《电力电子技术》课程设计
电力电子技术课程设计指导书样本

电力电子技术课程设计指引书一、课程设计总体目的《电力电子技术》课程是一门专业技术基本课,电力电子技术课程设计是电力电子技术课程理论教学之后一种实践教学环节。
其目是训练学生综合运用学过变流电路原理基本知识,独立完毕查找资料、选取方案、设计电路、撰写报告能力,使学生进一步加深对变流电路基本理论理解和基本技能运用,为此后学习和工作打下坚实基本。
《电力电子技术》课程设计是配合变流电路理论教学,为自动化专业开设专业基本技术技能设计,课程设计对自动化专业学生是一种非常重要实践教学环节。
通过设计可以使学生巩固、加深对变流电路基本理论理解,提高学生运用电路基本理论分析和解决实际问题能力,培养学生创新精神和创新能力。
二、合用专业、答疑地点及时间合用专业:自动化。
答疑地点:01517教室答疑时间:二本:1月4、5、7日8-12时三本:1月4、5、7日13-17时三、先修课程电路、电子技术、电机拖动四、课程设计学时分派课程设计时间为1 周:调研,查资料1 天。
总体方案设计 1 天。
单元电路设计 3 天(画原理图,参数计算)。
撰写设计阐明书及验收 1 天。
五、课程设计总体规定⑴熟悉整流和触发电路基本原理,可以运用所学理论知识分析设计任务。
⑵掌握基本电路数据分析、解决;描绘波形并加以判断。
⑶能对的设计电路,画出线路图,分析电路原理。
⑷准时参加课程设计指引,定期报告课程设计进展状况。
⑸广泛收集有关技术资料。
⑹独立思考、刻苦钻研、禁止抄袭。
⑺准时完毕课程设计任务,认真、对的地书写课程设计报告。
⑻培养实事求是、严谨工作态度和认真工作作风。
六、课程设计内容⑴明确设计任务,对所要设计任务进行详细分析,充分理解系统性能、指标内容及规定。
⑵制定设计方案⑶进行详细设计①单元电路设计②参数计算③器件选取④绘制电路原理图⑷撰写课程设计报告(阐明书):课程设计报告是对设计全过程系统总结,也是培养综合科研素质一种重要环节。
课程设计报告详细规定如下:(1)格式(字体、字号、字形、图号、表号)必要符合模版规定。
电力电子技术的课程设计

电力电子技术的课程设计一、课程目标知识目标:1. 掌握电力电子器件的基本工作原理,如二极管、晶体管、晶闸管等;2. 了解电力电子电路的基本类型,如整流电路、斩波电路、逆变电路等;3. 学会分析简单电力电子电路的性能、特点及应用场合;4. 掌握电力电子设备在实际应用中的参数计算和选型方法。
技能目标:1. 能够正确使用实验设备搭建简单的电力电子电路;2. 学会运用电路分析方法,对电力电子电路进行性能分析和故障排查;3. 能够根据实际需求设计简单的电力电子系统,并进行参数计算和选型。
情感态度价值观目标:1. 培养学生对电力电子技术的兴趣,激发学习热情;2. 增强学生的团队合作意识,提高沟通与协作能力;3. 培养学生严谨的科学态度,树立工程伦理观念。
课程性质:本课程为电力电子技术的基础课程,旨在使学生掌握电力电子器件、电路及其应用,培养实际操作能力和工程素养。
学生特点:学生具备一定的电子技术基础,具有较强的学习能力和动手能力,但对电力电子技术尚处于入门阶段。
教学要求:结合学生特点,注重理论与实践相结合,强调动手实践和实际应用,提高学生的综合能力。
通过本课程的学习,使学生能够达到上述课程目标,为后续相关课程和实际工作打下坚实基础。
二、教学内容1. 电力电子器件:介绍二极管、晶体管、晶闸管等基本器件的结构、工作原理及特性,重点讲解其在电力电子电路中的应用。
教材章节:第一章至第三章内容安排:2学时2. 电力电子电路:讲解整流电路、斩波电路、逆变电路等基本电路的类型、工作原理及性能特点。
教材章节:第四章至第六章内容安排:4学时3. 电力电子电路分析:教授电路分析方法,如平均值法、等效电路法等,分析典型电力电子电路的性能和应用。
教材章节:第七章内容安排:3学时4. 电力电子设备设计:介绍参数计算和选型方法,结合实际案例进行设备设计。
教材章节:第八章内容安排:3学时5. 实践操作:安排学生进行电力电子电路搭建、性能测试和故障排查,提高动手能力。
电力电子技术教案(完整版)全文编辑修改

VT1、VD1导通
18
二、工作原理
3、当u2为负半周且控制角为α 时,触发VT2导通,负载电流 id经VT2、VD1流通,电感由 释放能量变成储存能量,负 载端电压ud=uba=-u2。
4、 u2电压由负变正过零时,电 感由储存能量变为释放能量, 产生上负下正的自感电动势, 维持电流流通,VT2将继续到 通,同时VD1关断、VD2导通, 负载端电压为0。
负载性质: 电阻性 电感性 反电势性
4
第2章:单相可控整流电路
用晶闸管组成的可控整流电路,可以很方便地把交流 电变成大小可调的直流电,且具有体积小、重量轻、效率 高以及控制灵敏等优点。
§2-1 单相可控整流电路 §2-2 三相可控整流电路
§2-3 带平衡电抗器的双反星型可控整流电路
§2-4 整流电路的换相压降与外特性
晶闸管承受的最大电压为 6U2 。
44
§2-2-3 :三相桥式半控整流电路
一、阻性负载: a <=60º,负载端电压波形 连续
Ud 1.17U 21 cosa
VT1 VT3 VT5
当α〉60°时,负载端电压波形断续 VD4 VD6 VD2
Ud 1.17U 21 cosa
二、电感性负载: 与单相半控桥式整流电路一样,桥内二极管有续流作用,因
qT qD 180
VT2、VD1导通
VT2、VD2导通
19
结论
1.晶闸管在触发时刻换 流,二极管在电源电 压过零时刻换流。
2.对于单向半控桥感性 负载,负载端的电压 波形如右图。
根据波形得
Ud=0.9U2(1+cosα)/2
20
结论
3.单相半控桥感性负载, 负载端电压波形与阻 性负载完全相同,即 单相半控桥感性负载 本身具有续流作用。
电力电子技术课程设计范例

电力电子技术课程设计范例电力电子技术课程设计是电气工程专业的一门重点课程,该课程设计主要涉及到电力电子变流器的设计、控制和应用。
此外,该课程还包括功率半导体器件的选型、电路设计、控制系统设计以及电磁兼容等方面的内容。
本文主要介绍一种电力电子技术课程设计的范例,以期为电力电子技术课程设计的读者提供一些参考和借鉴。
1. 课程设计目标电力电子技术课程设计的主要目标是培养学生的电气设计能力、模拟仿真能力、实验操作能力和团队合作意识,以及使学生掌握电力电子变流器的设计和控制技术。
2. 课程设计主题设计具有稳定输出电压的电力电子变流器。
具体包括:(1)设计一个交流输入、直流输出的电力电子变流器。
(2)根据实际需要选择并计算所需的功率半导体装置。
(3)设计适当的电路保护和故障检测系统。
(4)编写控制程序实现变流器的开关控制。
(5)进行电路仿真和实验验证。
其中,电力电子变流器可以采用全桥式、半桥式、双向直流-直流变换器等常用拓扑结构。
3. 课程设计步骤(1)确定项目的范围和目标。
明确所需完成的技术任务和各个环节的时间计划,提前预估和解决可能遇到的技术问题。
(2)收集相关的技术资料。
包括相关电路设计资料和器件规格书等。
(3)根据设计需求进行选型计算,选择满足要求的元器件。
(4)进行电路仿真验证。
采用MATLAB/Simulink软件搭建电路模型,对所设计的电路进行仿真,进一步验证电路的性能和可靠性。
(5)设计控制系统。
采用单片机或FPGA等控制芯片,编写控制程序实现变流器的开关控制,并对控制程序进行仿真和验证。
(6)进行实验验证。
制作样品电路,进行实际测试和验证。
实验过程中,需要注意电路稳定性和安全性,防止短路等电路故障。
(7)编写课程设计报告。
对整个设计过程进行总结和评估,包括设计思路、设计过程、实验结果等方面内容。
4. 课程设计评分电力电子技术课程设计评分主要包括以下几个方面:(1)方案设计(20分)。
设计方案的完备性、实现难度、适用性和创新性等方面考虑。
电力电子技术课程设计

电力电子技术课程设计一、教学目标本课程旨在让学生掌握电力电子技术的基本概念、原理和应用,培养学生分析和解决电力电子技术问题的能力。
具体目标如下:1.知识目标:–了解电力电子技术的基本原理和特性;–掌握电力电子器件的工作原理和选用方法;–熟悉电力电子电路的分析和设计方法。
2.技能目标:–能够分析简单的电力电子电路;–能够选用合适的电力电子器件进行电路设计;–能够进行电力电子设备的安装、调试和维护。
3.情感态度价值观目标:–培养学生的创新意识和团队合作精神;–增强学生对电力电子技术领域的兴趣和自信心;–培养学生对电力电子技术应用的的责任感和使命感。
二、教学内容本课程的教学内容主要包括电力电子技术的基本原理、电力电子器件、电力电子电路的分析与设计以及电力电子技术的应用。
具体安排如下:1.电力电子技术的基本原理:–电力电子器件的工作原理;–电力电子电路的特性与分类。
2.电力电子器件:–晶闸管及其驱动电路;–整流器、逆变器及其控制电路。
3.电力电子电路的分析与设计:–电力电子电路的基本分析方法;–电力电子电路的设计原则与步骤。
4.电力电子技术的应用:–电力电子设备的功能与结构;–电力电子技术的应用领域。
三、教学方法本课程采用多种教学方法,以激发学生的学习兴趣和主动性。
主要包括:1.讲授法:通过教师的讲解,让学生掌握电力电子技术的基本概念和原理;2.讨论法:通过小组讨论,培养学生分析问题和解决问题的能力;3.案例分析法:通过分析实际案例,让学生了解电力电子技术的应用;4.实验法:通过实验操作,让学生熟悉电力电子器件和电路的工作原理。
四、教学资源本课程的教学资源包括教材、参考书、多媒体资料和实验设备。
教材选用《电力电子技术》一书,参考书包括《电力电子器件》和《电力电子电路设计》。
多媒体资料包括教学PPT、视频动画等。
实验设备包括晶闸管、整流器、逆变器等实验装置。
这些资源能够支持教学内容和教学方法的实施,丰富学生的学习体验。
《电力电子技术》课程设计

电力电子技术课程设计一、课程设计的目的1. 掌握电力电子电路的设计方法,具体包含功率器件、电感、电容等选取原则和设计依据。
2. 掌握控制器的设计方法,尤其针对不同对象和采样时间PID控制参数的选用。
3. 掌握现代仿真工具的使用,针对仿真过程中出现的问题,能够独立或通过查找文献、小组讨论等方式分析问题产生的原因,寻找解决方案。
4. 撰写符合规范的课程设计报告。
二、基于Boost电路APFC原理及设计2.1题目要求设计基于Boost变换器的有源功率因数校正电路,额定功率为1kW,峰值功率为1.5kW,负载为电阻性负载。
其输入交流电电压范围在190-240V/50Hz,其输出电压恒定在400V,在输入电压20%波动工况下,系统动态调整时间在0.5s内。
功率器件工作频率:20kHz,输出电压波纹5%,电流波纹10%。
2.2BOOST电路及工作原理图1 BOOST 电路原理图假设其中断电感、电容的值都极大,当IGBT 导通时,电感通过电源进行充电,此时充电电流恒定,令其电流大小恒为I 1,且此时,电容两端的电压向负载供电,由于电容的阻值很大,故输出电压为恒值,记为U 0。
令IGBT 的开通的时间为t on ,在此阶段中电感上积蓄的能量为E on ;当IGBT 关断时,电源和电感共同向电容充电并向负载R 进行供电。
设IGBT 的关断时间为t off ,则此期间电感L 释放能量为:E off =(U 0−E)I 1t off543QDLC ZV du ci Ci o Boost电路图i LQDLC ZV du ci Ci oi LQDLC ZV du ci C i oi LQDLC ZV du ci C i oi LbQ导通Q关断Q关断时电感电流为零adci L I Lmax I LminI i i LI LmaxI Lmin I Lmin I Lmaxi Q i D i Cu c ΔU Cttt tt ttt t tttI LmaxI LmaxI Lmaxi Cu ca 电感连流连续b 电感电流断续00000000000I it ont offTt onTt ’off-I OI max -I OV GE V GE-I OI max -I O又当其处于稳态时,在一个周期内电感L上吸收和释放的能量相等,故:(U0−E)I1t off=EI1t on由上述公式整理可得:U0=t on+t offt offE=Tt offE由于该电路的输出电压U0高于电源电压E,故又称为:升压斩波电路,也就是BOOST电路,又α=t onT,其中α为导通占空比。
电力电子技术matlab课程设计

电力电子技术 matlab课程设计一、课程目标知识目标:1. 理解电力电子技术的基本原理,掌握相关术语及概念;2. 学会使用MATLAB软件进行电力电子电路的仿真与设计;3. 掌握常见电力电子器件的工作原理及其在电路中的应用。
技能目标:1. 能够运用MATLAB软件构建电力电子电路模型,进行基本仿真分析;2. 能够对电力电子电路进行参数优化,提高电路性能;3. 能够运用所学知识解决实际问题,具备一定的电力电子技术实际应用能力。
情感态度价值观目标:1. 培养学生对电力电子技术及MATLAB软件的兴趣,提高学习积极性;2. 培养学生具备团队协作精神,善于与他人沟通交流,共同解决问题;3. 增强学生的创新意识,鼓励学生勇于探索新知识,提高实践能力。
课程性质:本课程为电力电子技术领域的实践课程,以MATLAB软件为工具,结合理论知识,培养学生的实际操作能力。
学生特点:学生已具备一定的电力电子技术理论基础,但对于MATLAB软件的使用相对陌生,需要从基础开始教学。
教学要求:教师需结合课本内容,由浅入深地引导学生学习MATLAB软件在电力电子技术中的应用,注重培养学生的实际操作能力和创新精神。
在教学过程中,关注学生的个体差异,给予个性化指导,确保课程目标的实现。
通过课程学习,使学生能够将所学知识应用于实际电路设计与分析中,提高综合素养。
二、教学内容1. 电力电子技术基本原理回顾:包括电力电子器件的工作原理、特性及分类,重点掌握二极管、晶闸管、MOSFET和IGBT等器件。
2. MATLAB软件入门:介绍MATLAB软件的基本操作,如命令窗口、脚本编写、函数调用等,为后续仿真打下基础。
3. 电力电子电路建模与仿真:结合课本内容,选用典型电力电子电路进行建模与仿真,包括整流电路、逆变电路、斩波电路等。
- 教学大纲安排:按照课本章节进行,逐个分析各类电路的工作原理及仿真方法。
4. 参数优化与性能分析:教授学生如何运用MATLAB软件对电力电子电路进行参数优化,提高电路性能。
电力电子技术教案

电力电子技术教案一、课程概述本课程主要介绍电力电子技术的基本概念、原理和应用。
通过学习该课程,学生将了解到电力电子技术在电力系统中的重要性以及电力电子器件、电力电子变换器的工作原理和特性。
同时,学生将学会电力电子技术的设计与应用,并通过实践掌握电力电子设备的故障诊断与维修。
二、教学目标1.掌握电力电子技术的基本概念和原理;2.了解电力电子器件的工作原理和特性;3.学会电力电子变换器的设计与应用;4.具备电力电子设备的故障诊断与维修能力。
三、教学内容1.电力电子技术的基本概念与原理(4课时)1.1电力电子技术的发展历程1.2电力电子技术在电力系统中的应用1.3电力电子技术的基本原理2.电力电子器件的工作原理与特性(8课时)2.1二极管与可控硅的特点与应用2.2晶闸管与场效应管的工作原理与应用2.3双向晶闸管和功率管的工作原理与应用3.电力电子变换器的设计与应用(12课时)3.1单相桥式整流电路设计与应用3.2单相交流调压器设计与应用3.3单相变频器设计与应用3.4三相桥式整流电路设计与应用3.5三相交流调压器设计与应用3.6三相变频器设计与应用4.电力电子设备的故障诊断与维修(8课时)4.1故障诊断的基本方法与步骤4.2故障诊断与维修案例分析4.3维修实践操作指导四、教学方法1.理论讲授:通过PPT讲解电力电子技术的基本概念、原理和应用。
2.课堂讨论:引导学生积极参与课堂讨论,深入理解电力电子技术的应用问题。
3.实验实践:组织学生进行电力电子实验和故障诊断实践,培养学生的实践能力和创新思维。
五、教学评价1.考试评价:设置闭卷考试,测试学生对电力电子技术的理论知识的掌握程度。
2.实验报告:要求学生完成电力电子实验和故障诊断实践,并撰写实验报告。
3.课堂表现:评价学生在课堂讨论、实践操作中的参与度与表现。
4.作业评价:布置电力电子技术的应用题目,评价学生的解题能力和应用能力。
六、教材与参考书目主教材:《电力电子技术》,高级教育出版社。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《电力电子技术》课程设计目录一.课程设计的目标 1二. 基于BOOST电路APFC原理及设计错误!未定义书签。
2.0设计任务与要求 (1)2.1BOOST电路及工作原理 .......................... 错误!未定义书签。
2.2电路参数设计.................................. 错误!未定义书签。
2.3APFC工作原理及控制系统设计 ................... 错误!未定义书签。
2.3.1 基于SPWM控制的双闭环控制系统............. 错误!未定义书签。
2.3.2 基于电流跟踪控制的双闭环控制系统.......... 错误!未定义书签。
2.4仿真结果及分析................................ 错误!未定义书签。
三.H桥逆变器电路原理及设计错误!未定义书签。
3.0设计任务与要求 (11)3.1H桥电路及工作原理 ............................ 错误!未定义书签。
3.2电路参数设计.................................. 错误!未定义书签。
3.3SPWM控制原理及设计 ........................... 错误!未定义书签。
3.3.1 单极性SPWM控制原理....................... 错误!未定义书签。
3.3.2 双极性SPWM控制原理....................... 错误!未定义书签。
3.4仿真结果与分析................................ 错误!未定义书签。
一.课程设计的目标1. 养成实事求是、积极探索和认真细致的治学态度;培养精益求精的大国工匠精神。
根据设计任务要求,主动学习相关知识,独立构建电力电子系统,撰写课程设计报告。
2. 掌握电力电子电路的设计方法,功率器件、电感、电容等参数选取原则,根据要求,设计出满足工作需求的电力电子电路。
3. 掌握控制器的基本设计方法,根据电力电子电路控制需求,设计并调整控制器的参数。
4. 能利用现代仿真软件(PSIM或MATLAB)构建电力电子仿真系统,分析、解决电力电子工程领域的复杂工程问题,针对仿真过程中出现的问题,能够通过查找文献,独立或讨论等方式分析问题,寻找解决方案。
5. 能够按指定格式与要求,撰写规范的课程设计报告,并能够与相关人员交流。
6. 了解电力电子技术相关产品设计流程、经济成本等因素体现于设计之中,能够根据设计任务与要求,合理规划设计步骤与进度。
二.基于Boost电路APFC原理及设计2.0 设计任务与要求设计基于Boost变换器的有源功率因数校正电路,额定功率为1kW,峰值功率为1.5kW,负载为电阻性负载。
其输入交流电电压范围在190-240V/50Hz,其输出电压恒定在400V,在输入电压20%波动工况下,系统动态调整时间在0.5s内。
功率器件工作频率:20kHz,输出电压波纹5%,电流波纹10%。
具有软启动功能:优秀2.1 BOOST电路及工作原理如图1,BOOST电路是一种直流-直流(DC-DC)转换器,它可以将低电压升高到更高的电压水平,从而提供所需的电源电压。
其工作原理如下:1.当输入电压施加到BOOST电路时,电感和开关管(通常是MOSFET)之间形成了一个开关电路。
2.当开关管关闭时,电感中储存的能量被传递到电容器中。
此时输出电压较低。
3.当开关管打开时,电容器中储存的能量被传递到负载中。
同时,电感中的电流开始增加,此时电感中存储的能量也开始增加。
此时输出电压较高。
4.重复上述过程,通过改变开关管的开关时间和占空比,可以实现输出电压的控制。
图1Boost电路的核心是一个电感和一个开关管,这个开关管被控制器控制,通过不断地周期性地开合,使电感中储存的电能不断积累和释放。
当开关管导通时,电感中存储的能量被传递到输出端,从而使输出电压升高;当开关管断开时,电感中储存的电能被电容吸收,从而保证电路的连续性。
这样,在一个开关周期内,输出电压的平均值可以高于输入电压。
下面是Boost电路的数学模型。
假设输入电压为V in,输出电压为V out,电感L的电流为iL,电容C的电压为v C,开关管的导通时间为t on,关闭时间为t off那么,我们可以得到以下方程:+V out+v C (1)V in=L di Ldt根据电感和电容的性质,可以得到以下方程:i L=C dv C(2)dt当开关管导通时,有:V in=V out=L di L(3)dt当开关管断开时,有:V out=v C (4) 通过对上述方程组进行变换和求解,可以得到输出电压V out的表达式:V out=V in(5)1−D其中,D表示开关管的占空比,即导通时间t on与一个周期时间的比值。
从上式可以看出,输出电压与输入电压成正比,而与占空比成反比,这就是Boost电路能够升压的原理。
2.2 电路参数设计1. 升压电感计算电感在线路中起着能量的传递、储存和滤波等作用,并决定了输入端的高频纹波电流总量,因此按照限制电流脉动最小的原则来确定电感值。
考虑最差的情况,输出功率最大,输入电压最低。
此时,输入电流最大,纹波也最大。
为了保证在这种情况下输入电流的纹波仍然能满足要求,电感的设计应该在输入电压最低点进行计算。
首先,计算峰值电流I P:当输入电压为最小值U in_min时,输入电流最大,取得峰值电流I P,根据相关资料,有计算公式:I P=√2P NηU in_min =1000√20.9×190≈8.27A (6)其次,计算容许的电感电流的最大纹波∆I L:根据设计要求,只允许电感电流有10%的波动,那么:∆I L=0.1I P=0.1×8.27A=0.827A (7)然后,考虑电压最大占空比αmax:αmax=U o−U in_maxU O =400−240400=0.4 (8)最后,得到升压电感L:因为有:V in=L dI Ldt =ΔI LαT S(9)从而有:L≥αmax U in_maxf s∆I L =0.4×1902000×0.827≈4.59mH (10)这里我们取升压电感L=5mH。
2.输出电容计算输出电容的设计所需考虑的因素包括开关频率的纹波电流大小、二次谐波纹波电流、输出的直流电压、输出的纹波电压与输出电压保持时间(Hold Up Time)等。
流过输出电容器的总电流是开关频率纹波电流的有效值和线路电流的二次谐波,通常选择寿命长、低漏阻、能耐较大纹波电流,且工作范围较宽高频铝电解电容,并且耐压的选择应留有充分的余量,以避免超负荷工作。
输出电容的计算有两种方法:按输出电压的纹波要求计算和按维持时间计算。
本设计要求了输出电压纹波,所以采用前者计算按输出电压的纹波要求计算。
根据相关资料,我们有:C≥I oωU oσv =Nω(√2U)2σ=2π×50×(√2×240)2×5%=552.9μF (11)那么,这里我们取C =580μF 。
3. 电阻设计电流采样电阻采用在boost 拓扑地线串联一个采样电阻来检测输入电阻,根据设计要求额定功率为 1kW ,则负载电阻阻值为:R =U o 2P =40021000=160Ω 4.二极管选型由于U o_max =420V ,则输出电流I o :I o =P o U o =1000W 400V =2.5A (12)5.整流二极管选型因为电路的输入电压范围为190V~240V ,所以整流桥式电路所承受的最大反向电压为:U =√2U in_max =240×√2V ≈339.41V (13)又因为峰值功率为1.5kW ,则最大输入电流有效值为:I in_max =P max U in_min =1500190A ≈7.89A (14)所以,我们选择规格为600V/15A 的整流二极管。
2.3 APFC 工作原理及控制系统设计APFC 全称为自适应功率因数校正器(Adaptive Power Factor Corrector ),是在整流器和负载之间接入一个Boost 型DC/DC 开关变换器,用电压电流反馈技术,使输入端电流波形跟随输入正弦电压波形,从而使输入电流的波形也接近正弦波,以达到提高功率因数的目的。
APFC 的工作原理如下:1. 传感器:APFC 使用传感器来监测输入电压和电流的幅值和相位差。
2. 控制器:控制器通过对传感器的读数进行计算,确定电路的功率因数和需要进行校正的功率因数值。
3. 校正电容器:APFC 使用校正电容器来校正功率因数。
当需要校正功率因数时,控制器会通过电容器电压控制器改变电容器的电容值,从而改善电路中的功率因数。
4. 变压器(选配):在某些情况下,APFC 可能需要使用变压器来提高电路的功率因数。
无论是基于SPWM 控制的APFC ,还是基于电流跟踪控制的APFC,其控制电路的设计基本思路一致。
系统由两个控制环构成:内环为电流环,作用为使DC/DC 变换器的输入电流和整流后的电压波形相同;外环为电压环,作用为使DC/DC 变换器输出电压稳定。
只有电压和电流的双闭环反馈才能较好实现整流与稳压功能,从而得到较高功率因数。
具体设计如下:(1)电压环通过检测输出直流电压与期望输出直流电压来实时调整功率开关的占空比, 使输出电压保持稳定。
(2)电流环的输入为电压环的输出和前馈电压通过乘法器后形成基准电流信号,采样到的电感电流与该基准电流进行比较后,其高频分量(开关频率20kHz)进入电流误差放大器进行补偿、平均化处理和放大,得到的平均电流误差与三角波相比较决定功率开关的占空比,使占空比的变化遵循正弦规律,结果电感电流能够跟随基准电流,功率因数得以提高。
2.3.1 基于SPWM控制的双闭环控制系统基于SPWM的APFC工作过程如下:衰减后的输出实际电压与期望的输出电压比较产生偏差控制信号,经过PI控制器与整流后电压输入乘法器得到一个可以跟踪输入电压的半正弦信号。
将乘法器输出信号作为电流基准,利用电流环的PI控制调节输入电流平均值,使其与输入整流电压同相位,接近正弦波。
其中,基于SPWM控制的特点在于,电流环的输出信号是经过与三角波比较后,给出具有特定占空比的开关管驱动信号。
该驱动信号的宽度呈正弦规律变化,即称为SPWM。
这样一来电流误差能够被迅速而精确地校正。
同时,电流环有较高的增益-带宽,可以使跟踪误差产生的畸变小于1%,从而更近于1的功率因数。
图2为基于SPWM控制方法设计的APFC原理图。
图3为基于SPWM控制设计的双闭环控制系统结构图。