθ时,m能在斜面上保持相对静止。

6.如图5所示,对斜劈施加的作用力F=(M+m)gtanθ即a=gtanθ时,甲图中绳恰好松弛,乙图中m恰好对斜劈无压力,小球即将离开斜劈。

例题如图,粗糙的水平地面上有一斜劈,斜劈上一物块正在沿斜面以速度v匀速下滑,斜劈保持静止,则地面对斜劈的摩擦力为选项B,即不为零,方向向右。

九年级物理斜面的机械效率知识点归纳

九年级物理斜面的机械效率知识点归纳

机械效率是指机械工作所获得的有用功与输入功率的比值。

对于斜面,机械效率可以通过以下几个知识点来进行归纳。

1.功率的定义与计算:功率是指单位时间内所做的功,通常用符号P表示,单位是瓦特(W)。

功率可以通过力与速度的乘积来计算,公式为P=Fv,其中F是施加在物体上的力,v是物体的速度。

2.斜面的力分解:斜面可以分解为垂直于斜面的分力和平行于斜面的分力。

垂直于斜面的分力可以分解为物体的重力分力和支持力,平行于斜面的分力可以分解为摩擦力和斜面的作用力。

3.有用功与输入功率的计算:斜面上的力可以分为有用力和无用力。

有用力是指能够推动物体沿着斜面移动的力,无用力是指不能推动物体移动的力,如摩擦力。

有用功是有用力所做的功,可以通过有用力与物体的位移的乘积来计算,公式为有用功=有用力×物体位移。

输入功率是施加在物体上的总功率,可以通过输入力与物体的速度的乘积来计算,公式为输入功率=输入力×物体速度。

4.摩擦力的计算:斜面上的摩擦力可以通过斜面的倾角、物体的质量和地面摩擦系数来计算。

斜面的倾角决定了物体在斜面上受到的压力的分布情况,物体的质量决定了物体受到的重力的大小,地面摩擦系数决定了物体受到的摩擦力的大小。

摩擦力可以通过重力分力与地面摩擦系数的乘积来计算,公式为摩擦力=物体重力分力×地面摩擦系数。

5.机械效率的计算:机械效率可以通过有用功与输入功率的比值来计算,公式为机械效率=有用功/输入功率。

当系统存在摩擦力时,机械效率小于1,意味着部分输入功率被摩擦力消耗掉了。

6.提高机械效率的方法:要提高机械效率,可以通过减小摩擦力来实现。

一种方法是减小地面摩擦系数,可以在斜面表面涂上光滑的润滑剂来达到这个目的。

另一种方法是减小斜面的倾角,较小的倾角会减小物体受到的压力和摩擦力。

此外,还可以采用滚动方式代替滑动方式,因为滚动摩擦力比滑动摩擦力小。

综上所述,九年级物理斜面的机械效率知识点主要包括功率的定义与计算、斜面的力分解、有用功与输入功率的计算、摩擦力的计算、机械效率的计算以及提高机械效率的方法。

九年级物理《斜面的机械效率》知识点归纳

九年级物理《斜面的机械效率》知识点归纳

斜面的机械效率是指在斜面上进行功的实际效果与理论效果的比值。

斜面机械效率是物理学中涉及斜面运动的一个重要概念,本文将对斜面的机械效率的相关知识进行归纳。

一、斜面及其机械效率的定义1.斜面:斜面是指一个倾斜的平面,一端较高,一端较低,形状可以是任意的。

2.机械效率:机械效率是指在斜面运动中,实际功的效果与理论功的效果之间的比值。

二、计算斜面机械效率的方法1.斜面的抬升高度和速度:斜面的抬升高度是指质点从斜面起点到终点的距离,也就是斜面的高度差;而速度是指质点在斜面上的速度。

2.斜面的倾角和长度:斜面的倾角是指斜面与水平面之间的夹角,用弧度制表示;斜面的长度是指斜面的水平投影长度。

3.斜面的摩擦力:斜面上存在摩擦力,这个力会减小质点在斜面上的速度。

三、机械效率与斜面的关系1.机械效率与斜面的摩擦力有关:机械效率与斜面的摩擦力成反比关系,摩擦力越大,机械效率越低。

2.机械效率与斜面的倾角有关:当斜面的倾角增大时,机械效率会减小,因为斜面的倾角越大,质点需要克服的摩擦力就越大。

3.机械效率与斜面的长度有关:当斜面的长度增大时,机械效率会增大,因为斜面的长度越长,质点需要克服的摩擦力越小。

四、斜面机械效率的应用1.斜面机械效率可以用于计算斜面的实际功和理论功之间的比值,从而评估斜面运动的效果。

2.斜面机械效率可以用于研究物体在斜面上的垂直抬升高度和速度之间的关系。

3.斜面机械效率可以用于设计斜面机械装置,提高工作效率。

五、注意事项1.在计算机械效率时,需要考虑到摩擦力的影响。

2.机械效率只是理论上的一个指标,实际情况中,还需要考虑到能量的损耗等因素。

3.斜面的材质和光滑度等因素也会对机械效率产生影响。

六、例题解析例题1:物体沿斜面从一端滑到另一端的过程中,总共有40J的势能转化为机械能,而实际进行的功为28J,斜面的机械效率是多少?解析:机械效率=实际功÷理论功=28J÷40J=0.7,即机械效率为0.7例题2:质量为8 kg的物体由静止开始沿斜面滑下,滑下的距离为12 m,斜度为30°,摩擦系数为0.4,求物体滑下时的速度和斜面的机械效率。

专题05 牛顿运动定律中的斜面和板块模型(解析版)-高考物理计算题专项突破

专题05 牛顿运动定律中的斜面和板块模型(解析版)-高考物理计算题专项突破

专题05 牛顿运动定律中的斜面和板块模型一、牛顿第二定律:ma F =合;x ma F x =合;y ma F y =合。

二、牛顿第三定律:'F F -=,(F 与'F -等大、反向、共线)在解牛顿定律中的斜面模型时,首先要选取研究对象和研究过程,建构相应的物理模型,然后以加速度为纽带对研究对象进行受力分析和运动分析,最后根据运动学公式、牛顿运动定律、能量守恒定律、动能定理等知识,列出方程求解即可。

在解决牛顿定律中的板块模型时,首先构建滑块-木板模型,采用隔离法对滑块、木板进行受力分析,运用牛顿第二定律运动学公式进行计算,判断是否存在速度相等的临界点;若无临界速度,则滑块与木板分离,只要确定相同时间内的位移关系,列出方程求解即可;若有临界速度,则滑块与木板没有分离,此时假设速度相等后加速度相等,根据整体法求整体加速度,由隔离法求滑块与木板间的摩擦力f 以及最大静摩擦力m f 。

如果m f f ≤,假设成立,整体列式,求解即可;如果m f f >,假设不成立,需要分别列式求解。

一、在斜面上物块所受摩擦力方向的判断以及大小的计算1.物块(质量为m )静止在粗糙斜面上:(1)摩擦力方向的分析:对物块受力分析,因为物块重力有沿斜面向下的分力,故物块有沿斜面向下的运动趋势,则物块所受摩擦力沿斜面向上。

(2)摩擦力大小的计算:物块处于平衡状态,沿斜面方向受力平衡,即0=合F ,则有θsin mg F f =。

2.物块(质量为m )在粗糙的斜面上匀速下滑:(1)摩擦力方向的分析:物块沿斜面向下运动,可以根据摩擦力的方向与相对运动的方向相反来判断物块受到的摩擦力的方向沿斜面向上。

(2)摩擦力大小的计算:①物块处于平衡状态,沿斜面方向受力平衡,即0=合F ,则有θsin mg F f =,N F f μ=。

②物块沿斜面向下做匀加速运动,滑动摩擦力为N F f μ=,由牛顿第二定律有ma F mg f =-θsin 。

物理与运动斜面的平衡条件

物理与运动斜面的平衡条件

物理与运动斜面的平衡条件在物理学中,平衡是指物体处于静止状态或匀速直线运动状态,不受外力干扰。

斜面是一种常见的物体运动场景,研究物体在斜面上的平衡条件对于理解力学规律具有重要意义。

本文将详细介绍物理与运动斜面的平衡条件。

一、斜面的定义与基本性质斜面是指一个倾斜的平面,可以是直角三角形的斜边或直线倾斜的平面。

斜面上会产生一个重力沿斜面方向分解的分力,称为法向力和平行力。

法向力是垂直于斜面的力,垂直于斜面的分力图示如图1所示。

平行力是沿着斜面滑动方向的力,平行于斜面的分力图示如图2所示。

【插图1】插入一张示意图,展示法向力的方向【插图2】插入一张示意图,展示平行力的方向二、运动斜面的平衡条件运动斜面的平衡条件可以通过以下两个方面来考虑。

1. 斜面上物体的竖直方向平衡条件物体在竖直方向上的平衡需要考虑重力分力和斜面法向力之间的关系。

根据力的合成原理,物体在竖直方向上的合力应当为零。

因此,可以得出以下平衡条件:\[N\cos\alpha =mg\]其中,N是物体受到的斜面法向力的大小,α是斜面与水平方向的夹角,m是物体的质量,g是重力加速度。

2. 斜面上物体的平行方向平衡条件物体在斜面上的平行方向上的平衡需要考虑重力沿斜面方向的分力和斜面平行力之间的关系。

同样根据力的合成原理,物体在平行方向上的合力应当为零。

因此,可以得出以下平衡条件:\[N\sin\alpha =mg\sin\theta\]其中,θ是斜面与水平方向的夹角。

三、斜面上物体的滑动和倾斜角度斜面上物体是否发生滑动与斜面的倾斜角度有关。

当斜面的夹角小于或等于物体所受到的摩擦角时,物体处于静止状态,不会发生滑动。

当斜面的夹角大于物体所受到的摩擦角时,物体将发生滑动。

摩擦角是指物体与斜面接触时的最大摩擦力与斜面法向力之间的夹角。

根据斜面的摩擦力公式,可以得出以下平衡条件:\[f_{max} = \mu N\]其中,f_max是物体所能承受的最大摩擦力,μ是物体与斜面间的摩擦系数。

高考物理力学斜面题

高考物理力学斜面题

高考物理力学斜面题高考物理力学斜面题是高考物理试卷中常见的题型之一,涉及到斜面上物体的平衡、滑动等问题。

本文将介绍几个典型的高考物理力学斜面题,并给出解答过程。

第一个例题是关于斜面上物体平衡问题的,题目如下:题目:有一个质量为m的物体放在倾角为θ的光滑斜面上,斜面上的重力加速度为g,斜面长度为l。

求当物体静止在斜面上时,斜面对物体的支持力F的大小。

解答:在斜面上,物体受到的力有支持力F和重力m*g,根据斜面对物体的支持力垂直于斜面的特点可以得到:F*sinθ = m*g所以支持力F的大小为 F = m*g/sinθ第二个例题是关于斜面上物体滑动问题的,题目如下:题目:有一个质量为m的物体放在倾角为θ的光滑斜面上,斜面上的重力加速度为g,斜面长度为l。

求当斜面倾角θ逐渐增大时,物体开始向下滑动时的最小倾角θ'是多少?解答:在物体开始向下滑动时,斜面对物体的摩擦力f的大小等于斜面上物体受到的最大静摩擦力f_max。

根据摩擦力的表达式可得:f_max = μ*m*g*cosθ'其中,μ为动摩擦系数。

而在物体即将开始滑动时,静摩擦力达到最大,所以f_max = μ*m*g*cosθ。

将两个等式联立可以得到:μ*m*g*cosθ' = μ*m*g*cosθ化简可得:cosθ' = cosθ所以当物体开始向下滑动时,最小倾角θ'与原倾角θ相等。

第三个例题是关于斜面上物体滑动加速度问题的,题目如下:题目:有一个质量为m的物体放在倾角为θ的粗糙斜面上,斜面上的重力加速度为g,斜面长度为l。

物体受到的摩擦力的大小为f,求当物体开始向下滑动时,物体的加速度a的大小。

解答:在物体开始向下滑动时,摩擦力的大小等于物体所受到的最大静摩擦力f_max。

根据摩擦力的表达式可得:f_max = μ*m*g*cosθ其中,μ为动摩擦系数。

而物体开始向下滑动时,静摩擦力降为动摩擦力,所以f = μ*m*g*cosθ。

高考物理备考微专题1.9 动力学中的斜面问题(解析版)

高考物理备考微专题1.9 动力学中的斜面问题(解析版)

高考物理备考微专题精准突破 专题1.9 动力学中的斜面问题【专题诠释】1.斜面模型是高中物理中最常见的模型之一,斜面问题千变万化,斜面既可能光滑,也可能粗糙;既可能固定,也可能运动,运动又分匀速和变速;斜面上的物体既可以左右相连,也可以上下叠加。

物体之间可以细绳相连,也可以弹簧相连。

求解斜面问题,能否做好斜面上物体的受力分析,尤其是斜面对物体的作用力(弹力和摩擦力)是解决问题的关键。

对沿粗糙斜面自由下滑的物体做受力分析,物体受重力mg 、支持力F N 、动摩擦力f ,由于支持力θcos mg F N =,则动摩擦力θμμcos mg F f N ==,而重力平行斜面向下的分力为θsin mg ,所以当θμθcos sin mg mg =时,物体沿斜面匀速下滑,由此得θμθcos sin =,亦即θμtan =。

所以物体在斜面上自由运动的性质只取决于摩擦系数和斜面倾角的关系。

当θμtan <时,物体沿斜面加速速下滑,加速度)cos (sin θμθ-=g a ; 当θμtan =时,物体沿斜面匀速下滑,或恰好静止; 当θμtan >时,物体若无初速度将静止于斜面上; 2.等时圆模型1.质点从竖直圆环上沿不同的光滑弦上端由静止开始滑到环的最低点所用时间相等,如图甲所示。

2.质点从竖直圆环上最高点沿不同的光滑弦由静止开始滑到下端所用时间相等,如图乙所示。

3.两个竖直圆环相切且两圆环的竖直直径均过切点,质点沿不同的光滑弦上端由静止开始滑到下端所用时间相等,如图丙所示。

【高考领航】【2019·浙江选考】如图所示为某一游戏的局部简化示意图。

D 为弹射装置,AB 是长为21 m 的水平轨道, 倾斜直轨道BC 固定在竖直放置的半径为R =10 m 的圆形支架上,B 为圆形的最低点,轨道AB 与BC 平滑连 接,且在同一竖直平面内。

某次游戏中,无动力小车在弹射装置D 的作用下,以v 0=10 m/s 的速度滑上轨道 AB ,并恰好能冲到轨道BC 的最高点。

物理斜面公式

物理斜面公式

物理斜面公式物理斜面公式是描述物体在斜面上运动的物理规律的数学表达式。

运用这些公式,我们可以求解斜面上物体的加速度、速度、位置等与时间和斜面的属性相关的物理量。

下面将介绍几个常用的物理斜面公式及其相关参考内容。

1. 斜面上物体的加速度公式当物体在斜面上运动时,其加速度受到斜面的倾斜角度影响。

斜面上物体的加速度公式可以表达为:a = g * sin(θ)其中,a表示物体在斜面上的加速度,g表示重力加速度,θ表示斜面的倾斜角度。

参考内容:- Young, H. D., & Freedman, R. A. (2012). University Physics.- Serway, R. A., Jewett, J. W., & Vuille, C. (2017). College Physics.- Giancoli, D. C. (2008). Physics: principles with applications.2. 斜面上物体的速度公式当物体在斜面上沿斜面运动时,其速度受到重力的作用。

斜面上物体的速度公式可以表达为:v = gt * sin(θ)其中,v表示物体在斜面上的速度,g表示重力加速度,t表示运动时间,θ表示斜面的倾斜角度。

参考内容:- Halliday, D., & Resnick, R. (2014). Fundamentals of Physics.- Cutnell, J. D., & Johnson, K. W. (2016). Physics.- Tipler, P. A., & Mosca, G. (2007). Physics for Scientists and Engineers.3. 斜面上物体的运动距离公式当物体在斜面上运动时,其运动距离与斜面的长度、倾斜角度以及斜面上物体的起始速度等有关。

斜面上物体的运动距离公式可以表达为:s = (v^2 - u^2) / (2 * g * sin(θ))其中,s表示物体在斜面上的运动距离,v表示物体的终止速度,u表示物体的起始速度,g表示重力加速度,θ表示斜面的倾斜角度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

物理斜面公式
物理斜面公式是用来计算斜面上物体的运动或力学特性的公式。

斜面是一个倾斜的平面,可用来实现各种机械装置和物理实验。

斜面公式可用于计算斜面上物体的加速度、速度、位移、摩擦力等物理量。

以下是一些与斜面公式相关的内容。

1. 基本斜面公式
- 斜面的高度(h):斜面上的垂直高度差,是指斜面顶部到
底部的垂直距离。

- 斜面的长度(l):斜面平面上两个端点间的水平距离。

- 斜面的倾角(θ):斜面与水平线之间的夹角。

2. 重力势能公式
重力势能是指物体在高度h处由于被抬高而具有的势能。

在斜面上的物体的重力势能可以由以下公式计算:
PE = mgh
其中,PE表示重力势能,m表示物体的质量,g表示重力加
速度,h表示物体相对于参考点的高度。

3. 静摩擦力公式
当物体静止在斜面上时,斜面对物体的反作用力称为静摩擦力,可以用以下公式计算:
F_friction = μ_s * N
其中,F_friction表示静摩擦力,μ_s表示静摩擦因数,N表示
物体与斜面接触的垂直力。

4. 物体在斜面上的加速度公式
当物体在斜面上滑动时,它的加速度可以由以下公式计算:
a = (g sinθ)/(1+(μ_k*cosθ))
其中,a表示物体在斜面上的加速度,g表示重力加速度,θ
表示斜面的倾角,μ_k表示动摩擦因数。

5. 物体在斜面上的速度和位移公式
斜面上的物体速度和位移与时间相关。

可以通过以下公式计算:v = u + at
s = ut + 0.5at^2
其中,v表示物体的速度,u表示初始速度,a表示加速度,t
表示时间,s表示位移。

在斜面上,物体的初始速度通常为零,因此上述公式可简化为:v = at
s = 0.5at^2
以上是一些与物理斜面公式相关的内容。

这些公式可应用于各种斜面实验和机械装置的设计与计算。

相关文档
最新文档