七年级数学认识三角形1

合集下载

初中数学鲁教版七年级上册《第一章 三角形 1 认识三角形》教材教案

初中数学鲁教版七年级上册《第一章 三角形 1 认识三角形》教材教案

《认识三角形3》教学设计●知识目标:1、了解三角形中线、高线、角平分线的概念及性质。

2、能画出三角形中线、高线、角平分线3,会运用三角形中线、高线、角平分线解决问题●能力目标:1、通过观察、操作、想象、推理、交流等活动,发展学生空间观念,推理能力和有条理表达的能力2、结合具体实例,运用三角形中线、高线、角平分线解决问题●情感目标:联系学生的生活环境,创设情景,使学生通过观察,操作、交流、归纳,获得必需的数学知识,激发学生的学习兴趣。

●教学重点:能画出三角形中线、高线、角平分线●教学难点:会运用三角形中线、高线、角平分线解决问题突破重难点的方法是充分运用多媒体教学手段,设置问题、探究讨论、例题讲解、课后小结直至布置作业,突出主线,层层深入,逐一突破重难点。

●教学过程活动一:数学活动激发兴趣用铅笔支起一张均匀的三角形卡片教师活动:你知道怎样确定这个支撑点的位置吗?【设计意图】通过从小游戏活动入手,激发学生的探求欲望;同时经过小游戏创设一种宽松、和谐的学习氛围,让学生以轻松、愉快的心态进入探究新知的过程,同时也能感受到数学来源于生活。

活动二:揭示本质、归纳定义在三角形中,连接一个顶点与它对边的中点的线段,叫做这个三角形的中线.如图3,连接△ABC的顶点A和它所对的边BC的中点D,所得线段AD叫做△ABC•的边BC 上的中线.注:三角形的中线是线段.由定义知:如果AD是△ABC的中线,那么有BD=DC=12 BC.活动三:通过画图折纸等方法在教师为其准备的各类三角形上画出它们的中线,你会发现什么?师生行为:学生动手操作、讨论、教师巡视指导,画中线时,可以让学生折纸,也可以让他们用刻度尺.活动结论:三角形的三条中线交于一点.三角形三条中线的交点叫做三角形的重心.【设计意图】通过本活动,进一步培养学生的动手、动脑能力,发展其空间观察.活动四:在一张薄纸上画一个三角形,然后画出它的一个内角的平分线.想一相: 1.什么是三角形的角平分线?2.三角形的角平分线与一个角的平分线有何区别?你能通过折纸的方法得到它吗?师生行为:学生动手做,讨论,归纳,教师指导.【设计意图】通过其活动,一来让学生理解三角形的角平分线的定义,二来使学生能进一步准确画出一角的平分线活动结论:在三角形中,一个内角的角平分线与它的对边相交,这个角的顶点与交点之间的线段叫三角形的角平分线注意:1.三角形的角平分线是一条线段而不是射线,•它与一个角的平分线不同.2.一个内角的平分线与它的对边是相交的,•这个角的顶点与交点之间的线段才是这个内角的平分线,即三角形的角平分线.如图4,AD是△ABC的角平分线.那么有∠BAD=∠DAC=12∠BAC.活动五:1.四个同学为一个合作小组;每个小组学生分别画出锐角三角形、钝角三角形、•直角三角形的三条角平分线.2.讨论在每个三角形中,这三条角平分线之间有怎样的位置关系.【设计意图】培养学生的动手能力、归纳能力.师生行为:学生动手操作,教师指导.活动结论:1、任一个三角形都有三条角平分线,且它们都在三角形的内部;2.任一个三角形的三条角平分线相交于一点。

北师大版七年级数学下第四章《三角形》第一节认识三角形之《对顶三角形模型的运用》说课课件(23张PPT)

北师大版七年级数学下第四章《三角形》第一节认识三角形之《对顶三角形模型的运用》说课课件(23张PPT)

设计意图:练习和巩固。
设计意图:结合板书总结结反思,归纳,形成 知识体系。
六、设计说明
(一)亮点分析
亮点1
巧设追问,由浅入深,层层递进,提升学 生思维的深度和广度。使人人都有所学, 有所获。
亮点2 着眼知识生成过程,环节联系紧密完整。
亮点3
利用超链接,对基本图形进行变化,然后 归纳总结。既强调了对图形本质的认识,又 渗透了从具体到抽象,特殊到一般的数学思 想方法。
2018教育部发布的《关于全面深化课程实施改革落实 立德树人基本任务的意见》数学核心素养终极培养目标 都可以描述为:会用数学的眼光观察现实世界;会用数 学的思维思考研究现实世界;会用数学的语言表达现实 世界”。
谢谢!
设计意图:让学生认识,熟悉模型;
也为后面解决问题做铺垫。
设计意图:在已有知识的基础上逐渐发现“对顶三角形”
隐藏的常用结论。通过追问,提升学生思考的深度,并 为后面内容做铺垫。
设计意图:通过类比写等量关系,熟悉“研模”过程得
到的结论。问题由易到难,层层递进,让各个层次的学 生知识技能都有所发展。同时渗透类比思想。
2分钟
设计意图:通过安静的图片和鼓励提示性话语
让学生从课下肢体活跃的状态,进入肢体安静的状态, 为思维的活跃做准备。
设计意图:让学生通过观察动画过程,类比
对顶角抽象出“对顶三角形”培养数学数学抽象的 眼光和意识。
设计意图:“对顶三角形”一个准确的定义。
让学生准确进行图形——文字语言——符号语言 之间的转化。
2、它是类比对顶角给出的新定义,是初中几何中常 见模型,是对本章求角度的知识巩固和复习。它可以帮 助学生简化一些复杂的几何问题,同时也为后续几何学 习做铺垫。

2023年苏科版七年级数学下册第七章《认识三角形》导学案1

2023年苏科版七年级数学下册第七章《认识三角形》导学案1

新苏科版七年级数学下册第七章《认识三角形》导学案教学三维目标知识与技能认识三角形的概念及其基本要素,并能用符号语言表示三角形及其基本要素,理解三角形三边之间的关系.过程与方法能正确区分锐角三角形、直角三角形、钝角三角形,体悟分类的数学思想.情感态度价值观.理解三角形三边之间的关系,并能用于解决相关的问题;提高自主探究的能力,增强学好数学的信心.教学重点三角形的概念及三角形的三边之间的关系的探究与归纳,发展推理能力及表达能力. 教学难点三角形三边关系的应用.教学设计预习作业检查1.预习课本P20到P21,回答下列问题:(1)三角形是由______条不在同一直线上的线段,____________相接组成的图形. (2)三角形的基本元素:三个_______:用大写字母表示.例如:A B C三个_______:用一个大写字母或三个大写字母表示. 例如:∠A,∠ABC三条______ :用两个大写字母或一个小写字母表示. 例如:BC a注意:在表示的时候要注意角与边的对应.∠A←→a边(BC)∠B←→b边(AC)∠C←→c边(AB)(3)以A、B、C为顶点的三角形可以表示为____________________.(4)三角形的分类按角分:按边分:(5)完成P22的做一做:(做在书上)(6)三角形三边之间的关系是:_____________________________________________. (7)下列各组长度的3条线段,不能构成三角形的是()A.3cm 8cm. 10cmB.5cm 4cm 9cmC.4cm 6cm 9cmD.2cm 3cm 4cm(8)一个等腰三角形的两边长分别是6cm和9cm,则它的周长是.教学环节教学活动过程思考与调整活动内容师生行为“15分钟温故、自学、群学”环节1.△ABC是△DEF经过平移得到的,若AD =4cm,则BE = __ cm,CF= __ cm,若M为AB的中点,N为DE的中点,则MN = cm.2.交流完成预习作业3.完成P24的练一练“20分钟展示交流质疑、训练点拨提高”环节1.三角形的分类2.(1)一个等腰三角形的两边分别为3和6,这个三角形的周长是_______________.(2)一个等腰三角形的两角分别为40度和70度,这个三角形的另一个角是__________.3.画一个三角形,量出它的三边长分别是___________________,计算三角形的任意两边之差,并与第三边比较,发现a-b c, c-b a,c-a b. 因此______________________________________.4.有两根长度分别为4cm和7cm的木棒,①用2cm的木棒与它们能摆成三角形吗?为什么?②长度为11cm的木棒呢?③长度为4cm的木棒呢?④什么长度范围的木棒, 能与原来的两根木棒摆成三角形?“10分钟检测、反馈、矫正、小结”环节当堂检测题:1.小晶有两根长度为5cm、8cm的木条,她想钉一个三角形的木框,现在有长度分别为2cm 、3cm、8cm 、15cm的木条供她选择,那她第三根应选择()A.2cmB.3cmC.8cmD.15cm2.等腰三角形的一边长为3㎝,另一边长是5㎝,则它的第三边长为.3.等腰三角形的一边长为2㎝,另一边长是5㎝,则它的第三边长为.4.如图,以∠C为内角的三角形有在这两个三角形中,∠C的对边分别为和5.如图:有A、B、C、D四个村庄,打算公用一个水厂,若要使用的水管最节约,水厂应建在村庄的什么地方?6.已知△ABC中,a=2,b=4,第三边c为偶数,求c的值.7.有长度分别为2cm,3cm,4cm和5cm的小木棒各两根..,任取其中3根,你可以搭出几种不.同.的三角形?课后作业师生反思AB CDABCD····G 321F E D CB A课后作业1、如图,AB ∥CD 。

初中数学鲁教版(五四制)七年级上册第一章 三角形1 认识三角形-章节测试习题(12)

初中数学鲁教版(五四制)七年级上册第一章 三角形1 认识三角形-章节测试习题(12)

章节测试题1.【答题】如图,于C,于D,于E,则下列说法中错误的是()A. 中,AC是BC边上的高B. 中,DE是BC边上的高C. 中,DE是BE边上的高D. 中,AD是CD边上的高【答案】C【分析】根据三角形的高线的定义解答即可.【解答】中,AC是BE边上的高,C错.2.【答题】三角形一边上的高()A. 必在三角形内部B. 必在三角形外部C. 必在三角形的边上D. 以上三种情况都有可能【答案】D【分析】根据三角形的高线的定义和特征解答即可.【解答】锐角三角形所有高在内部,直角三角形两条高在边上,钝角三角形两条高在外部.选D.3.【答题】下列叙述中正确的是()A. 三角形一个角的平分线与这个角的对边相交,这个角的顶点与交点之间的射线,叫做三角形的角平分线B. 连结三角形一个顶点和它对边中点的直线,叫做三角形的中线C. 从三角形一个顶点向它的对边画垂线叫做三角形的高D. 三角形的三条中线总在三角形的内部【答案】D【分析】根据三角形的中线、角平分线和高线的定义解答即可.【解答】选项A,三角形一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线,A错.选项B, 三角形中,连接一个顶点和它所对边的中点的线段叫做三角形的中线.B错.选项C, 从三角形一个顶点向它的对边作一条垂线,三角形顶点和垂足之间的线段称三角形这条边上的高.C错误.D正确.所以选D.4.【答题】如图,在△ABC中,已知点E、F分别是AD、CE边上的中点,且S△BEF=4cm2,则S△ABC的值为()A. 1cm2B. 2cm2C. 8cm2D. 16cm2【答案】D【分析】根据三角形中线的定义解答即可.【解答】解:∵F是CE中点,∴△BEF的面积与△BCF的面积相等,∴S△BEC=2S△BEF=8(cm2),∵D、E分别为BC、AD的中点,∴△ABE、△DBE、△DCE、△AEC的面积相等,∴S△ABC=2S△BEC=16(cm2).选D.5.【答题】如果AD是△ABC的中线,那么下列结论一定成立的有()①BD=CD;②AB=AC;③S△ABD=S△ABC.A. 3个B. 2个C. 1个D. 0个【答案】B【分析】根据三角形的中线定义解答即可.【解答】解:∵AD是△ABC的中线,∴BD=CD=BC,故①正确;∵AD与BC不一定互相垂直,∴AB与AC不一定相等,故②错误;设△ABC中BC边上的高为h,则S△ABD=•BD•h=•BC•h=S△ABC,故③正确.选B.6.【答题】一定在△ABC内部的线段是()A. 锐角三角形的三条高、三条角平分线、三条中线B. 钝角三角形的三条高、三条中线、一条角平分线C. 任意三角形的一条中线、二条角平分线、三条高D. 直角三角形的三条高、三条角平分线、三条中线【答案】A【分析】根据三角形的中线、角平分线和高线的定义解答即可.【解答】解:钝角三角形一条高在三角形内部,另两条高在三角形的外部,三条中线和三条角平分线都在三角形的内部,故B、C错误;任意三角形的三条角平分线、三条中线、一条高一定在三角形内部,故D错误.选A.7.【答题】给出下列说法:①三条线段组成的图形叫三角形;②三角形的角平分线是射线;③三角形的高所在的直线交于一点,这一点不在三角形内就在三角形外;④任何一个三角形都有三条高、三条中线、三条角平分线;⑤三角形的三条角平分线交于一点,且这点在三角形内.正确的说法有()A. 1个B. 2个C. 3个D. 4个【答案】B【分析】根据三角形的中线、角平分线和高线的定义解答即可.【解答】解:三条线段首尾顺次相接组成的图形叫三角形,故①错误;三角形的角平分线是线段,故②错误;三角形的高所在的直线交于一点,这一点可以是三角形的直角顶点,故③错误;所以正确的命题是④⑤,共2个.选B.8.【答题】下列说法不正确的是()A. 三角形的重心是其三条中线的交点B. 三角形的三条角平分线一定交于一点C. 三角形的三条高线一定交于一点D. 三角形中,任何两边的和大于第三边【答案】C【分析】根据三角形的中线、角平分线和高线的定义解答即可.【解答】解:A、三角形的重心是其三条中线的交点,正确;B、三角形的三条角平分线一定交于一点,正确;C、钝角三角形的三条高线不相交,故三角形的三条高线一定交于一点错误;D、根据三角形的三边关系定理可知三角形中,任何两边的和大于第三边,正确.选C.9.【答题】如图,AD⊥BC,GC⊥BC,CF⊥AB,垂足分别是D、C、F,下列说法中,错误的是()A. △ABC中,AD是边BC上的高B. △ABC中,GC是边BC上的高C. △GBC中,GC是边BC上的高D. △GBC中,CF是边BG上的高【答案】B【分析】根据三角形的高线的定义解答即可.【解答】解:A、AD经过△ABC的一个顶点,且AD垂直于BC边所在的直线,所以△ABC中AD是边BC上的高,故此选项正确;B、GC没有经过BC所对的顶点A,所以△ABC中,GC不是BC边上的高,故此选项错误;C、GC经过△GBC的一个顶点,且GC垂直于BC,所以△GBC中GC是边BC上的高,故此选项正确;D、CF经过△GBC的一个顶点,且CF垂直于BG,所以△GBC中CF是边BG上的高,故此选项正确.选B.10.【答题】下列说法不正确的是()A. △ABC的中线AD平分边BCB. △ABC的角平分线BE平分∠ABCC. △ABC的高CF垂直ABD. 直角△ABC只有一条高【答案】D【分析】根据三角形的中线、角平分线和高线的定义解答即可.【解答】解:A、∵AD是△ABC的中线,∴D是BC的中点,即AD平分边BC,故此选项正确;B、∵BE是△ABC的角平分线,∴BE平分∠ABC,故此选项正确;C、∵CF是△ABC的高,∴CF⊥AB,故此选项正确;D、直角△ABC有三条高,其中两条是直角边,一条在三角形内部,故此选项错误.选D.11.【答题】能把一个三角形的面积一分为二的线段是()A. 高B. 中线C. 角平分线D. 外角平分线【答案】B【分析】根据三角形的中线、角平分线和高线的定义解答即可.【解答】解:三角形的中线把三角形分成两个三角形,这两个三角形等底同高,所以这两个三角形的面积相等,所以能把一个三角形的面积一分为二的线段是中线.选B.12.【答题】如果一个三角形的三条高的交点恰好是这个三角形的一个顶点,那么这个三角形是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定【答案】B【分析】根据三角形的中线、角平分线和高线的定义解答即可.【解答】解:因为直角三角形的三条高线的交点是直角顶点,而其他三角形三条高线的交点都不在顶点上,所以如果一个三角形的三条高的交点恰好是这个三角形的一个顶点,那么这个三角形是直角三角形.选B.13.【答题】如图,△ABC的角平分线BD与中线CE相交于点O.有下列两个结论:①BO是△CBE的角平分线;②CO是△CBD的中线.其中()A. 只有①正确B. 只有②正确C. ①和②都正确D. ①和②都不正确【答案】A【分析】根据三角形的中线、角平分线和高线的定义解答即可.【解答】解:BD是△ABC的角平分线,所以OBE=OBC,所以BO是△CBE的角平分线,CE平分AB,但不平分BD,所以CO不是△CBD的中线.选A.14.【答题】如图,△ABC中∠C=90°,CD⊥AB,图中线段中可以作为△ABC的高的有()A. 2条B. 3条C. 4条D. 5条【答案】B【分析】根据三角形的高的定义:三角形的顶点到对边的垂直距离.得到可以作为△ABC的高的条数.【解答】解:可以作为△ABC的高的有AC,BC,CD,共3条.选B.15.【答题】如下图中的最右图:在△ABC中,AD平分∠BAC交BC于D,AE⊥BC于E,∠B=40°,∠BAC=80°,则∠DAE=()A. 7B. 8°C. 9°D. 10°【答案】D【分析】根据三角形的中线、角平分线和高线的定义解答即可.【解答】∵AD平分∠BAC,又∵∠BAC=80°,∴.∵AE⊥BC,又∵∠B=40°,即∠ABE=40°,∴在Rt△AEB中,∠BAE=90°-∠ABE=90°-40°=50°,∴∠DAE=∠BAE-∠BAD=50°-40°=10°.故本题应选D.16.【答题】三角形的高线是()A. 直线B. 线段C. 射线D. 三种情况都可能【答案】B【分析】根据三角形高线的定义解答即可.【解答】由三角形高的定义:“过三角形的一个顶点向对边或对边所在的直线引垂线,顶点到垂足之间的线段叫三角形的高线”可知:三角形的高线是线段.选B.17.【答题】在△ABC中,AD为中线,BE为角平分线,则在以下等式中:①∠BAD=∠CAD;②∠ABE=∠CBE;③BD=DC;④AE=EC. 正确的是()A. ①②B. ③④C. ①④D. ②③【答案】D【分析】根据三角形的中线、角平分线和高线的定义解答即可.【解答】如下图,∵AD是△ABC的中线,BE是△ABC的角平分线,∴BD=CD,∠ABE=∠CBE,∴上述结论中正确的是②③.选D.18.【答题】如图所示,AD是△ABC的角平分线,AE是△ABD的角平分线.若∠BAC=80°,则∠EAD的度数是()A. 20°B. 30°C. 45°D. 60°【答案】A【分析】根据三角形角平分线的定义解答即可.【解答】∵AD△ABC的角平分线,∠BAC=80°,∴∠BAD=∠BAC=40°.又∵AE是△ABD的角平分线,∴∠EAD=∠BAD=20°.选A.19.【答题】如图,D、E分别是△ABC的边AC、BC的中点,那么下列说法中不正确的是()A.DE是△BCD的中线B.BD是△ABC的中线C.AD=DC,BE=ECD.AD=EC,DC=BE【答案】D【分析】根据三角形的中线的定义解答即可.【解答】∵D、E分别是△ABC的边AC、BC的中点,∴DE是△BCD的中线,BD是△ABC的中线,AD=DC,BE=EC.但不能得到AD=EC和DC=BE.选D.20.【答题】如图,在△ABC中,∠1=∠2,G为AD的中点,BG的延长线交AC于点E,F为AB上的一点,CF与AD垂直,交AD于点H,则下面判断正确的有()①AD是△ABE的角平分线;②BE是△ABD的边AD上的中线;③CH是△ACD的边AD上的高;④AH是△ACF的角平分线和高A. 1个B. 2个C. 3个D. 4个【答案】B【分析】根据三角形的中线、角平分线和高线的定义解答即可.【解答】解:①根据三角形的角平分线的概念,知AG是△ABE的角平分线,故此说法错误;②根据三角形的中线的概念,知BG是△ABD的边AD上的中线,故此说法错误;③根据三角形的高的概念,知CH为△ACD的边AD上的高,故此说法正确;④根据三角形的角平分线和高的概念,知AH是△ACF的角平分线和高线,故此说法正确.选B.。

人教版七年级下数学第七章_三角形_知识点+考点+典型例题(含答案)

人教版七年级下数学第七章_三角形_知识点+考点+典型例题(含答案)

第七章三角形【知识要点】一.认识三角形1.关于三角形的概念及其按角的分类定义:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

2.三角形的分类:①三角形按内角的大小分为三类:锐角三角形、直角三角形、钝角三角形。

②三角形按边分为两类:等腰三角形和不等边三角形。

2.关于三角形三条边的关系(判断三条线段能否构成三角形的方法、比较线段的长短)根据公理“两点之间,线段最短”可得:三角形任意两边之和大于第三边。

三角形任意两边之差小于第三边。

3.与三角形有关的线段..:三角形的角平分线、中线和高三角形的角平分线:三角形的一个角的平分线与对边相交形成的线段;三角形的中线:连接三角形的一个顶点与对边中点的线段,三角形任意一条中线将三角形分成面积相等的两个部分;三角形的高:过三角形的一个顶点做对边的垂线,这条垂线段叫做三角形的高。

注意:①三角形的角平分线、中线和高都是线段,不是直线,也不是射线;②任意一个三角形都有三条角平分线,三条中线和三条高;③任意一个三角形的三条角平分线、三条中线都在三角形的内部。

但三角形的高却有不同的位置:锐角三角形的三条高都在三角形的内部;直角三角形有一条高在三角形的内部,另两条高恰好是它两条直角边;钝角三角形一条高在三角形的内部,另两条高在三角形的外部。

④一个三角形中,三条中线交于一点,三条角平分线交于一点,三条高所在的直线交于一点。

(三角形的三条高(或三条高所在的直线)交与一点,锐角三角形高的交点在三角形的内部,直角三角形高的交点是直角顶点,钝角三角形高(所在的直线)的交点在三角形的外部。

)4.三角形的内角与外角(1)三角形的内角和:180°引申:①直角三角形的两个锐角互余;②一个三角形中至多有一个直角或一个钝角;③一个三角中至少有两个内角是锐角。

(2)三角形的外角和:360°(3)三角形外角的性质:①三角形的一个外角等于与它不相邻的两个内角的和;——常用来求角度②三角形的一个外角大于任何一个与它不相邻的内角。

初中数学鲁教版(五四制)七年级上册第一章 三角形1 认识三角形-章节测试习题(55)

初中数学鲁教版(五四制)七年级上册第一章 三角形1 认识三角形-章节测试习题(55)

章节测试题1.【答题】在△ABC中,已知AD是角平分线,∠B=50°,∠C=70°,∠BAD=______°【答案】30【分析】本题考查了三角形的角平分线、三角形的内角和定理.【解答】△ABC中,∠B=50°,∠C=70°,∴∠BAC=180°−∠B−∠C=180°−50°−70°=60°,∵AD是角平分线,∴∠BAD=∠BAC=×60°=30°故填30.2.【答题】如图,在△ABC中,∠B=67°,∠C=33°,AD是△ABC的角平分线,则∠CAD的度数为______.【答案】40°【分析】本题考查了三角形的角平分线.【解答】∵∠B=67°,∠C=33°,∴∠BAC=180°-∠B-∠C=180°-67°-33°=80°∵AD是△ABC的角平分线,∴∠CAD=∠BAC=×80°=40°3.【答题】如图,在ΔABC中,点G为ΔABC的重心,连接CG并延长交AB于点D,已知GD=2,则CD=______.【答案】6【分析】本题考查了三角形的中线.【解答】∵点G为△ABC的重心,∴CG=2GD=4,∴CD=CG+DG=64.【答题】在中,,中线相交于,且,则______.【答案】9【分析】本题考查了三角形的中线.【解答】∵中线AD,CE相交于G,∴点G是△ABC的重心,∴GE=CG=1.5,∴CE=CG+GE=4.5,∵∠C=90°,CE是中线,∴AB=2CE=9.5.【答题】若一个三角形的一条高在该三角形的外部,则此三角形是______三角形(填锐角、直角、或钝角).【答案】钝角【分析】本题考查了三角形的高.【解答】若一个三角形的一条高在该三角形的外部,则此三角形是钝角三角形.故答案为钝角.6.【答题】如图,AD是△ABC的中线,CE是△ACD的中线,S△ACE=3cm2,则S△ABC=______ cm2.【答案】12【分析】本题考查了三角形的中线.【解答】∵CE是△ACD的中线,∴=2=3cm².∵AD是△ABC的中线,∴=2=12cm².故答案为:12.7.【答题】如图,△ABC中,AD是高,AE是∠BAC的平分线,∠B=70°,∠DAE=18°,则∠C的度数是______.【答案】34°【分析】本题考查了三角形的高、角平分线.【解答】∵AD是高,∠B=70°,∴∠BAD=90°-70°=20°.∵∠DAE=18°,∴∠BAE=20°+18°=38°.∵AE是∠BAC的平分线,∴∠BAC=2∠BAE=2×38°=76°.∴∠C=180-70°-76°=34°.8.【答题】如图,在△ABC中,BD是边AC上的中线,E是BC的中点,连接DE.如果△BDE的面积为2,那么△ABC的面积为______.【答案】8【分析】本题考查了三角形的中线.【解答】∵E是BC的中点,∴,∵BD是边AC上的中线,∴,∴,又△BDE的面积为2,∴△ABC的面积为8;故答案是:8.9.【答题】在△ABC中,∠B、∠C的平分线相交于点O,若∠A=40°,则∠BOC=______度.【答案】110【分析】本题考查了三角形的角平分线.【解答】∠BOC=180°-(∠OBC-∠OCB)=180°-()=180°-=180°-=110°.故答案为:110.10.【答题】已知AD是△ABC的中线,且△ABC的面积为6cm2,则△ADB的面积为______cm2.【答案】3【分析】本题考查了三角形的中线.【解答】三角形的中线把三角形分成面积相等的两个三角形,∴△ADB的面积为3.故答案为:3.11.【答题】如图,△ABC的中线BD、CE相交于点O,OF⊥BC,且AB=7,BC=6,AC=4,OF=2,则四边形ADOE的面积是______.【答案】6【分析】本题考查了三角形的高、中线.【解答】∵BD、CE均是△ABC的中线,∴S△BCD=S△ACE=S△ABC,∴S四边形ADOE+S△COD=S△BOC+S△COD,∴S四边形ADOE=S△BOC=6×2÷2=6.故答案为:6.12.【答题】AD、AE分别是△ABC的角平分线和高,∠B=60°,∠C=70°,则∠EAD=______.【答案】5°【分析】本题考查了三角形的高、角平分线.求出∠AEC=∠AEB=90°,根据三角形的内角和定理求出∠BAC,根据角平分线求出∠DAC,根据三角形内角和定理求出∠EAC,即可求出答案.【解答】∵AE⊥BC,∴∠AEC=∠AEB=90°,∵∠B=60°,∠C=70°,∴∠BAC=180°-60°-70°=50°,∵AD平分∠BAC,∴∠DAC=∠BAC=25°,∵∠AEC=90°,∠C=70°,∴∠EAC=180°-90°-70°=20°,∴∠DAE=25°-20°=5°.13.【答题】如图,在△ABC中,BD是∠ABC的角平分线,已知∠ABC=80°,则∠DBC=______°.【答案】40【分析】本题考查了三角形的角平分线.【解答】∵BD是∠ABC的角平分线,∠ABC=80°,∴∠DBC=∠ABD=∠ABC=×80°=40°.14.【答题】如图,在△ABC中,∠A=50°,BO、CO分别是∠ABC、∠ACB的角平分线,则∠BOC=______.【答案】115°【分析】本题考查了三角形的角平分线.【解答】∠A=50°,依据三角形内角和定理,∠ABC+∠ACB=180°-50°=130°,BO、CO分别是∠ABC、∠ACB的角平分线,∴∠OBC+∠OCB=(∠ABC+∠ACB)=65°,∠BOC=180°-(∠OBC+∠OCB)=180°-65°=115°.15.【答题】已知在△ABC中,∠C=90°,AB=12,点G为△ABC的重心,那么CG=______.【答案】4【分析】本题考查了三角形的中线.【解答】在Rt△ABC中,∠C=90°,点G为重心,AB=12,则AB边上的中线是6,根据重心的性质即可求出CG.在Rt△ABC中,∠C=90°,∵AB=12,∴AB边上的中线是6,∵点G为重心,∴CG=6×=4.故答案是:4.16.【答题】如图,点O是△ABC的两条角平分线的交点,若∠BOC=118°,则∠A的大小是______.【答案】56°【分析】先根据三角形内角和定理求出∠1+∠2的度数,再根据角平分线的定义求出∠ABC+∠ACB的度数,由三角形内角和定理即可得出结论.【解答】解:∵△BOC中,∠BOC=118°,∴∠1+∠2=180°﹣118°=62°.∵BO和CO是△ABC的角平分线,∴∠ABC+∠ACB=2(∠1+∠2)=2×62°=124°,在△ABC中,∵∠ABC+∠ACB=124°,∴∠A=180°﹣(∠ABC+∠ACB)=180°﹣124°=56°.故答案为:56°.17.【答题】一副三角板如图叠放在一起,则图中∠α的度数为()A. 75°B. 60°C. 65°D. 55°【分析】根据三角形内角和定理即可求解.【解答】解:如图,∵∠1=60°,∠2=45°,∴∠α=180°-45°-60°=75°,选A.18.【答题】一根直尺EF压在三角板30°的角∠BAC上,与两边AC,AB交于M、N.那么∠CME+∠BNF是()A. 150°B. 180°C. 135°D. 不能确定【答案】A【分析】根据∠CME与∠BNF是△AMN另外两个角的对顶角,利用三角形的内角和定理即可求解.【解答】根据图象,∠CME+∠BNF=∠AMN+∠ANM,∴∠CME+∠BNF=180°-∠A=150°.选A.19.【答题】如图,l1∥l2,l3⊥l4,∠1=42°,那么∠2的度数为()A. 48°B. 42°C. 38°D. 21°【答案】A【分析】先根据两直线平行,同位角相等求出∠3,再根据直角三角形两锐角互余即可求出∠2.【解答】解:如图,∵l1∥l2,∠1=42°,∴∠3=∠1=42°,∵l3⊥l4,∴∠2=90°-∠3=48°.选A.20.【答题】如图所示,图中三角形的个数共有()A. 1个B. 2个C. 3个D. 4个【答案】C【分析】根据三角形的定义进行判断.只要数出BC上有几条线段即可.【解答】BC上有3条线段,∴有三个三角形.选C.。

认识三角形教案12篇

认识三角形教案12篇

认识三角形教案12篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作汇报、述职报告、发言致辞、心得体会、规章制度、应急预案、合同协议、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as work reports, job reports, speeches, insights, rules and regulations, emergency plans, contract agreements, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!认识三角形教案12篇认识三角形教案1教学目标:1.经历从具体物体中抽象出角和三角形的过程,认识角和三角形,知道周角、平角及周角、平角、直角、钝角、锐角的大小关系。

初中数学鲁教版(五四制)七年级上册第一章 三角形1 认识三角形-章节测试习题(28)

初中数学鲁教版(五四制)七年级上册第一章 三角形1 认识三角形-章节测试习题(28)

章节测试题1.【答题】如图所示,CD是△ABC的中线,AC=9cm,BC=3cm,那么△ACD和△BCD的周长差是______cm.【答案】6【分析】根据三角形的中线的概念,由CD是△ABC中AB边上的中线得BD=AD.∴△ACD与△BCD的周长之差为AC与BC的差.【解答】解:∵CD是△ABC的中线,∴BD=AD,∴△ACD和△BCD的周长差是AC与BC的差,∵AC=9cm,BC=3cm,∴△ACD和△BCD的周长差是6cm.2.【答题】如图,AD是△ABC的中线,AB=5,AC=3,△ABD的周长和△ACD的周长相差______.【答案】2【分析】根据三角形的周长的计算方法得到△ABD的周长和△ACD的周长的差就是AB与AC的差.【解答】解:∵AD是△ABC中BC边上的中线,∴BD=DC=BC,∴△ABD和△ADC的周长的差,=(AB+BC+AD)-(AC+BC+AD),=AB-AC,=5-3,=2,故答案为:2.3.【答题】图中可数出的三角形个数为______个.【答案】48【分析】∵图中线段DE上的每条线段都对着两个三角形,故数出线段条数即可求出三角形的个数,以及以AC为轴,左右还有6个,即可得出总数.【解答】解:如图,共有6+5+4+3+2+1=21条线段,则有三角形21×2=42个.以AC为轴,左右还有6个,∴三角形个数一共有48个,故答案为:48.4.【答题】阅读材料,并填表:在△ABC中,有一点P1,当P1,A,B,C没有任何三点在同一直线上时,可构成三个不重叠的小三角形(如图).当△ABC内的点的个数增加时,若其它条件不变,三角形内互不重叠的小三角形的个数情况如下表所示:ABC内点的个数 1 2 3 (1002)构成不重叠的小三角形的个数 3 5 …按表格顺序填入为______,______.【答案】7 2005【分析】当△ABC内的点是1个时,三角形内互不重叠的小三角形有3个;当△ABC内的点是2个时,三角形内互不重叠的小三角形有5个;依此类推得到当△ABC内的点是3个时,三角形内互不重叠的小三角形有7个;当△ABC内的点是n个时,三角形内互不重叠的小三角形有2n+1个;∴当△ABC内的点是1002个时,三角形内互不重叠的小三角形有2×1002+1=2005个.【解答】解:当△ABC内的点的个数是n个时,三角形内互不重叠的小三角形有2n+1个.∴按表格顺序填入为7,2005.5.【答题】如图所示,第1个图中有1个三角形,第2个图中共有5个三角形,第3个图中共有9个三角形,依此类推,则第6个图中共有三角形______个.【答案】21【分析】根据前边的具体数据,再结合图形,不难发现:后面的图形比前面的多4个,即第n个图形中,三角形共有1+4(n-1)=(4n-3)个.∴当n=6时,4n-3=21.【解答】解:第n个图形中,三角形共有1+4(n-1)=(4n-3)个.∴当n=6时,4n-3=21,故填21.6.【答题】图1是一个三角形,分别连接这个三角形三边的中点得到图2;再分别连接图2中间小三角形的中点,得到图3.(若三角形中含有其它三角形则不记入)(1)图2有______个三角形;图3中有______个三角形(2)按上面方法继续下去,第20个图有______个三角形;第n个图中有______个三角形.(用n的代数式表示结论)【答案】5 9 77 4n-3【分析】正确数一下(2)(3)中,三角形的个数,可以得到(3)比(2)增加了4个三角形,同理后面的图形都比前面增加了4个三角形,依此类推即可求解.【解答】解:(1)图2有5个三角形;图3中有9个三角形;(2)按上面方法继续下去,可以得到后面的图形都比前面增加了4个三角形,依此类推,第20个图有1+(20-1)×4=77个三角形;第n个图中有4(n-1)+1=(4n-3)个三角形.7.【答题】原三角形如图所示,如图1,原三角形内部有1个点时,原三角形可被分成3个三角形;如图2,原三角形内部有2个不同点时,原三角形可被分成5个三角形;如图3,原三角形内部有3个不同点时,原三角形可被分成7个三角形;…以此类推,原三角形内部有n个不同点时,原三角形可被分成______个三角形.【答案】2n+1【分析】认真审题可以发现:在三角形内部每增加一个点,就会增加两个三角形,以此类推,即可发现三角形的个数正好是比点的个数的2倍还多1个.∴原三角形内部有n个不同点时,答案即现.【解答】解:观察发现,三角形的个数正好是比点的个数的2倍还多1个.故答案为:2n+1.8.【答题】在△ABC中,三边长分别为正整数a、b、c,且c≥b≥a>0,如果b=4,则这样的三角形共有______个.【答案】10【分析】先根据三角形的三边关系得出c<a+b,再根据b=4可求出a的值,进而得出结论.【解答】解:∵在△ABC中,三边长分别为正整数a、b、c,且c≥b≥a>0,∴c<a+b∵b=4,∴a=1,2,3,4,a=1时,c=4,a=2时,c=4,5a=3时,c=4,5,6a=4时,c=4,5,6,7∴这样的三角形共有1+2+3+4=10个.故答案为10.9.【答题】两条平行直线上各有n个点,用这n对点按如下的规则连接线段;①平行线之间的点在连线段时,可以有共同的端点,但不能有其它交点;②符合①要求的线段必须全部画出;图1展示了当n=1时的情况,此时图中三角形的个数为0;图2展示了当n=2时的一种情况,此时图中三角形的个数为2;(1)当n=3时,请在图3中画出使三角形个数最少的图形,此时图中三角形的个数为______个;(2)试猜想当有n对点时,按上述规则画出的图形中,最少有______个三角形;(3)当n=2006时,按上述规则画出的图形中,最少有______个三角形.【答案】4,2(n-1),4010【分析】(1)根据题意,作图可得答案;(2)分析可得,当n=1时的情况,此时图中三角形的个数为0个,有0=2×(1-1);当n=2时的一种情况,此时图中三角形的个数为2个,有2=2×(2-1);…故当有n对点时,最少可以画2(n-1)个三角形;(3)当n=2006时,按上述规则画出的图形中,最少有2×(2006-1)=4010个三角形.【解答】解:(1)4个;(2)当有n对点时,最少可以画2(n-1)个三角形;(3)2×(2006-1)=4010个,即当n=2006时,最少可以画4010个三角形.10.【答题】观察下表中三角形个数变化规律,填表并回答下面问题.问题:如果图中三角形的个数是102个,则图中应有______条横截线.【答案】16【分析】观察图形,不难发现:当横线是0条的时候,有6个三角形;当横线是1条的时候有6+6=12个三角形,即多一条横线,多6个三角形;∴当有n条横线的时候,有(6+6n)个三角形.根据这一规律,得当有1条横线时,有12个三角形;当有2条横线时,有18个三角形;当有102个三角形的时候,即6+6n=102,n=16.【解答】解:表格中应是12,18;有n条横线的时候,有(6+6n)个三角形,∴6+6n=102,n=16,有16条横线.11.【答题】一个三角形的两边长分别是2和3,若它的第三边长为奇数,则这个三角形的周长为______.【答案】8【分析】首先设第三边长为x,根据三角形的三边关系可得3-2<x<3+2,然后再确定x的值,进而可得周长.【解答】解:设第三边长为x,∵两边长分别是2和3,∴3-2<x<3+2,即:1<x<5,∵第三边长为奇数,∴x=3,∴这个三角形的周长为2+3+3=8,故答案为:8.12.【答题】如果一个三角形的两边长分别为3和5,那么这个三角形的周长可能是()A. 9B. 12C. 16D. 18【答案】B【分析】根据三角形三边关系定理求出第三边的范围,得到三角形的周长的范围,判断即可.【解答】解:∵三角形的两边长为3和5,∴第三边x的长度范围是5-3<x<5+3,即2<x<8,∴这个三角形的周长a范围是2+5+3<a<5+3+8,即10<a<16,选B.13.【答题】用长分别为5,7,9,13(单位:厘米)的四段木棒为边摆三角形,可摆出不同的三角形的个数为()A. 1个B. 2个C. 3个D. 4个【答案】C【分析】本题考查了三角形三条边的关系:三角形任意两边之和大于第三边,任意两边之差小于第三边,据此解答即可.【解答】①5,7,9时,能摆成三角形;②5,7,13时,∵5+7=12<13,∴不能摆成三角形;③5,9,13时,能摆成三角形;④7,9,13时,能摆成三角形;∴,可以摆出不同的三角形的个数为3个.选C.14.【答题】以长为3cm,5cm,7cm,10cm的四条线段中的三条线段为边,可以构成三角形的个数是()A. 1个B. 2个C. 3个D. 4个【答案】B【分析】本题考查了三角形三条边的关系:三角形任意两边之和大于第三边,任意两边之差小于第三边,据此解答即可.【解答】从3cm,5cm,7cm,10cm的四条线段任选3条,有3,5,7;3,5,10;3,7,10;5,7,10四种情况,根据三角形的三边关系,则其中的3,5,7和5,7,10能组成三角形.选B.15.【答题】已知等腰三角形的其中二边长分别为4,9,则这个等腰三角形的周长为()A. 17B. 22C. 17或22D. 无法确定【答案】B【分析】根据三角形的三边关系和等腰三角形的定义进行判断.【解答】解:①若4是底边,则三角形的三边分别为4、9、9,能组成三角形,周长=4+9+9=22;②若4是腰长,则三角形的三边分别为4、4、9,∵4+4=8<9,∴不能组成三角形,综上所述,这个等腰三角形的周长为22.选B.16.【答题】任取长度分别为4cm,5cm,6cm,7cm四根细木棍中的三根,首尾顺次相接组成三角形,则三角形的个数最多为()A. 1个B. 2个C. 3个D. 4个【答案】D【分析】本题考查了三角形三条边的关系:三角形任意两边之和大于第三边,任意两边之差小于第三边,据此解答即可.【解答】解:任取三根,共有4cm,5cm,6cm;4cm,5cm,7cm;4cm,6cm,7cm;5cm,6cm,7cm四种情况,它们都满足三角形三边关系,则三角形的个数最多4个.选D.17.【答题】下列每组数分别表示三根小棒的长度,将它们首尾连接后,能摆成三角形的一组是()A. 1、2、3B. 2、3、5C. 2、3、6D. 3、5、7【答案】D【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】选项A,1+2=3,根据三角形的三边关系可知,不能够组成三角形;选项B,2+3=5,根据三角形的三边关系可知,不能够组成三角形;选项C,2+3<6,根据三角形的三边关系可知,不能够组成三角形;选项D,3+5>7,根据三角形的三边关系可知,能够组成三角形;选D.18.【答题】两根木棒分别长5cm、7cm,第三根木棒与这两根木棒首尾依次相接构成三角形.如果第三根木棒的长是偶数(单位:cm),则一共可以构成不同的三角形有()A. 4个B. 5个C. 8个D. 10个【答案】A【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】根据三角形的三边关系,得第三根木棒的长大于2cm而小于12cm.又第三根木棒的长是偶数,则应为4cm,6cm,8cm,10cm.共可以构成4个不同的三角形选A.19.【答题】下列长度的三条线段能组成三角形的是()A. 2,3,5B. 7,4,2C. 3,4,8D. 3,3,4【答案】D【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】解:A.∵3+2=5,∴2,3,5不能组成三角形,故A错误;B.∵4+2<7,∴7,4,2不能组成三角形,故B错误;C.∵4+3<8,∴3,4,8不能组成三角形,故C错误;D.∵3+3>4,∴3,3,4能组成三角形,故D正确;选D.20.【答题】长度为3cm、4cm两根木棒,与它们首尾相接能构成三角形的第三根木棒长度是()A. 1cmB. 5cmC. 7cmD. 9cm【答案】B【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】设第三根木棒长度是xcm,∴4-3<x<4+3,即1<x<7,选B.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档