备战2017年高考高三数学一轮热点难点一网打尽 专题29 数列结合其他问题考查更精彩 Word版含解析

合集下载

2017年高考全国卷文科数学第一轮复习讲义一数列

2017年高考全国卷文科数学第一轮复习讲义一数列

(2017 高考文科数学)2016-4-30讲义一数列一、高考趋势1、考纲要求(1).了解数列的概念和几种简单的表示方法( 列表、图像、通项公式 ) .(2).了解数列是自变量为正整数的一类函数.(3).理解等差数列的概念.(4).掌握等差数列的通项公式与前n 项和公式.(5).了解等差数列与一次函数的关系.(6).理解等比数列的概念.(7).掌握等比数列的通项公式与前n 项和公式.(8).能在具体的问题情境中识别数列的等比关系,并能用有关知识解决相应的问题.(9).了解等比数列与指数函数的关系.2、命题规律数列一般在全国文科卷中平均考查分值为12 分。

考察形式一般有两种,第一种是选择题+填空题的形式,第二种是解答题的形式。

并且全国文科卷解答题第一题是数列和三角函数二选一。

因此数列题在高考中属于“要尽量全部做对且拿到满分”的“高期待值”题。

1二、基础知识 +典型例题1、等差数列的概念与运算(1).等差数列的定义如果一个数列从第二项开始每一项与前一项的差都等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母 d 表示.(2).等差数列的通项公式如果等差数列{ a n 的首项为a1,公差为 d,则它的通项公式是( n N )} a n a1 (n 1)d . (3).等差中项a b如果 A ,那么 A 叫做 a 与 b 的等差中项.2(4).等差数列的前n 项和等差数列{ a n 的前项和公式:n(n 1)n(a1a n )N )n S n na1 d( n}22(5).等差数列的判定通常有两种方法:①第一种是利用定义,an- an- 1= d(常数 ) (n≥2),②第二种是利用等差中项,即2an= an+ 1+an- 1 (n≥ 2). [ 来源学科网]背诵知识点一:( 1)等差数列的通项公式:a n a1(n 1)d( n N )(2)等差中项: a,b,c构成等差数列,则 a c 2b( 3)等差数列的前n 项和:S n na1n(n 1) d n(a1a n )(n N )2 22(6).对于等差数列问题一般要给出两个条件,可以通过列方程求出a1, d. 如果再给出第三个条件就可以完成a n,a1, d, n, S n的“知三求二”问题.这体现了用方程的思想解决问题.考点一:等差数列通项公式及前n 项和公式例 1、( 15 全国卷一)已知 {an } 是公差为1的等差数列,S 为{ a n}的前n项和,若S84S4,n则a10()A 、1719C、 10D、 12 2B 、2例 2、( 15 安徽卷)已知数列{ a n } 中,a1 1 , a n a n 11 2 ),则数列 { an}的( n2前 9 项和等于.32、等差数列的性质(1)通项推广:a n= a m+ (n- m)d,( n N )(d 为数列 { a n} 的公差 ).(2)若 m+ n= p+q(m, n, p, q∈ N* ),则 a m+ a n= a p+ a q.特别地: a1+ a n= a2+ a n-1= a3+ a n-2=⋯.(3)项数成等差数列,则相应的项也成等差数列,即若m+ n= 2p,则 a m+ a n = 2a p.a1+ ann=a2+ an-1n=a3+an-2n=⋯.(4) S n=2 22(5)等差数列的单调性①等差数列公差为 d,若 d>0,则数列递增.②若 d<0,则数列递减.③若 d= 0,则数列为常数列.背诵知识点二:( 1)等差中项的性质:若 m+ n=p+ q(m, n,p,q∈ N *m+ a n=a p+a q.),则 a(2)等差中项的性质:若 m+ n=2p,则 a m+ a n= 2a p . (3)等差数列的性质: a n a m (n m) d4考点二:等差数列中项的性质例 3、( 15 全国卷二)设 S n是等差数列 { a n} 的前 n 项和 ,若 a1 a3a5 3 ,则 S5()A . 5B . 7 C. 9 D. 1 1例 4、( 15 陕西卷)中位数为1010 的一组数构成等差数列,其末项为2015,则该数列的首项为 ________.53、等比数列的概念与运算(1).等比数列的定义如果一个数列从第二项开始每一项与它的前一项的比都等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,通常用字母q 表示.(2).等比数列的通项公式设等比数列{ a n 的首项为1,公比为 q,则它的通项a na1qn 1(n N )} a . (3).等比中项若 G 2ab 0 ,那么 G 叫做 a 与 b 的等比中项.(4).等比数列的前 n 项和公式等比数列 { an} 的公比为 q(q≠ 0),其前 n 项和为 Sn,①当 q= 1 时, Sn= na1;( n N )②当 q≠1时,Sn=a1(1 q n ) a1a n q)1 q 1(n Nq(5).在涉及等比数列前n 项和公式时要注意对公式q 是否等于 1 的判断和讨论.(6).等比数列的判定方法:①定义法:若an+1= q(q 为非零常数 )或an= q(q 为非零常数且n≥2),则 { an} 是等比数列.an an-1② 中项公式法:若数列{ an} 中 an≠0且 an2+1= an·an+ 2( n∈ N * ),则数列 { an}是等比数列.背诵知识点三:6( 1)等比数列的通项公式:a n a1q n 1(. n N )(2)等比中项: a,b,c构成等比数列,则 a c b2()等比数列的前项和:① 当=时,= na ;N )nn1 ( n3 q 1 Sn =a1 (1 q n ) a1a n qN )( n②当 q≠1时,S1 q 1 q 考点三:等比数列定义与前n 项和公式例 5、( 15 全国卷一)数列a n中 a12, a n 1 2a n , S n为 a n的前 n 项和,若S n126,则 n .例 6、( 12 全国卷)等比数列a n的前 n 项和为 S n ,若 S33S2 0 ,则公比 q ________7例 7、( 13 全国卷一)设首项为 1,公比为错误!未找到引用源。

2017年全国高考考前解答题点理数命题揭秘之数列:热点题型二 含解析 精品

2017年全国高考考前解答题点理数命题揭秘之数列:热点题型二 含解析 精品

考向五 数列与函数1. 【2016高考新课标1卷】设等比数列错误!未找到引用源。

错误!未找到引用源。

满足a 1+a 3=10,a 2+a 4=5,则a 1a 2 …a n 的最大值为 .【答案】错误!未找到引用源。

【解析】等比数列{a n }满足1324105a a a a +=⎧⎨+=⎩,得;2121(1)10(1)5a q a q q ⎧+=⎪⎨+=⎪⎩,解得1812a q =⎧⎪⎨=⎪⎩. 所以;2(1)7123 (1)2212118()22n n n n nn n n a a a a q--+++-⋅⋅⋅===则当n=3或4时,表达式取得最大值:6264= .【名师点睛】高考中数列客观题大多具有小、巧、活的特点,在解答时要注意方程和函数的思想及数列相关性质的应用,看清题目的本质.2. 【2013高考新课标Ⅱ卷】 等差数列{a n }的前n 项和为S n ,已知S 10=0,S 15=25,则nS n 的 最小值为________.【答案】-49错误!未找到引用源。

【名师点睛】本题考查等差数列的前n 项和公式以及通过转化利用函数的单调性判断数列的单调性等知识,对学生分析、转化、计算等能力要求较高.3. 【2013高考新课标1卷】设△A n B n C n 的三边长分别为a n ,b n ,c n ,△A n B n C n 的面积为S n ,n =1,2,3,….若b 1>c 1,b 1+c 1=2a 1,a n +1=a n ,b n +1=c n +a n2,c n +1=b n +a n2,则 ( )A .{S n }为递减数列 B.{S n }为递增数列C .{S 2n -1}为递增数列,{S 2n }为递减数列D .{S 2n -1}为递减数列,{S 2n }为递增数列 【答案】B【解析】已知b 1>c 1,b 1+c 1=2a 1,a 2=a 1,故b 2=c 1+a 12=34c 1+14b 1<b 1,c 2=b 1+a 12=34b 1+14c 1>c 1,b 2+c 2=a 1+b 1+c 12=2a 1,b 2-c 2=c 1-b 12<0,即b 2<c 2,b 2c 2=⎝ ⎛⎭⎪⎫34c 1+14b 1·⎝ ⎛⎭⎪⎫34b 1+14c 1=316(b 1+c 1)2+14b 1c 1>b 1c 1.又a 3=a 2=a 1,所以b 3=c 2+a 22=34c 2+14b 2<b 2,c 3=b 2+a 22=34b 2+14c 2>c 2,b 3+c 3=c 2+a 22+b 2+a 22=2a 2=2a 1,b 3-c 3=34c 2+14b 2-⎝ ⎛⎭⎪⎫34b 2+14c 2=c 2-b 22>0,即b 3>c 3,b 3c 3=⎝ ⎛⎭⎪⎫34c 2+14b 2⎝ ⎛⎭⎪⎫34b 2+14c 2=316(b 2+c 2)2+14b 2c 2>b 2c 2>b 1c 1.又△A n B n C n 的面积为S n = p (p -a n )(p -b n )(p -c n )=p (p -a n )[p 2-(b n +c n )p +b n c n ],其中p =12(a n +b n +c n ),p (p -a n )和p 2-(b n +c n )p都为定值,b nc n 逐渐递增,所以数列{S n }为递增数列,选择B.【名师点睛】本题考查三角形面积公式和归纳推理等知识,意在考查考生综合运用所学知识分析问题、解决问题的能力,对考生的归纳推理能力、逻辑思维能力及函数思想,要求较高.【题后小结】数列与函数问题的常见类型及解题策略常见题型:1.求基本量:求等差或等比数列中的某些量时,常根据题设条件构建方程(组)求解. 2.值域(最值):求等差或等比数列中的某些量的取值范围或最值时,经常选一变量将待求量表示成其函数或构建函数,从而转化为求函数的值域(最值)问题求解.3.单调性:研究等差(比)数列单调性时,常利用研究函数单调性的方法求解.4.比较大小:等差(比)数列中某些量的大小比较,常利用比较函数值大小的方法,如单调性法、作差法等. 解题策略:1.已知函数条件,解决数列问题,此类问题一般利用函数的性质、图象研究数列问题.2.已知数列条件,解决函数问题,解决此类问题一般要充分利用数列的范围、公式、求和方法对式子化简变形.另外,解题时要注意数列与函数的内在联系,灵活运用函数的思想方法求解,在问题的求解过程中往往会遇到递推数列,因此掌握递推数列的常见解法有助于该类问题的解决. 考向六 数列求和1.【2013高考大纲卷】已知数列{a n }满足 3a n +1+a n =0,a 2=-43,则{a n }的前10项和等于( )A .-6(1-3-10) B.19(1-310) C .3(1-3-10) D. 3(1+3-10)【答案】C【名师点睛】本题主要考查等比数列的判定、等比数列的前n 项和公式.2.【2013新课标Ⅰ高考】设首项为1,公比为23的等比数列{a n }的前n 项和为S n ,则 ( )A .S n =2a n -1B .S n =3a n -2C .S n =4-3a nD .S n =3-2a n 【答案】D【解析】 由等比数列前n 项和公式S n =a 1-a n q1-q,代入数据可得S n =3-2a n . 【名师点睛】本题主要考查等比数列的前n 项和公式,对基本计算能力有一定要求. 3.【2012高考新课标2】数列{a n }满足a n +1+(-1)na n =2n -1,则{a n }的前60项和为________. 【答案】1 830【解析】由题意可得 a 2﹣a 1=1,a 3+a 2=3,a 4﹣a 3=5,a 5+a 4=7,a 6﹣a 5=9,a 7+a 6=11,…a 50﹣a 49=97,变形可得 a 3+a 1=2,a 4+a 2=8,a 7+a 5=2,a 8+a 6=24,a 9+a 7=2,a 12+a 10=40,a 13+a 15=2,a 16+a 14=56,…利用数列的结构特征,由a n +1+(-1)na n =2n -1得a n +2=(-1)n a n +1+2n +1=(-1)n +2n +1=-a n +(-1)n (2n -1)+2n +1,即a n +2+a n =(-1)n(2n -1)+2n +1, ① 也有a n +3+a n +1=-(-1)n(2n +1)+2n +3, ② ① 两式相加得a n +a n +1+a n +2+a n +3=-2(-1)n+4n +4. ② 设k 为整数,则a 4k +1+a 4k +2+a 4k +3+a 4k +4=-2(-1)4k +1+4(4k +1)+4=16k +10,于是S 60=∑k =014(a 4k +1+a 4k +2+a 4k +3+a 4k +4)=∑k =014(16k +10)=1 830.【名师点睛】本题主要考查数列求和的方法,等差数列的求和公式,注意利用数列的结构特征,需要观察分析能力,体现化归思想。

2017高考数列专题复习(精典版知识点+大题分类+选择题+答案详解)

2017高考数列专题复习(精典版知识点+大题分类+选择题+答案详解)

文科数列专题复习一、等差数列与等比数列1.基本量的思想:常设首项、(公差)比为基本量,借助于消元思想及解方程组思想等。

转化为“基本量”是解决问题的基本方法。

2.等差数列与等比数列的联系1)若数列{}n a 是等差数列,则数列}{n aa 是等比数列,公比为da ,其中a 是常数,d 是{}n a 的公差。

(a>0且a≠1);2)若数列{}n a 是等比数列,且0n a >,则数列{}log a n a 是等差数列,公差为log a q ,其中a 是常数且0,1a a >≠,q 是{}n a 的公比。

3)若{}n a 既是等差数列又是等比数列,则{}n a 是非零常数数列。

3.等差与等比数列的比较 等差数列 等比数列 定义通项公 式 n a =1a +(n-1)d=k a +(n-k )d=dn+1a -d求和公 式中项公式A=2ba + 推广:2n a =m n m n a a +-+ab G =2。

推广:m n m n n a a a +-⨯=2性质1 若m+n=p+q 则 q p n m a a a a +=+ 若m+n=p+q ,则q p n m a a a a =。

2若}{n k 成A.P (其中N k n ∈)则}{n k a 也为A.P 。

若}{n k 成等比数列 (其中N k n ∈),则}{n k a 成等比数列。

3.n n n n n s s s s s 232,,-- 成等差数列。

n n n n n s s s s s 232,,--成等比数列。

411a a q n n =- , mn mn a a q =- )(n m ≠ 4、典型例题分析【题型1】 等差数列与等比数列的联系例1 (文16)已知{a n }是公差不为零的等差数列,a 1=1,且a 1,a 3,a 9成等比数列.(Ⅰ)求数列{a n }的通项;(Ⅱ)求数列{2an}的前n 项和S n . 解:(Ⅰ)由题设知公差d ≠0,由a 1=1,a 1,a 3,a 9成等比数列得121d +=1812dd++, 解得d =1,d =0(舍去), 故{a n }的通项a n =1+(n -1)×1=n. (Ⅱ)由(Ⅰ)知2ma =2n,由等比数列前n 项和公式得S m =2+22+23+ (2)=2(12)12n --=2n+1-2.小结与拓展:数列{}n a 是等差数列,则数列}{n aa 是等比数列,公比为da ,其中a 是常数,d 是{}n a 的公差。

2017年高考数学考试数列易混淆知识点.doc

2017年高考数学考试数列易混淆知识点.doc

2017年高考数学考试数列易混淆知识点高考数学一直是很多考生头疼的科目,考生难以取得数学高分是因为掌握的知识点不够透彻,为了帮助大家掌握好数学知识点,下面为大家带来2017年高考数学考试数列易混淆知识点,希望大家用心记住这些知识点。

1.进行集合的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进行求解.2.在应用条件时,易A忽略是空集的情况.3.你会用补集的思想解决有关问题吗?4.简单命题与复合命题有什么区别?四种命题之间的相互关系是什么?如何判断充分与必要条件?5.你知道否命题与命题的否定形式的区别.6.求解与函数有关的问题易忽略定义域优先的原则.7.判断函数奇偶性时,易忽略检验函数定义域是否关于原点对称.8.求一个函数的解析式和一个函数的反函数时,易忽略标注该函数的定义域.9.原函数在区间[-a,a]上单调递增,则一定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不一定单调..10.你熟练地掌握了函数单调性的证明方法吗?定义法(取值,作差,判正负)和导数法11.求函数单调性时,易错误地在多个单调区间之间添加符号和或;单调区间不能用集合或不等式表示.12.求函数的值域必须先求函数的定义域。

13.如何应用函数的单调性与奇偶性解题?①比较函数值的大小;②解抽象函数不等式;③求参数的范围(恒成立问题).这几种基本应用你掌握了吗?14.解对数函数问题时,你注意到真数与底数的限制条件了吗?(真数大于零,底数大于零且不等于1)字母底数还需讨论15.三个二次(哪三个二次?)的关系及应用掌握了吗?如何利用二次函数求最值?16.用换元法解题时易忽略换元前后的等价性,易忽略参数的范围。

17.实系数一元二次方程有实数解转化时,你是否注意到:当时,方程有解不能转化为。

若原题中没有指出是二次方程,二次函数或二次不等式,你是否考虑到二次项系数可能为的零的情形?18.利用均值不等式求最值时,你是否注意到:一正;二定;三等.19.绝对值不等式的解法及其几何意义是什么?20.解分式不等式应注意什么问题?用根轴法解整式(分式)不等式的注意事项是什么?21.解含参数不等式的通法是定义域为前提,函数的单调性为基础,分类讨论是关键,注意解完之后要写上:综上,原不等式的解集是.22.在求不等式的解集、定义域及值域时,其结果一定要用集合或区间表示;不能用不等式表示.23.两个不等式相乘时,必须注意同向同正时才能相乘,即同向同正可乘;同时要注意同号可倒即ab0,a0.24.解决一些等比数列的前项和问题,你注意到要对公比及两种情况进行讨论了吗?25.在已知,求的问题中,你在利用公式时注意到了吗?(时,应有)需要验证,有些题目通项是分段函数。

2017年高考理科数学-数列专题讲义(含解析)

2017年高考理科数学-数列专题讲义(含解析)
考点一. 数列的概念与简单表示法
1、按照一定顺序排列着的一列数成为数列,数列中每一个数叫做这个数列的项; 2、如果数列 {an } 的第 n 项与序号 n 之间的关系可以用一个公式来表示,那么这个公式就叫 做这个数列的通项公式; 注意:1)并不是所有数列都有通项公式,如果一个数列仅仅给出前面有限的几项,那么得 到的通项公式或者递推公式并不是唯一的,只要符合这几项的公式都可以;2)有的数列的 通项公式在形式上并不唯一;3)当不易直接发现规律时,可以拆分成若干部分的和差积商 或充分挖掘题目条件求解; 3、如果已知数列的第一项或(前 n 项) ,且任意一项与它的前一项(或前 n 项)间的关系可 以用一个公式来表示,这个公式叫做这个数列的递推公式; 4、数列可以看做定义域为 N (或其子集)的函数,当自变量由小到大依次取值时对应的 一列函数值,它的图像是一群孤立的点; 5、数列的表示方法有:列举法、图示法、解析法(用通项公式表示)和递推法(用递推关 系表示) ; 真题回顾----1 五位同学围成一圈依序循环报数,规定:①第一位同学首次报出的数为 1,第二位同学首次 报出的数也为 1,之后每位同学所报出的数都是前两位同学所报出的数之和;②若报出的数 为 3 的倍数,则报该数的同学需拍手一次已知甲同学第一个报数,当五位同学依序循环报 到第 100 个数时,甲同学拍手的总次数为________.
=
若项数为奇数,设共有 2n-1 项,则:1) S奇 S偶 = an = a中 ;2) 真题回顾----10 在等差数列 【答案】74
n ; n 1
{an }
中,
a3 a7 37
,则
a2 a4 a6 a8
__________
真题回顾----11 如果等差数列 an 中, a3 a4 a5 12 ,那么 a1 a2 ... a7 ( (A)14 【答案】C (B)21 (C)28 ) (D)35

2017年高考全国卷文科数学第一轮复习--讲义一----数列

2017年高考全国卷文科数学第一轮复习--讲义一----数列

2017年高考全国卷文科数学第一轮复习--讲义一----数列(2017高考文科数学)2016-4-30讲义一数列一、高考趋势1、考纲要求(1).了解数列的概念和几种简单的表示方法(列表、图像、通项公式).(2).了解数列是自变量为正整数的一类函数.(3).理解等差数列的概念.(4).掌握等差数列的通项公式与前n项和公式.(5).了解等差数列与一次函数的关系.(6).理解等比数列的概念.(7).掌握等比数列的通项公式与前n项和公式.(8).能在具体的问题情境中识别数列的等比关系,并能用有关知识解决相应的问题.(9).了解等比数列与指数函数的关系.2、命题规律数列一般在全国文科卷中平均考查分值为12分。

考察形式一般有两种,第一种是选择题+填空题的形式,第二种是解答题的形式。

并且全国文科卷解答题第一题是数列和三角函数二选一。

因此数列题在高考中属于“要尽量全部做对且拿到满分”的“高期待值”题。

二、基础知识+典型例题1、等差数列的概念与运算(1).等差数列的定义如果一个数列从第二项开始每一项与前一项的差都等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d 表示.(2).等差数列的通项公式如果等差数列{a n }的首项为a 1,公差为d ,则它的通项公式是1(1)n a a n d =+-.)(*∈N n (3).等差中项如果2a bA +=,那么A 叫做a 与b 的等差中项.(4).等差数列的前n 项和等差数列{a n }的前n 项和公式:11()(1)22n n n a a n n S na d +-=+=)(*∈N n (5).等差数列的判定通常有两种方法:① 第一种是利用定义,a n -a n -1=d (常数) (n ≥2),② 第二种是利用等差中项,即2a n =a n +1+a n -1 (n ≥2).[来源学科网]背诵知识点一:(1)等差数列的通项公式:1(1)n a a n d =+-)(*∈N n (2)等差中项:b c a a,b,c 2=+构成等差数列,则(3)等差数列的前n 项和:11()(1)22n n n a a n n S na d +-=+=)(*∈N n(6).对于等差数列问题一般要给出两个条件,可以通过列方程求出a 1,d . 如果再给出第三个条件就可以完成a n ,a 1,d ,n ,S n 的“知三求二”问题.这体现了用方程的思想解决问题.考点一:等差数列通项公式及前n 项和公式例1、(15全国卷一)已知{}n a 是公差为1的等差数列,n S 为{}n a 的前n 项和,若844S S =,则10a =() A 、 172 B 、19 2C 、10D 、12例2、(15安徽卷)已知数列}{n a 中,11=a ,211+=-n n a a (2≥n ),则数列}{n a 的前9项和等于 .2、等差数列的性质(1)通项推广:a n =a m +(n -m )d ,)(*∈N n (d 为数列{a n }的公差).(2)若m +n =p +q (m ,n ,p ,q ∈N *),则a m +a n =a p +a q . 特别地:a 1+a n =a 2+a n -1=a 3+a n-2=….(3)项数成等差数列,则相应的项也成等差数列,即若m +n =2p ,则a m +a n =2a p . (4)S n =a 1+a n2n =a 2+a n -12n =a 3+a n -22n =…. (5)等差数列的单调性① 等差数列公差为d ,若d >0,则数列递增.② 若d <0,则数列递减.③ 若d =0,则数列为常数列.背诵知识点二:(1)等差中项的性质:若m +n =p +q (m ,n ,p ,q ∈N *),则a m +a n =a p +a q . (2)等差中项的性质:若m +n =2p ,则a m +a n =2a p . (3)等差数列的性质:d m n a a m n )(-=-考点二:等差数列中项的性质例3、(15全国卷二)设n S 是等差数列{}n a 的前n 项和,若1353a a a ++=,则5S =() A .5 B .7 C .9 D .11例4、(15陕西卷)中位数为1010的一组数构成等差数列,其末项为2015,则该数列的首项为________.3、等比数列的概念与运算(1).等比数列的定义如果一个数列从第二项开始每一项与它的前一项的比都等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,通常用字母q 表示.(2).等比数列的通项公式设等比数列{a n }的首项为a 1,公比为q ,则它的通项11n n a a q -=.)(*∈N n (3).等比中项若20G ab =≠,那么G 叫做a 与b 的等比中项.(4).等比数列的前n 项和公式等比数列{a n }的公比为q (q ≠0),其前n 项和为S n ,① 当q =1时,S n =na 1;)(*∈N n ② 当q ≠1时,S n =qq a a q q a n n --=--11)1(11)(*∈N n (5).在涉及等比数列前n 项和公式时要注意对公式q 是否等于1的判断和讨论.(6).等比数列的判定方法:① 定义法:若a n +1a n =q (q 为非零常数)或a na n -1=q (q 为非零常数且n ≥2),则{a n }是等比数列.② 中项公式法:若数列{a n }中a n ≠0且a 2n +1=a n ·a n +2(n ∈N *),则数列{a n }是等比数列.背诵知识点三:(1)等比数列的通项公式:11n n a a q -=.)(*∈N n (2)等比中项:2b c a a,b,c =?构成等比数列,则(3)等比数列的前n 项和:① 当q =1时,S n =na 1;)(*∈N n ② 当q ≠1时,S n =q q a a q q a n n --=--11)1(11)(*∈N n考点三:等比数列定义与前n 项和公式例5、(15全国卷一)数列{}n a 中112,2,n n n a a a S +==为{}n a 的前n 项和,若126n S =,则n = .例6、(12全国卷)等比数列{}n a 的前n 项和为n S ,若3230S S +=,则公比q =________例7、(13全国卷一)设首项为1,公比为23的等比数列{}n a 的前n 项和为n S ,则()A.21n n S a =-B.32n n S a =-C.43n n S a =-D.32n n S a =-例8、(12全国卷)数列{}n a 满足1(1)21n n n a a n ++-=-,则{}n a 的前60项和为( ) A.3690B.3660C.1845D.18304、等比数列的性质(1)通项公式的推广:m n n m a a q -=,(n ,m ∈N *).(2)若{a n }为等比数列,且k +l =m +n ,(k ,l ,m ,n ∈N *),则n m l k a a a a ?=? (3)若{a n },{b n }(项数相同)是等比数列:则{λa n }(λ≠0),{1a n },{a 2n },{a n ·b n },{a nb n }仍是等比数列.(4)等比数列的单调性.① a 1>0q >1或??a 1<00<="" bdsfid="210" n="" p="" }为递增数列;="" ②="">a 1>00<1或??<="" bdsfid="212" p="">a 1<0q >1{a n }为递减数列;③ q =1?{a n }为非零常数列;④ q <0?{a n }为摆动数列.(5) a n a m=q n -m (m ,n ∈N *)背诵知识点四:(1)等比中项的性质:若m +n =p +q (m ,n ,p ,q ∈N *),则n m l k a a a a ?=?(2)等比中项的性质:若m +n =2p ,则2p n m a a a =? (3)等比数列的性质:a n a m=q n -m (m ,n ∈N *)考点四:等比数列中项的性质例9、(14全国卷二)等差数列{}n a 的公差是2,若248,,a a a 成等比数列,则{}n a 的前n 项和n S =()A. (1)n n +B. (1)n n -C. (1)2n n +D. (1)2n n -例10、(15全国卷二)已知等比数列{}n a 满足114a =,()35441a a a =-,则2a =()A.2B.1 1C.2 1D.8例11、(15浙江卷)已知{a n}是等差数列,公差d不为零.若a2,a3,a7成等比数列,且2a1+a2=1,则a1=________,d=________.例12、(15广东卷)若三个正数a,b,c成等比数列,其中a=5+26,c=5-26,则b=________.5、数列的通项(1).数列的通项公式:若数列{}n a 的第n 项n a 与项数n 之间的关系可以用一个式子表示出来,记作()n a f n =,称作该数列的通项公式.(2).等差数列的通项公式:1(1)n a a n d =+-()m a n m d =+-.(3).等比数列的通项公式:11n n m n m a a q a q --== (4).等差数列性质:① ()n m a a n m d =+-;② 若*,,,m n p q N m n p q ∈+=+且,则m n p q a a a a +=+;(5).等比数列性质:① n mn m a a q-=;② 若*,,,m n p q N m n p q ∈+=+且,则m n p q a a a a = (6).等差数列的判定:①定义法;②等差中项法(7).等比数列的判定:①定义法;②等比中项法(8).数列通项公式求法① 累加法:对于可转化为)(1n f a a n n +=+形式数列的通项公式问题② 累乘法:对于可转化为1()n n a a f n +=形式数列的通项公式问题③ 构造法:对于化为1()n n a pa f n +=+(其中p 是常数)型的通项公式问题④ 利用前n 项和n S 与第n 项n a 关系求通项公式问题对递推公式为n S 与n a 的关系式(或()n n S f a =),利用??≥-==-)2()1(11n S S n S a n n n 进行求解.注意n a =1n n S S --成立的条件是n ≥2,求n a 时不要漏掉n =1即n a =1S 的情况,当1a =1S 适合n a =1n n S S --时,n a =1n n S S --;当1a =1S 不适合n a =1n n S S --时,用分段函数表示.背诵知识点五:(1)数列通项公式求法:① 累加法:对于可转化为)(1n f a a n n +=+形式数列的通项公式问题② 累乘法:对于可转化为1()n n a a f n +=形式数列的通项公式问题③ 构造法:对于化为1()n n a pa f n +=+(其中p 是常数)型的通项公式问题④ 利用前n 项和n S 与第n 项n a 关系求通项公式问题考点五:求数列的通项公式①、累加法例13、已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。

高三数学第一轮复习——数列(知识点很全)五篇范文

高三数学第一轮复习——数列(知识点很全)五篇范文第一篇:高三数学第一轮复习——数列(知识点很全)数列一、知识梳理数列概念1.数列的定义:按照一定顺序排列的一列数称为数列,数列中的每个数称为该数列的项.2.通项公式:如果数列通项公式,即anan的第n,那么这个公式叫做这个数列的,且任何一项an与它的前一项an-1(或前几{an}的第一项(或前几项)=f(n).3.递推公式:如果已知数列=f(an-1)或an=f(an-1,an-2),那么这个式子叫做数列{an}的递推公式.如数列{an}中,a1=1,an=2an+1,其中an=2an+1是数列{an}的递推项)间的关系可以用一个式子来表示,即an公式.4.数列的前n项和与通项的公式⎧S1(n=1)①Sn=a1+a2+Λ+an;②an=⎨.S-S(n≥2)n-1⎩n5.数列的表示方法:解析法、图像法、列举法、递推法.6.数列的分类:有穷数列,无穷数列;递增数列,递减数列,摆动数列,常数数列;有界数列,无界数列.①递增数列:对于任何n∈N+,均有an+1②递减数列:对于任何n∈N+,均有an+1③摆动数列:例如: -1,1,-1,1,-1,Λ.④常数数列:例如:6,6,6,6,…….⑤有界数列:存在正数M使>an.<an.an≤M,n∈N+.⑥无界数列:对于任何正数M,总有项an使得an>M.等差数列1.等差数列的概念如果一个数列从第二项起,每一项与它前一项的差等于同一个常数d,这个数列叫做等差数列,常数d 称为等差数列的公差.2.通项公式与前项和公式⑴通项公式an=a1+(n-1)d,a1为首项,d=为公差.⑵前n项和公式Sn3.等差中项 n(a1+an)1或Sn=na1+n(n-1)d.22A叫做a与b的等差中项.如果a,A,b成等差数列,那么即:A是a与b的等差中项⇔2A=a+b⇔a,A,b成等差数列.4.等差数列的判定方法⑴定义法:an+1-an=d(n∈N+,d是常数)⇔{an}是等差数列;⑵中项法:2an+1⑴数列=an+an+2(n∈N+)⇔{an}是等差数列.5.等差数列的常用性质{an}是等差数列,则数列{an+p}、{pan}(p是常数)都是等差数列;⑵在等差数列{an}中,等距离取出若干项也构成一个等差数列,即an,an+k,an+2k,an+3k,Λ为等差数列,公差为kd.⑶an=am+(n-m)d;an=an+b(a,b是常数);Sn=an2+bn(a,b是常数,a≠0)⑷若m+n =p+q(m,n,p,q∈N+),则am+an=ap+aq;1⑸若等差数列Sn⎫{an}的前n项和Sn,则⎧⎨⎬是等差数列;⎩n⎭;S偶an+1⑹当项数为2n(n∈N+),则S偶-S奇=nd,=S奇an当项数为2n-1(n∈N+),则S奇-S偶=an,S偶n-1.=S奇n等比数列1.等比数列的概念如果一个数列从第二项起,每一项与它前一项的比等于同一个常数q(q列,常数q称为等比数列的公比.≠0),这个数列叫做等比数2.通项公式与前n项和公式⑴通项公式:an=a1qn-1,a1为首项,q为公比.=1时,Sn=na1⑵前n项和公式:①当qa1(1-qn)a1-anq②当q≠1时,Sn=.=1-q1-q3.等比中项如果a,G,b成等比数列,那么G叫做a与b的等比中项.即:G是a与b的等差中项⇔a,4.等比数列的判定方法⑴定义法:A,b成等差数列⇒G2=a⋅b.an+1=q(n∈N+,q≠0是常数)⇔{an}是等比数列; an⑵中项法:an+1⑴数列=an⋅an+2(n∈N+)且an≠0⇔{an}是等比数列.5.等比数列的常用性质{an}是等比数列,则数列{pan}、{pan}(q≠0是常数)都是等比数列;⑵在等比数列{an}中,等距离取出若干项也构成一个等比数列,即an,an+k,an+2k,an+3k,Λ为等比数列,公比为q.k=am⋅qn-m(n,m∈N+)⑷若m+n=p+q(m,n,p,q∈N+),则am⋅an=ap⋅aq;⑶an⑸若等比数列{an}的前n项和Sn,则Sk、S2k-Sk、S3k-S2k、S4k-S3k是等比数列.二、典型例题A、求值类的计算题(多关于等差等比数列)1)根据基本量求解(方程的思想)1、已知Sn为等差数列{an}的前n项和,a4=9,a9=-6,Sn=63,求n;2、等差数列{an}中,a4=10且a3,a6,a10成等比数列,求数列{an}前20项的和S20.3、设{an}是公比为正数的等比数列,若a1=1,a5=16,求数列{an}前7项的和.4、已知四个实数,前三个数成等差数列,后三个数成等比数列,首末两数之和为37,中间两数之和为36,求这四个数.2)根据数列的性质求解(整体思想)1、已知Sn为等差数列{an}的前n项和,a6=100,则S11=2、设Sn、Tn分别是等差数列{an}、{an}的前n项和,3、设Sn 是等差数列{an}的前n项和,若Sn7n+2a,则5=.=Tnn+3b5a55S=,则9=()a39S5Sa2n4、等差数列{an},{bn}的前n项和分别为Sn,Tn,若n=,则n=()Tn3n+1bn5、已知Sn为等差数列{an}的前n项和,Sn=m,Sm=n(n≠m),则Sm+n=6、在正项等比数列{an}中,a1a5+2a3a5+a3a7=25,则a3+a5=_______。

2017年全国高考考前解答题点理数命题揭秘之数列:满分

1.【兰州市2017届高三检测】正项等比数列{}n a 中,312a =,23S =,则公比q 的值是( ) A .12 B .12- C .1或12- D .-1或12-2.【2016海口模拟】数列{a n }的通项a n =n 2(cos 2n π3-sin2n π3),其前n 项和为S n ,则S 30为( )A .470B .490C .495D .510 3.【2017届河南新乡一中高三】定义12nnp p p +++ 为n 个正数1p ,2p ,…,n p 的“均倒数”.若已知正数数列{}n a 的前n 项的“均倒数”为121n +,又14n n a b +=,则12231011111b b b b b b ++= ( ) A .111 B .112 C .1011 D .11124.【2017年衡水中学高三年级猜题卷】已知数列{}n a 的首项为11a =,且满足对任意的*n N ∈,都有12n n n a a +-≤,232n n n a a +-≥⨯成立,则2014a =( )A .201421- B .201421+ C .201521- D .201521+5.【2016衡水模拟】设曲线y =x n(1-x )在x =2处的切线与y 轴交点的纵坐标为a n ,则数列⎩⎨⎧⎭⎬⎫a n n +1的前n 项和S n 等于________.6.【2016哈尔滨模拟】设S n 为数列{a n }的前n 项和,若S 2n S n(n ∈N *)是非零常数,则称该数列为“和等比数列”,若数列{c n }是首项为2,公差为d (d ≠0)的等差数列,且数列{c n }是“和等比数列”,则d =________.7.【河南省郑州市第一中学2017届高三】已知数列{}n a 满足:对任意*n N ∈均有133n n a pa p +=+-(p 为常数,0p ≠且1p ≠),若{}2345,,,19,7,3,5,10,29a a a a ∈---,则1a 所有可能值的集合为__________.8.【河北衡水中学2017届高三】用[]x 表示不超过x 的最大整数,例如[3]3=,[1.2]1=,[ 1.3]2-=-.已知数列{}n a 满足11a =,21n n n a a a +=+,则=++++++]1...11[201620162211a a a aa a _____________. 9.【2017届河南中原名校豫南九校高三上质检】在等比数列{a n }中,a n >0(n ∈N *),公比q ∈(0,1),且a 1a 5+2a 3a 5+a 2a 8=25,又a 3与a 5的等比中项为2. (1)求数列{a n }的通项公式;(2)设b n =log 2a n ,求数列{b n }的前n 项和S n ;(3)是否存在k ∈N *,使得S 11+S 22+…+S nn <k 对任意n ∈N *恒成立,若存在,求出k 的最小值,若不存在,请说明理由.10.【河北省衡水中学2017届高三调研】已知数列{}n a 是等比数列,首项11a =,公比0q >,其前n 项和为n S ,且113322,,S a S a S a +++,成等差数列. (1)求{}n a 的通项公式;(2)若数列{}n b 满足11,2n na b n n a T +⎛⎫= ⎪⎝⎭为数列{}n b 前n 项和,若n T m ≥恒成立,求m 的最大值.【答案与解析】 1.【答案】A【解析】因1212211322a +a =,a =,a =q q ,所以211322q q +=,解之得12q =.故应选A.2.【答案】 A3.【答案】C【解析】由题意得{}n a 的前n 项和2111112,41,,1121n n n n n S n n n a n b n b b n n n +=⨯=+∴=-∴=∴=-++,122310111111111110(1)()()223101111b b b b b b ∴++=-+-+⋅⋅⋅+-= ,故选C. 4.【答案】A.【解析】∵12n n n a a +-≤,∴1212n n n a a +++-≤,两式相加,可得122232n n n n n a a ++-≤+=⋅,又∵232n n n a a +-≥⨯,∴需232n n n a a +-=⋅,等号成立的条件为:12n n n a a +-=, ∴2n ≥时,1112111(21)()()2212121n n n n n n a a a a a a --⋅-=-+⋅⋅⋅+-+=+⋅⋅⋅++==--,∴2014201421a =-,故选A. 5.【答案】2n +1-2【解析】 y ′=nx n -1-(n +1)x n ,∴y ′|x =2=n ·2n -1-(n +1)·2n =-n ·2n -1-2n.∴切线方程为y +2n=(-n ·2n -1-2n)(x -2),令x =0,得y =(n +1)·2n,即a n =(n +1)·2n.∴a nn +1=2n ,∴S n =2n +1-2. 6.【答案】47.【答案】{}1,3,67---【解析】1113333(3)3n n n n n n a a pa p a p a p a ++++=+-⇒+=+⇒=+,又{}316,4,0,8,13,32,i a +∈--12,3,4,53i a =⇒+的可能值为 10,2,64a -⇒的所有可能值的集合为{}1,3,67---.8.【答案】0【解析】因为21n n n a a a +=+,所以210n n n a a a +-=>,因此数列{}n a 是递增数列,且0n a >,由21n n n a a a +=+得11111n n n a a a +=-+,所以122016111111a a a +++=+++122320162017111111a a a a a a -+-++- 1201711111a a a =-<=,所以201612122016[...]0111a a aa a a +++=+++ 9. 【答案】见解析【解析】 (1)∵a 1a 5+2a 3a 5+a 2a 8=25, ∴a 23+2a 3a 5+a 25=25,∴(a 3+a 5)2=25,又a n >0,∴a 3+a 5=5,又a 3与a 5的等比中项为2, ∴a 3a 5=4,而q ∈(0,1), ∴a 3>a 5,∴a 3=4,a 5=1, ∴q =12,a 1=16, ∴a n =16×⎝ ⎛⎭⎪⎫12n -1=25-n.(2)∵b n =log 2a n =5-n ,∴b n +1-b n =-1,b 1=log 2a 1=log 216=log 224=4,∴{b n }是以b 1=4为首项,-1为公差的等差数列,∴S n =n (9-n )2.(3)由(2)知S n =n (9-n )2,∴S n n =9-n2.当n ≤8时,S n n>0;当n =9时,S nn=0; 当n >9时,S n n<0.∴当n =8或9时,S 11+S 22+S 33+…+S nn=18最大.故存在k ∈N *,使得S 11+S 22+…+S nn<k 对任意n ∈N *恒成立,k 的最小值为19. 10.【答案】见解析(2)11111,,2222n nn na b n a bn n n a b n -+⎛⎫⎛⎫⎛⎫=∴=∴= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭, 21112232...2n n T n -∴=⨯+⨯+⨯++ , ①232122232...2n n T n ∴=⨯+⨯+⨯++ ,②∴①-② 得:()2112122 (2)2212112nn nn n n T n n n ---=++++-=-=--- ,()112n n T n ∴=+-,n T m ≥ 恒成立,只需()()()11min 212120n n n n n n T m T T n n n ++≥-=--=+> ,{}n T ∴为递增数列,∴当1n =时,()min 1,1,n T m m =∴≤∴的最大值为1.。

2017高考数学人教A版理科一轮复习课件:专题探究课三高考中数列问题的热点题型

第二十页,编辑于星期六:二十一点 三十五分。
(3)证明 当 n=1 时,a1(a11+1)=2×1 3=16<13成立; 当 n≥ 2 时,an(a1n+1)=2n(21n+1)<(2n-1)1(2n+1) =122n1-1-2n1+1, 所以a1(a11+1)+a2(a12+1)+…+an(a1n+1)<16+ 1213-15+…+2n1-1-2n1+1=16+1213-2n1+1<16+16=13. 所以对一切正整数 n, 有a1(a11+1)+a2(a12+1)+…+an(a1n+1)<13.
第二十六页,编辑于星期六:二十一点 三十五 分。
第十一页,编辑于星期六:二十一点 三十五分。
教材原题 (人教 A 必修 5P47B4)数列n(n1+1)的前 n 项和:Sn=1×1 2+2×1 3+3×1 4+4×1 5+…+n(n1+1), 研究一下,能否找到求 Sn 的一个公式.你能对这个问题 作一些推广吗? 解题方法 裂项相消法求和.
第十二页,编辑于星期六:二十一点 三十五分。
第十九页,编辑于星期六:二十一点 三十五分。
(1) 解 由题意知,S2n-(n2+n-3)Sn-3(n2+n)=0,n∈N*. 令 n=1,有 S21-(12+1-3)S1-3×(12+1)=0, 可得 S21+S1-6=0,解得 S1=-3 或 2,即 a1=-3 或 2, 又 an 为正数,所以 a1=2. (2)解 由 S2n-(n2+n-3)Sn-3(n2+n)=0,n∈N*, 可得(Sn+3)(Sn-n2-n)=0,则 Sn=n2+n,或 Sn=-3, 又数列{an}的各项均为正数,所以 Sn=n2+n, 所以当 n≥2 时,an=Sn-Sn-1=n2+n-[(n-1)2+(n-1)]=2n. 又 a1=2=2×1,所以 an=2n,n∈N*.

2017年高考数学考试数列问题解题方法及技巧.doc

2017年高考数学考试数列问题解题方法及技巧高考数学考试很多考生都觉得头疼,这是因为大家没有掌握好答题技巧和解题方法,不同类型的数学题要学会不同的应对方法,为此下面为大家带来2017年高考数学考试数列问题解题方法及技巧,希望能够帮助大家轻松应对2017年高考数学考试。

2017高考数学数列问题解答方法及技巧有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。

探索性问题是高考的热点,常在数列解答题中出现。

本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法。

近几年来,高考关于数列方面的命题主要有以下三个方面;(1)数列本身的有关知识,其中有等差数列与等比数列的概念、性质、通项公式及求和公式。

(2)数列与其它知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。

(3)数列的应用问题,其中主要是以增长率问题为主。

试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,只有个别地方用数列与几何的综合与函数、不等式的综合作为最后一题难度较大。

知识整合1、在掌握等差数列、等比数列的定义、性质、通项公式、前n项和公式的基础上,系统掌握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题。

2、在解决综合题和探索性问题实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力。

进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力。

3、培养学生善于分析题意,富于联想,以适应新的背景,新的设问方式,提高学生用函数的思想、方程的思想研究数列问题的自觉性、培养学生主动探索的精神和科学理性的思维方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【备战2017年高考高三数学一轮热点、难点一网打尽】第29讲数列结合其他问题考查更精彩考纲要求:能在具体的问题情境中识别数列的等差关系或等比关系,并能用相关知识解决相应的问题.基础知识回顾:1.数列在实际生活中有着广泛的应用,其解题的基本步骤,可用图表示如下2.等差模型:如果增加(或减少)的量是一个固定量时,该模型是等差模型,增加(或减少)的量就是公差.3.等比模型:如果后一个量与前一个量的比是一个固定的数时,该模型是等比模型,这个固定的数就是公比.4.递推数列模型:如果题目中给出的前后两项之间的关系不固定,随项的变化而变化时,应考虑是a n与a n+1的递推关系,还是前n项和S n与S n+1之间的递推关系.应用举例:类型一、等差数列与等比数列的综合应用【例1】【2017河南省郑州市高三质检】在等差数列{a n}中,a10=30,a20=50.(1)求数列{a n}的通项公式;(2)令b n=2a n-10,证明:数列{b n}为等比数列;(3)求数列{nb n}的前n项和T n.【答案】(1)an=2n+10. (2)见解析;(3)Tn=-+1+49.(3)由nbn =n×4n ,得Tn =1×4+2×42+…+n×4n ,① 4Tn =1×42+…+(n -1)×4n +n×4n +1,②①-②,得-3T n =4+42+…+4n -n ×4n +1=4(1-4n )-3-n ×4n +1. 所以T n =(3n -1)×4n +1+49.【例2】【2017河南省天一大联考】已知各项都为正数的等比数列{}n a 满足312a 是13a 与22a 的等差中项,且123a a a =. (1)求数列{}n a 的通项公式;(2)设3log n n b a =,且n S 为数列{}n b 的前项和,求数列的12{}nnS S +的前项和n T . 【答案】(1)3nn a =;(2)2241n n n n +T =+. 点评:等差数列、等比数列综合问题的2大解题策略(1)设置中间问题:分析已知条件和求解目标,为最终解决问题设置中间问题,例如求和需要先求出通项、求通项需要先求出首项和公差(公比)等,确定解题的顺序.(2)注意解题细节:在等差数列与等比数列综合问题中,如果等比数列的公比不能确定,则要看其是否有等于1的可能,在数列的通项问题中第一项和后面的项能否用同一个公式表示等,这些细节对解题的影响也是巨大的.类型二、数列与函数的交汇【例3】【2017广西南宁高三模拟】设等差数列{a n }的公差为d ,点(a n ,b n )在函数f (x )=2x 的图象上(n ∈N *).(1)证明:数列{b n }为等比数列;(2)若a 1=1,f (x )的图象在点(a 2,b 2)处的切线在x 轴上的截距为2-1ln 2,求数列{}a n b 2n 的前n 项和S n .【答案】(1)见解析;(2)S n =(3n -1)4n +1+49..【解析】(1)证明:由已知,b n =2a n >0,当n ≥1时,b n +1b n=2a n +1-a n =2d .所以,数列{b n }是首项为2a 1,公比为2d 的等比数列.(2) 函数f (x )=2x 在(a 2,b 2)处的切线方程为y -2a 2=(2a 2ln 2)(x -a 2),它在x 轴上的截距为a 2-1ln 2.由题意,a 2-1ln 2=2-1ln 2.解得a 2=2. 所以,d =a 2-a 1=1,a n =n ,b n =2n ,a n b 2n =n ·4n .于是,S n =1×4+2×42+3×43+…+(n -1)·4n -1+n ·4n , 4S n =1×42+2×43+…+(n -1)×4n +n ·4n +1.因此,S n -4S n =4+42+…+4n -n ·4n +1=4n +1-43-n ·4n +1=(1-3n )4n +1-43.所以S n =(3n -1)4n +1+49.【例4】【2017大连市一中高三摸底考试】已知二次函数f (x )=ax 2+bx 的图象过点(-4n,0),且f ′(0)=2n (n ∈N *). (1)求f (x )的解析式; (2)若数列{a n }满足1a n +1=f ′⎝⎛⎭⎫1a n ,且a 1=4,求数列{a n }的通项公式.【答案】(1)f (x )=12x 2+2nx (n ∈N *).(2)a n =4(2n -1)2(n ∈N *).类型三、数列与不等式的交汇【例5】【2017广东省惠州市高三第一次调研考试】设0a >,0b >4a 和2b的等比中项,则21a b+的最小值为( ) A..8 C .9 D .10【答案】C【解析】因为422a b +=,所以21a b +=,()21212529b a a b a b a b a b ⎛⎫⎛⎫+=++=++≥ ⎪ ⎪⎝⎭⎝⎭,当且仅当b aa b=即12a b ==时“=”成立。

【例6】【2017新疆兵团农二师华山中学高三试题】已知数列{a n }前n 项和为S n ,满足S n =2a n -2n(n ∈N*).(1)证明:{a n +2}是等比数列,并求{a n }的通项公式; (2)数列{b n }满足b n =log 2(a n +2),T n 为数列{11n n b b +}的前n 项和,若n T a <对正整数a 都成立,求a 的 取值范围.【答案】(1) 1*22()n n a n N +=-∈;(2)21≥a . 【解析】(1) 由题设()22n n a n n NS *=-∈,1122(1)n n a n S--=--(2)n ≥两式相减得122n n a a -=+, 即122(2)n n a a -+=+.又124a +=,所以{}2n a +是以为首项,为公比的等比数列,则1242,n n a -+=⨯1142222(2)n n n a n -+=⨯-=-≥,又12a =,所以1*22()n n a n N +=-∈(2)因为122log (2)log (2)1n n n b a n +=+==+,则11111(1)(2)12n n b b n n n n +==-++++ 所以111111111()()()233412222n T n n n =-+-++-=-<+++, 依题意得:21≥a点评:数列与不等式相结合问题的处理方法解决数列与不等式的综合问题时,如果是证明题要灵活选择不等式的证明方法,如比较法、综合法、分析法、放缩法等;如果是解不等式问题要使用不等式的各种不同解法,如列表法、因式分解法、穿根法等.总之解决这类问题把数列和不等式的知识巧妙结合起来综合处理就行了.类型四、等差数列与等比数列的实际应用【例7】【2017株洲高三摸底考试】某企业的资金每一年都比上一年分红后的资金增加一倍,并且每年年底固定给股东们分红500万元.该企业2010年年底分红后的资金为1 000万元. (1)求该企业2014年年底分红后的资金; (2)求该企业从哪一年开始年底分红后的资金超过32 500万元.【答案】(1) 8 500万元;(2)该企业从2017年开始年底分红后的资金超过32 500万元..方法、规律归纳:1.解决等差数列与等比数列的综合问题,关键是理清两个数列的关系.如果同一数列中部分项成等差数列,部分项成等比数列,则要把成等差数列和成等比数列的项分别抽出来,研究这些项与序号之间的关系;如果两个数列是通过运算综合在一起的,就要从分析运算入手,把两个数列分割开,再根据两个数列各自的特征进行求解.2.数列与函数的综合一般体现在两个方面(1)以数列的特征量n ,a n ,S n 等为坐标的点在函数图象上,可以得到数列的递推关系;(2)数列的项或前n 项和可以看作关于n 的函数,然后利用函数的性质求解数列问题.实战演练:1.【2017湖南衡阳八中月考】已知等比数列{a n }中,各项都是正数,且a 1,12a 3,2a 2成等差数列,则a 9+a 10a 7+a 8=( )A .1+ 2B .1- 2C .3+2 2D .3-2 2 【答案】C.【解析】设等比数列的公比为q ,由题意知a 3=a 1+2a 2,即a 1q 2=a 1+2a 1q ,∴q 2-2q -1=0,解得q =1+2或q =1-2(舍去).∴a 9+a 10a 7+a 8=(a 7+a 8)q 2a 7+a 8=q 2=(1+2)2=3+2 2.2.【2017广东省珠海市高三摸底考试】正项等比数列{a n }中,存在两项a m ,a n (m ,n ∈N *)使得a m a n =4a 1,且a 7=a 6+2a 5,则1m +5n的最小值是( )A.74 B .1+53 C.256 D.253【答案】B3.【2017广东省珠海市高三摸底考试】数列{a n }是公差不为0的等差数列,且a 1,a 3,a 7为等比数列{b n }中连续的三项,则数列{b n }的公比为( )A.2 B .4 C .2 D.12【答案】C【解析】设数列{a n }的公差为d (d ≠0),由a 23=a 1a 7得(a 1+2d )2=a 1(a 1+6d ),解得a 1=2d ,故数列{b n }的公比q =a 3a 1=a 1+2d a 1=2a 1a 1=2.4.【2017江西省南昌高三一模】已知数列{a n },{b n }满足a 1=1,且a n ,a n +1是函数f (x )=x 2-b n x +2n 的两个零点,则b 10等于( )A .24B .32C .48D .64 【答案】D【解析】依题意有a n a n +1=2n ,所以a n +1a n +2=2n +1,两式相除,得a n +2a n=2,所以a 1,a 3,a 5,…成等比数列,a 2,a 4,a 6,…成等比数列.而a 1=1,a 2=2,所以a 10=2·24=32,a 11=1·25=32.又因为a n +a n +1=b n ,所以b 10=a 10+a 11=64.5.【2017广东六校联考】据科学计算,运载“神舟”的“长征”二号系列火箭在点火后第一秒钟通过的路程为2 km ,以后每秒钟通过的路程增加2 km ,在到达离地面240 km 的高度时,火箭与飞船分离,则这一过程需要的时间是( )A .10秒钟B .13秒钟C .15秒钟D .20秒钟 【答案】C6.【2017天津市十二区联考】已知数列{a n }满足a n +1+a n -1=2a n ,n ≥2,点O 是平面上不在l 上的任意一点,l 上有不重合的三点A 、B 、C ,又知a 2OA →+a 2 009OC →=OB →,则S 2 010=( )A .1 004B .2 010C .2 009D .1 005 【答案】D7.【2017青岛一中高三质检】设曲线y =x n +1(n ∈N *)在点(1,1)处的切线与x 轴的交点的横坐标为x n ,则x n =________,令a n =lg x n ,则a 1+a 2+…+a 99的值为________. 【答案】nn +1-2【解析】∵y =x n +1,∴y ′=(n +1)x n ,它在点(1,1)处的切线方程为y -1=(n +1)(x -1),与x 轴交点的横坐标为x n =1-1n +1=n n +1,由a n =lg x n 得a n =lg n -lg(n +1),于是a 1+a 2+…+a 99=lg 1-lg 2+lg 2-lg 3+…+lg 99-lg 100=lg 1-lg 100=0-2=-2.答案:nn +1 -28.设关于x 的不等式x 2-x <2nx (n ∈N *)的解集中整数的个数为a n ,数列{a n }的前n 项和为S n ,则S 100的值为________. 【答案】10 100.9.【2017广东六校联考】某企业在第1年初购买一台价值为120万元的设备M ,M 的价值在使用过程中逐年减少.从第2年到第6年,每年初M 的价值比上年初减少10万元;从第7年开始,每年初M 的价值为上年初的75%.(1)求第n 年初M 的价值a n 的表达式;(2)设A n =a 1+a 2+…+a nn ,若A n 大于80万元,则M 继续使用,否则需在第n 年初对M更新.证明:需在第9年初对M 更新.【答案】⎪⎩⎪⎨⎧≥⨯≤-=-7,)43(706,101306n n n a n n ;需在第9年初对M 更新. 【解析】(1)当n ≤6时,数列{a n }是首项为120,公差为-10的等差数列,a n =120-10(n -1)=130-10n ;当n ≥7时,数列{a n }是以a 6为首项,公比为34的等比数列,又a 6=70,所以a n =70×6)43(-n .因此,第n 年初,M 的价值a n 的表达式为⎪⎩⎪⎨⎧≥⨯≤-=-7,)43(706,101306n n n a n n(2) 证明:设S n 表示数列{a n }的前n 项和,由等差及等比数列的求和公式得 当1≤n ≤6时,S n =120n -5n (n -1),A n =120-5(n -1)=125-5n ;当n ≥7时,由于S 6=570,故S n =S 6+(a 7+a 8+…+a n )=570+70×34×4×])43(1[6--n=780-210×6)43(-n ,A n =nn 6)43(210780-⨯-. 因为{a n }是递减数列,所以{A n }是递减数列,又A 8=8)43(2107802⨯-=824764>80,A 9=9)43(2107803⨯-=767996<80, 所以需在第9年初对M 更新.10. 【2017河北省冀州中学高三摸底考试】数列{a n }满足:a 1+2a 2+…+na n =4-n +22n -1,n ∈N *.(1)求a 3的值; (2)求数列{a n }的前n 项和T n ;(3)令b 1=a 1,b n =T n -1n +⎝⎛⎭⎫1+12+13+…+1n a n (n ≥2),证明:数列{b n }的前n 项和S n 满足S n <2+2ln n .【答案】a 3=14.;T n =2-12n -1. 见解析(3)证明:∵b 1=a 1=1,∴S 1<2+2ln 1成立.又∵b 2=a 12+⎝⎛⎭⎫1+12a 2,b 3=a 1+a 23+⎝⎛⎭⎫1+12+13a 3,…,b n =a 1+a 2+…+a n -1n+⎝⎛⎭⎫1+12+…+1n a n , ∴数列{b n }的前n 项和S n =b 1+b 2+…+b n =⎝⎛⎭⎫1+12+…+1n a 1+⎝⎛⎭⎫1+12+…+1n a 2+…+⎝⎛⎭⎫1+12+…+1n a n =⎝⎛⎭⎫1+12+…+1n (a 1+a 2+…+a n )=⎝⎛⎭⎫1+12+…+1n ⎝ ⎛⎭⎪⎫2-12n -1<2⎝⎛⎭⎫1+12+…+1n , 构造函数h (x )=ln 1x -1x +1,x >0,h ′(x )=1-x x 2,令h ′(x )>0,解得0<x <1;令h ′(x )<0,解得x >1,∴h (x )=ln 1x -1x+1,x >0在(0,1)上单调递增,在(1,+∞)上单调递减,∴h (x )≤h (1)=0,∴ln 1x -1x +1≤0,x >0(仅当x =1时取等号),即ln x ≥1-1x.又∵ln n =ln n n -1+ln n -1n -2+…+ln 2>⎝ ⎛⎭⎪⎫1-n -1n +⎝ ⎛⎭⎪⎫1-n -2n -1+…+⎝⎛⎭⎫1-12=12+13+…+1n, ∴2⎝⎛⎭⎫1+12+…+1n <2+2ln n ,∴S n <2+2ln n .。

相关文档
最新文档