《统计与概率》

合集下载

高中数学统计与概率

高中数学统计与概率

高中数学统计与概率1、概率的定义随机事件A的概率是频率的稳定值;频率是概率的近似值。

2、等可能事件的概率如果一次试验中可能出现的结果有n个,且所有结果出现的可能性都相等,那么,每一个基本事件的概率都是1/n,如果某个事件A包含的结果有m个,那么事件A的概率为P(A)=m/n。

3、互斥事件不可能同时发生的两个事件叫互斥事件。

如果事件A、B互斥,那么事件A+B发生(A、B中有一个发生)的概率,等于事件A、B分别发生的概率和,即P(A+B)=P(A)+P(B)。

4.抽签法和随机数表法(1)抽签法①优点:简单易行;②缺点:当总体容量非常大时,操作比较麻烦;若抽取前搅拌不均匀,可能导致抽取的样本不具有代表性.(2)随机数表法随机数表是由水技术(通常为自然数)形成的数表,表中的每一位置出现的数都是随机的.随机数表法的一般步骤:第一步:对总体进行编号;第二步:任意指定一个开始选取的位置,位置的确定可以闭着眼用手指随机确定,也可以用其他方法;第三步:按照一定规则选取编号;第四步:按照得到的编号找出对应的个体.【注释】①规则一经确定,就不能更改;②选取过程中,遇到超过编号范围或已经选取了的数字,应该舍弃.5.分层抽样一般地,如果相对于要考察的问题来说,总体可以分为有明显差别的,互不重叠的几部分时,每一部分可称为层,在各层中按层在总体中所占比例进行随机抽样的方法称为分层随机抽样(简称分层抽样).【注释】分层抽样得到的样本,一般更具有代表性,可以更准确地反映总体的特征,尤其是在层内个体相对同质而层间差异较大时更是如此.分层抽样在各层中抽样时,还可根据各层的特点灵活选用不同的随机抽样方法.。

人教B版高中数学必修二课件 《统计与概率的应用》统计与概率名师优秀课件

人教B版高中数学必修二课件 《统计与概率的应用》统计与概率名师优秀课件
5.4 统计与概率的应用
第五章 统计与概率
考点 统计与概 率的意义 统计与概 率的应用
学习目标 通过实例进一步理解统计与 概率的意义及应用 能用统计与概率的知识解决 实际生活中的问题
核心素养 数学抽象 数学抽象、 数学运算
判断正误(正确的打“√”,错误的打“×”) (1)事件 A 发生的概率很小时,该事件为不可能事件.( × ) (2)某医院治愈某种病的概率为 0.8,则 10 个人去治疗,一定有 8 人能治愈.( × ) (3)平时的多次比赛中,小明获胜的次数比小华的高,所以这次 比赛应选小明参加.( √ )
解:可以提出如下 2 个方案(答案不唯一). (方案 1)在箱内放置 100 个乒乓球,其中 1 个为黄球,99 个为 白球.顾客一次摸出一个乒乓球,摸到黄球为中大奖,否则中 小奖. (方案 2)在箱内放置 25 个乒乓球,其中 3 个为黄球,22 个为白 球,顾客一次摸出 2 个乒乓球,摸到 2 个黄球中大奖,否则中 小奖.
的概率是多少?
【解】 用 A 表示事件“对这次调整表示反对”,B 表示“对 这次调整不发表看法”,由互斥事件的概率加法公式,得 P(A∪B)=P(A)+P(B)=13070+13060=17030=0.73,因此随机选取 一个被调查者,他对这次调整表示反对或不发表看法的概率是 0.73.
概率在决策问题中的应用 (1)由于概率反映了随机事件发生的可能性的大小,概率是频率 的近似值与稳定值,所以可以用样本出现的频率近似地估计总 体中该结果出现的概率. (2)实际生活与生产中常常用随机事件发生的概率来估计某个 生物种群中个别生物种类的数量、某批次的产品中不合格产品 的数量等.
概率在决策中的应用
某地政府准备对当地的农村产业结构进行调整,为此政

统计与概率的概念

统计与概率的概念

统计与概率的概念统计与概率是数学中重要的概念与工具,用以描述和分析随机现象。

统计学和概率论是彼此紧密相关的,两者相辅相成,共同构成现代数学的重要分支。

本文将介绍统计与概率的概念及其应用。

一、统计的概念统计是指通过收集、整理和分析数据来研究和描述事物的数量特征和规律。

统计的主要目标是从样本中推断总体的特征,并对未知事物作出科学的预测。

统计方法广泛应用于社会科学、自然科学、医学、经济学等领域。

统计学中的重要概念包括数据的收集和整理,描述统计和推断统计。

数据的收集和整理是统计学的基础,通过收集样本数据来进行分析和推断。

描述统计是对数据的整体特征进行描述和总结,包括均值、中位数、方差等量化指标。

推断统计是从样本数据推断总体特征,并给出估计值和可信区间。

二、概率的概念概率是描述随机事件发生可能性的数学工具。

概率论研究的对象是随机现象的规律性和不确定性,通过建立数学模型来描述和分析随机事件,并给出事件发生的可能性。

概率的基本概念包括随机事件、样本空间、事件的概率等。

随机事件是在一次试验中可能发生或不发生的事件,例如掷硬币的结果为正面或反面。

样本空间是指所有可能结果组成的集合,例如掷硬币的样本空间为{正, 反}。

事件的概率是描述事件发生可能性的数值,介于0到1之间,事件发生的概率越大,其可能性越高。

三、统计与概率的关系统计学和概率论是两个密切相关的学科,它们在理论和应用上互相依赖。

统计学可以利用概率模型来进行推断和预测,而概率论则是建立在统计学的基础上,研究随机现象的规律性。

统计学中的推断统计依赖于概率模型,通过概率分布来描述样本数据的变异性和误差。

基于概率模型,可以通过统计推断方法对总体的特征进行估计和预测,从而提供科学依据。

概率论的应用广泛涉及到统计学中的推断统计,例如用概率分布来描述随机误差、计算置信区间和假设检验等。

概率论还与风险分析、金融工程、信息论等领域有着重要的联系。

总之,统计与概率是描述和分析随机现象的重要工具,它们密切相关且相互依赖。

高三数学《概率统计(文科)》练习

高三数学《概率统计(文科)》练习

文科数学《统计与概率》核心知识点与参考练习题一、统计(核心思想:用样本估计总体)1.抽样(每个个体被抽到的概率相等)(1)简单随机抽样:抽签法与随机数表法(2)系统抽样(等距抽样)(3)分层抽样2.用样本估计总体:(1)样本数字特征估计总体:众数、中位数、平均数、方差与标准差(2)样本频率分布估计总体:频率分布直方图与茎叶图3.变量间的相关关系:散点图、正相关、负相关、回归直线方程(最小二乘法)4.独立性检验二、概率(随机事件发生的可能性大小)1.基本概念(1)随机事件A的概率()()1,0∈AP(2)用随机模拟法求概率(用频率来估计概率)(3)互斥事件(对立事件)2.概率模型(1)古典概型(有限等可能)(2)几何概型(无限等可能)三、参考练习题1.某校高一年级有900名学生,其中女生400名.按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,则应抽取的男生人数为_______ .2.某学校高一、高二、高三年级的学生人数之比是3:3:4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则该从高二年级抽取_____名学生.3.某校老年、中年和青年教师的人数见右表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本中的老年教师人数为_______ .4.已知一组数据5.5,4.5,1.5,8.4,7.4,则该组数据的方差是_____.5.若1,2,3,4,m这五个数的平均数为3,则这五个数的标准差为____.6.重庆市2013年各月的平均气温(℃)数据的茎叶图如右图:则这组数据的中位数是________.7.某高校调查了200名学生每周的晚自习时间(单位:小时),制成了如图所示的频率分布直方图,其中晚自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()A.56B.60C.120D.1408.(2016四川文)我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查. 通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照 [0,0.5),[0.5,1),…,[4,4.5] 分成9组,制成了如图的频率分布直方图. (Ⅰ)求直方图中a的值;(Ⅱ)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由;(Ⅲ)估计居民月均用水量的中位数.类别人数老年教师900中年教师1800青年教师1600合计43009.(2015全国Ⅱ文)某公司为了解用户对其产品的满意度,从A ,B 两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A 地区用户满意度评分的频率分布直方图和B 地区用户满意度评分的频数分布表. A 地区用户满意度评分的频率分布直方图B 地区用户满意度评分的频数分布表 满意度评分分组[50,60) [60,70) [70,80) [80,90) [90,100]频 数2814106(Ⅰ)作出B 地区用户满意度评分的频率分布直方图,并通过直方图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);B 地区用户满意度评分的频率分布直方图(Ⅱ)根据用户满意度评分,将用户的满意度分为三个等级:试估计哪个地区用户的满意度等级为不满意的概率大?说明理由.10.(2014安徽文)某高校共有学生15000人,其中男生10500人,女生4500人,为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时). (Ⅰ)应收集多少位女生的样本数据?(Ⅱ)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据的分组区间为:[0,2],(2,4],(4,6],(6,8],(8,10],(10,12].估计该校学生每周平均体育运动时间超过4小时的概率;(Ⅲ)在样本数据中,有60位女生的每周平均体育运动时间超过4小时,请完成每周平均体育运动时间与性别列联表,并判断是否有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”.附:()()()()()d b c a d c b a bc d a n K ++++-=22满意度评分 低于70分 70分到89分不低于90分 满意度等级不满意满意非常满意()02k K P ≥ 0.10 0.05 0.01 0.005 0k 2.706 3.841 6.635 7.87911.(2014全国Ⅰ文)从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:质量指标值分组[75,85)[85,95)[95,105)[105,115)[115,125] 频数 6 26 38 22 8(Ⅰ)在下表中作出这些数据的频率分布直方图:(Ⅱ)估计这种产品质量指标值的平均数和方差(同一组中的数据用该组区间的中点值作代表);(Ⅲ)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?12.(2014广东文)某车间20名工人年龄数据如下表:(Ⅰ)求这20名工人年龄的众数与极差;(Ⅱ)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;(Ⅲ)求这20名工人年龄的方差.13.(2016江苏)将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是_______ .14.从甲、乙等5名学生中随机选出2人,则甲被选中的概率为_______ .15.(2016全国乙卷文)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是______ .16.(2016全国丙卷文)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M、I、N中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是________ .17.(2016天津文)甲、乙两人下棋,两人下成和棋的概率为21,甲获胜的概率是31,则甲不输的概率为_________ .18.已知5件产品中有2件次品,其余为合格品.现从这5件产品中任选2件,恰有一件次品的概率为_________ .19.某单位N 名员工参加“社区低碳你我他”活动.他们的年龄在25岁至50岁之间.按年龄分区间 [25,30) [30,35) [35,40) [40,45) [45,50]人数 25 a b(Ⅰ)求正整数a ,b ,N 的值;(Ⅱ)现要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,则年龄在第1,2,3组的人数分别是多少?(Ⅲ)在(2)的条件下,从这6人中随机抽取2人参加社区宣传交流活动,求恰有1人在第3组的概率.20.(2016全国Ⅰ文)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( )A.31B.21C.32D.4321.(2016全国Ⅱ文)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为( ) A.107 B.85 C.83 D.103 22.在区间[-2,3]上随机选取一个数x ,则1≤x 的概率为_____ .23.若将一个质点随机投入如图所示的长方形ABCD 中,其中AB=2,BC=1,则质点落在以AB 为直径的半圆内的概率是_______ .24.如图,在边长为1的正方形中随机撒1000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积为_________ .25.为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下:则y 对x 的线性回归方程为( )A .1ˆ-=x yB .1ˆ+=x yC .x y 2188ˆ+= D .176ˆ=y26.某产品的广告费用x 与销售额y 的统计数据如下:根据上表可得回归方程a x b yˆˆˆ+=中的b ˆ为9.4,据此模型预报广告费用为6万元时销售额为 A .63.6万元 B .65.5万元 C .67.7万元 D .72.0万元27.随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如下表:年 份 2011 2012 2013 2014 2015 时间代号t 1 2 3 4 5 储蓄存款y (千亿元)567810(Ⅰ)求y 关于t 的回归方程a t b yˆˆˆ+=; (Ⅱ)利用(Ⅰ)中的回归方程,分析2011年至2015年该地区城乡居民储蓄存款的变化情父亲身高x (cm ) 174 176 176 176 178 儿子身高y (cm )175175176177177广告费用x (万元) 4 2 3 5 销售额y (万元)49263954况,并预测该地区2016年(t =6)的人民币储蓄存款.附:回归方程a t b yˆˆˆ+=中,t b y atn tyt n y t b ni ini ii ˆˆ,ˆ1221-=--=∑∑==.28.甲、乙两所学校高三年级分别有1200人、1000人,为了了解两所学校全体高三年级学生在该地区六校联考的数学成绩情况,采用分层抽样的方法从两所学校一共抽取了110名学生的数学成绩,并作出了频数分布统计表如下: 甲校:乙校:(1)计算y x ,的值;(2)若规定考试成绩在[120,150]内为优秀,请分别估计两所学校数学成绩的优秀率; (3)由以上统计数据填写下面2×2列联表,并判断是否有90%的把握认为两所学校的数学成绩有差异.参考数据与公式:由列联表中数据计算()()()()()d b c a d c b a bc ad n K ++++-=22;临界值表:29.一次考试中,5名学生的数学、物理成绩如下表所示:(1)要从5名学生中选2人参加一项活动,求选中的学生中至少有一人的物理成绩高于90分的概率;(2)根据上表数据作散点图,求y 与x 的线性回归方程(系数精确到0.01).附:回归直线的方程是:a x b y ˆˆˆ+=,其中()()()x b y ax x y y x x b ni ini iiˆˆ,ˆ121-=---=∑∑==; 90,93==y x ,()()()30,4051251=--=-∑∑==y y x x x x ii ii i .30.为调查市民对汽车品牌的认可度,在秋季车展上,从有意购车的500名市民中,随机抽取100名市民,按年龄情况进行统计得到下面的频率分布表和频率分布直方图.(1)求频率分布表中a 、b 的值,并补全频率分布直方图,再根据频率分布直方图估计有意购车的这500名市民的平均年龄;31.(2016新课标Ⅱ)某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人的本年度的保费与其上年度的出险次数的关联如下:上年度出险次数0 1 2 3 4 ≥5保费0.85aa1.25a1.5a1.75a2a设该险种一续保人一年内出险次数与相应概率如下:一年内出险次数0 1 2 3 4 ≥5概率0.300.150.200.200.100.05(Ⅰ)求一续保人本年度的保费高于基本保费的概率;32.袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机分组(岁) 频数 频数[20,25) 5 0.050 [25,30) 200.200 [30,35) a0.350[35,40) 30 b[40,45] 10 0.100 合计1001.000摸出2只球,则这2只球颜色不同的概率为____________ .33.现有6道题,其中4道甲类题,2道乙类题,某同学从中任取2道题解答.试求:(1)所取的2道题都是甲类题的概率;(2)所取的2道题不是同一类题的概率.A,两地区分别随机调查了20个用户,得到用34.某公司为了解用户对其产品的满意度,从B户对产品的满意度评分如下:A地区:62 73 81 92 95 85 74 64 53 7678 86 95 66 97 78 88 82 76 89B地区:73 83 62 51 91 46 53 73 64 8293 48 65 81 74 56 54 76 65 79(Ⅰ)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);。

《统计与概率》教案14篇

《统计与概率》教案14篇

《统计与概率》教案14篇《统计与概率》教案篇1设计说明根据本课时的复习内容和特点,依托教材提供的练习题,从以下两个层次进行复习。

1.引导学生按照指定的标准分类。

这一层次的复习,首先让学生按照颜色分类,采用小组讨论的方式,找出自己分类的数据,然后将数据填入统计表中,初步体会到整理数据的全过程。

在按照颜色分类的基础上,让学生自主完成按照形状进行分类,以巩固整理数据的方法。

2.引导学生按照自选的标准进行分类。

这一层次的复习过程能让学生体验到分类结果的多样性。

通过以上的复习设计,使学生会用简单的统计表、象形统计图来呈现整理的结果,并培养学生从多角度、多层次、多方位地看待事物的意识。

课前准备教师准备 PPT课件学生准备不同形状的平面图形若干教学过程⊙导入新课(课件出示不同形状的平面图形)师:同学们,这些图形都是我们学过的平面图形,谁能告诉大家它们的名称?(教师指名汇报)师:同学们的记忆力真好,今天我们就利用这些平面图形来复习有关分类与整理的知识。

设计意图:通过辨认平面图形,为复习课的展开奠定基础。

⊙复习梳理1.复习按照指定的标准分类。

(课件出示教材94页3题)师:这么多不同颜色、不同形状的卡片混在一起,你们能分别按照它们的颜色和形状把它们分一分吗?(1)按照颜色分类。

师:请同学们小组合作解决,要知道每种颜色的卡片分别有多少张,应该怎么办呢?(学生小组讨论)汇报讨论结果。

方法一:先分一分,再数一数。

先按照红、绿、蓝、黄、粉五种颜色把卡片分成五类,然后数出每一类的张数。

方法二:边数边画。

学生展示画的结果:方法三:用文字方式呈现分类的结果。

红色绿色蓝色黄色粉色5张 3张 6张 2张 4张师:请根据你们用不同方法分类整理的结果,把教材94页3题(1)中的表格填写完整。

(学生自主填写表格)师:根据表格中的数据,请你提出数学问题,并自主解答。

(学生之间根据数据互相提出问题,并解答)(2)按照形状分类。

师:根据按照颜色分类的方法,请同学们按照形状对这些卡片进行分类,并自主填写教材94页3题(2)中的表格。

北师大版五年级上册数学《总复习: 统计与概率》教学设计

北师大版五年级上册数学《总复习: 统计与概率》教学设计

北师大版五年级上册数学《总复习:统计与概率》教学设计一. 教材分析北师大版五年级上册数学《总复习:统计与概率》教材包括了对统计与概率的基本概念、图表的识别和制作、以及数据分析方法的复习。

本节课的教学内容主要包括条形统计图、折线统计图、扇形统计图的识别和制作,以及利用统计图进行数据分析。

此外,还涉及到概率的基本概念和简单事件的概率计算。

二. 学情分析五年级的学生已经具备了一定的统计与概率的基础知识,对条形统计图、折线统计图和扇形统计图有一定的了解,并能运用这些图表进行简单的数据分析。

然而,学生在概率方面的知识相对较弱,对于复杂事件的概率计算还不够熟练。

因此,在教学过程中需要重点讲解和练习概率的相关知识。

三. 教学目标1.让学生复习和巩固条形统计图、折线统计图和扇形统计图的识别和制作方法。

2.培养学生运用统计图进行数据分析的能力。

3.让学生掌握概率的基本概念,并能够计算简单事件的概率。

四. 教学重难点1.重点:条形统计图、折线统计图和扇形统计图的识别和制作,以及利用这些图表进行数据分析。

2.难点:概率的计算方法,特别是复杂事件的概率计算。

五. 教学方法1.采用问题驱动的教学方法,通过提出问题和解决实际问题的方式,引导学生复习和巩固统计与概率的知识。

2.运用多媒体教学资源,如统计图和概率计算软件,辅助教学,提高学生的学习兴趣和效果。

3.小组讨论和合作活动,让学生在互动中学习和交流,培养学生的团队合作能力。

六. 教学准备1.准备相关的统计图和概率计算软件。

2.准备一些实际问题,用于引导学生运用统计与概率的知识进行分析和解决。

七. 教学过程1.导入(5分钟)通过提出一些实际问题,引发学生对统计与概率知识的思考,激发学生的学习兴趣。

2.呈现(10分钟)呈现条形统计图、折线统计图和扇形统计图的识别和制作方法,以及利用这些图表进行数据分析的方法。

3.操练(10分钟)学生分组进行练习,制作统计图并分析数据。

教师巡回指导,解答学生的问题。

第四专题《统计与概率》(共5课时)

中考数学第一轮基础知识复习第四专题《统计与概率》、(共5课时)第一课时统计知识1.平均数的计算公式___________________________.2. 加权平均数公式_____________________________.3. 中位数是___________________________,众数是__________________________.4.极差是__________________,方差的计算公式_____________________________.标准差的计算公式:_________________________.【典例精析】例1 我市部分学生参加了2004年全国初中数学竞赛决赛,并取得优异成绩. 已知竞赛成绩分数都是整数,试题满分为140分,参赛学生的成绩分数分布情况如下:(1) 全市共有多少人参加本次数学竞赛决赛?最低分和最高分在什么分数范围?(2) 经竞赛组委会评定,竞赛成绩在60分以上 (含60分)的考生均可获得不同等级的奖励,求我市参加本次竞赛决赛考生的获奖比例;(3) 决赛成绩分数的中位数落在哪个分数段内?(4) 上表还提供了其他信息,例如:“没获奖的人数为105人”等等. 请你再写出两条此表提供的信息.例2 我国从2008年6月1日起执行“限塑令”.“限塑令”执行前,某校为了了解本校学生所在家庭使用塑料袋的数量情况,随机调查了10名学生所在家庭月使用塑料袋的数量,结果如下:(单位:只)65,70,85,75,85,79,74,91,81,95.(1)计算这10名学生所在家庭平均月使用塑料袋多少只?(2)“限塑令”执行后,家庭月使用塑料袋数量预计将减少50%.根据上面的计算结果,估计该校1 000名学生所在家庭月使用塑料袋可减少多少只?【中考演练】1.班长对全班学生爱吃哪几种水果作了民意调查.那么最终决定买什么水果,最值得关注的应该是统计调查数据的 .(中位数,平均数,众数)2.在航天知识竞赛中,包括甲同学在内的6名同学的平均分为74分,•其中甲同学考了89分,则除甲以外的5名同学的平均分为______分. 3.某次射击训练中,一小组的成绩如下表所示:若该小组的平均成绩为7.7环,则成绩为8环的人数是 .4.为了从甲、乙两名学生中选择一人参加电脑知识竞赛,•在相同条件下对他们的电脑知识进行了10次测验,成绩如下,(单位:分):请填写下表:5. 衡量一组数据波动大小的统计量是( )A .平均数B .众数C .中位数D .方差 6.某人今年1至5月的电话费数据如下(单位:元):60,68,78,66,80,这组数据的中位数是( )A .66B .67C .68D .787.甲乙两人在相同的条件下各射靶10次,他们的环数的方差是S 甲2=2.4,•S 乙2=3.2,则射击稳定性是( ) A .甲高 B .乙高 C .两人一样多 D .不能确定8. 李大伯承包了一个果园,种植了100棵樱桃树,今年已进入收获期,收获时,从中任选并采摘了10棵树的樱桃,分别称得每棵树所产樱桃的质量如下表:据调查,市场上今年樱桃的批发价是每千克15元,用所学的统计知识估计今年此果园樱桃的总产量与按批发价格销售樱桃的总收入分别是( ) A .200kg ,3000元 B .1900kg ,28 500元C .2000kg ,30 000元D .1850kg ,27 750元9.在“心系灾区”自愿捐款活动中,某班30名同学的捐款情况如下表:⑴ 问这个班级捐款总数是多少元? ⑵ 求这30名同学捐款的平均数.10.为响应国家要求中小学生每天锻练1小时的号召,某校开展了形式多样的“阳光体育运动”活动,小明对某班同学参加锻炼的情况进行了统计,并绘制了下面的图1和图2,请在图1中将“乒乓球”部分的图形补充完整.第二课时【考点精析】1. 总体是指_________________________,个体是指_____________________, 样本是指________________________,样本的个数叫做___________.2. 样本方差与标准差是衡量______________的量,其值越大,______越大.3. 频数是指________________________;频率是___________________________.4. 得到频数分布直方图的步骤_________________________________________.5. 数据的统计方法有____________________________________________. 【典例精析】例1:某校为了了解九年级学生体育测试成绩情况,以九年(1)班学生的体育测试成绩为样本,按A B C D ,,,四个等级进行统计,并将统计结果绘制如下两幅统计图,请你结合图中所给信息解答下列问题:(说明:A 级:90分~100分;B 级:75分~89分;C 级:60分~74分;D 级:60分以下)(1)求出D 级学生的人数占全班总人数的百分比;(2)求出扇形统计图中C 级所在的扇形圆心角的度数;乒乓球 足球其他兴趣爱好图1图2(3)该班学生体育测试成绩的中位数落在哪个等级内;(4)若该校九年级学生共有500人,请你估计这次考试中A级和B级的学生共有多少人?例 2 :从某市近期卖出的不同面积的商品房中随机抽取1000套进行统计,并根据结果绘出如图所示的统计图,请结合图中的信息,解答下列问题:(1)卖出面积为110~130㎡的商品房有套,并在右图中补全统计图;(2)从图中可知,卖出最多的商品房约占全部卖出的商品房的%;(3)假如你是房地产开发商,根据以上提供的信息,你会多建住房面积在什么范围内的住房?为什么?【中考演练】1.小明将2008年北京奥运会中国男子篮球队队员的年龄情况绘制成了如图(1)所示的条形统计图,则中国男子篮球队共有_____队员.(第1题) (第2题) (第3题)2.光明中学对图书室的书分成三类:A表示科学类,B表示科技类,C表示艺术类.•它们所占总数的百分比如图(2),该校有8 500册图书,则艺术类的书有____册.3.菱湖是全国著名的淡水鱼产地,•某养鱼专业户为了估计他承包的鱼塘里有多少条鱼(假设这个塘里养的是同一种鱼),先捕上100条做标记,然后放回塘里,过了一段时间,待带标记的鱼完全和塘里的鱼混合后,再捕上100条,发现其中带标记的鱼有10条,塘里大约有鱼______条.4. 红星村今年对农田秋季播种作如图(3)的规划,且只种植这三种农作物,•则该村种植油菜占种植所有农作物的______%.5.如图,是某市5月1日至5月7日每天最高、最低气温的折线统计图,在这7 天中,日温差最大的一天是()A.5月1日 B.5月2日C.5月3日 D.5月5日6.在一个扇形统计图中,有一扇形的圆心角为90°,则此扇形占整个圆的()A.30% B.25% C.15% D.10%7.如图是甲、乙两户居民家庭全年支出费用的扇形统计图.根据统计图,下面对全年食品支出费用判断正确的是()A.甲户比乙户多 B.乙户比甲户多C.甲、乙两户一样多 D.无法确定哪一户多8.某市教育部门对今年参加中考学生的视力进行了一次抽样调查,得到如图所示的频数分布直方图.(每组数据含最小值,不含最大值)(1)抽查的样本容量是多少?(2)若视力在4.9以上(含4.9)均属正常,求视力正常的学生占被统计人数的百分比是多少?(3)根据图中提供的信息,谈谈你的感想.第三课时概率知识【知识要点】1.__________________叫确定事件,________________叫不确定事件(或随机事件),__________________叫做必然事件,______________________叫做不可能事件. 2._________________________叫频率,_________________________叫概率.3.求概率的方法:(1)利用概率的定义直接求概率;(2)用树形图和________________求概率;(3)用_________________的方法估计一些随机事件发生的概率.【典例精析】例1 小明、小华用4张扑克牌(方块2,黑桃4,黑桃5,•梅花5)玩游戏,他俩将扑克牌洗匀后,背面朝上放置在桌面上,小明先抽,小华后抽,•抽出的牌不放回.(1)若小明恰好抽到了黑桃4.①请在下边框中绘制这种情况的树状图;②求小华抽出的牌面数字比4大的概率.(2)小明、小华约定:若小明抽到的牌面数字比小华的大,则小明胜;反之,•则小明负,你认为这个游戏是否公平?说明你的理由.例2:张红和王伟为了争取到一张观看奥运知识竞赛的入场券,他们各自设计了一个方案:张红的方案是:转动如图所示的转盘,如果指针停在阴影区域,则张红得到入场券;如果指针停在白色区域,则王伟得到入场券(转盘被等分成6个扇形.若指针停在边界处,则重新转动转盘).王伟的方案是:从一副扑克牌中取出方块1、2、3,将它们背面朝上重新洗牌后,从中摸出一张,记录下牌面数字后放回,洗匀后再摸出一张.若摸出两张牌面数字之和为奇数,则张红得到入场劵;若摸出两张牌面数字之和为偶数,则王伟得到入场券.(1)计算张红获得入场券的概率,并说明张红的方案是否公平?(2)用树状图(或列表法)列举王伟设计方案的所有情况,计算王伟获得入场券的概率,并说明王伟的方案是否公平?图(1)图(2)【中考演练】1.小明周末到外婆家,走到十字路口处(如图),•记不清前面哪条路通往外婆家,那么他能一次选对路的概率是________.2.在中考体育达标跳绳项目测试中,1min 跳160次为达标,•小敏记录了他预测时,1min 跳的次数分别为145,155,140,162,164,•则他在该次预测中达标的概率是_________.3.有一道四选一的选择题,某同学完全靠猜测获得结果,则这个同学答对的概率是________.4.在一所4000人的学校随机调查了100人,其中有76人上学之前吃早饭,•在这所学校里随便问一个人,上学之前吃过早餐的概率是________.5. 书架上有数学书3本,英语书2本,语文书5本,从中任意抽取一本是数学书的概率是( ) A .110B .35C .310D .156.下列事件你认为是必然事件的是( )A .中秋节的晚上总能看到圆圆的月亮;B .明天是晴天C .打开电视机,正在播广告;D .太阳总是从东方升起 7.下列说法正确的是( )A .“明天的降水概率为30%”是指明天下雨的可能性是30%B .连续抛一枚硬币50次,出现正面朝上的次数一定是25次C .连续三次掷一颗骰子都出现了奇数,则第四次出现的数一定是偶数D .某地发行一种福利彩票,中奖概率为1%,买这种彩票100张一定会中奖 8.图(2)是中国象棋棋盘的一部分,图中红方有两个马,黑方有三个卒子和一个炮,按照中国象棋中马的行走规则(马走日字,例如:按图(1)中的箭头方向走),红方的马现在走一步能吃到黑方棋子的概率是多少?9.某电脑公司现有A 、B 、C 三种型号的甲品牌电脑和D 、E•两种型号的乙品牌电脑.希望中学要从甲、乙两种品牌电脑中各选购一种型号的电脑.电脑单价A 型:6000元;A 型:6000元;B 型:4000元;C 型:2500元;D 型:4000元;E 型:2000元;(1)写出所有选购方案(利用树状图或列表方法表示);(2)如果(1)中各种选购方案被选中的可能性相同,那么A 型号电脑被选中的概率是多少?(3)现知希望中学购买甲、乙两种品牌电脑共36台,•恰好用了10万元人民币,其中甲品牌电脑为A型号电脑,求购买的A型号电脑有几台.【课外练习】1.在一次抽奖活动中,中奖概率是0.12,则不中奖的概率是.2.四张扑克牌的牌面如图①所示,将扑克牌洗均匀后,如图②背面朝上放置在桌面上.若随机抽取一张扑克牌,则牌面数字恰好为5的概率是_______.3.小明与父母从广州乘火车回梅州参观叶帅纪念馆,他们买到的火车票是同一排相邻的三个座位,那么小明恰好坐在父母中间的概率是.4.有大小、形状、颜色完全相同的5个乒乓球,每个球上分别标有数字1、2、3、4、5中的一个,将这5个球放入不透明的袋中搅匀,如果不放回的从中随机连续抽取两个,则这两个球上的数字之和为偶数的概率是.5.甲、乙两名同学在一次用频率去估计概率的实验中统计了某一结果出现的频率,绘出的统计图如图所示,则符合这一结果的实验可能是()A. 从一装有2个白球和1个红球的袋子中任取一球,取到红球的概率B. 掷一枚正六面体的骰子,出现1点的概率C. 抛一枚硬币,出现正面的概率D. 任意写一个整数,它能被2整除的概率6.随机掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,则这个骰子向上的一面点数是奇数的概率为()A.12B.13C.14D.157.在一个不透明的袋子中装有4个除颜色外完全相同的小球,其中白球1个,黄球1个,红球2个,摸出一个球不放回,再摸出一个球,两次都摸到红球的概率是()A.12B.13C.16D.18第四课时第五课时解题答题规范训练2011年中考复习统计与概率测试题一、选择题(每小题2分,共60分)1.(2010湖南郴州)要判断小刚的数学考试成绩是否稳定,那么需要知道他最近连续几次数学考试成绩的()A.方差 B.中位数C.平均数D.众数2.(2010湖南郴州)某居民小区开展节约用电活动,对该小区100户家庭的节电量情况进行了统计, 4月份与3月份相比,节电情况如下表:则4月份这.100...户节电量....的平均数、中位数、众数分别是()A. 35、35、30B. 25、30、20C. 36、35、30D. 36、30、30 3.(2010湖南怀化)某同学五天内每天完成家庭作业的时间(单位:小时)分别为2、2、3、2、1,则这组数据的众数和中位数分别为()A.2、2 B.2、3 C.2、1 D.3、14.(是()A.平均数B.众数C.中位数D.方差5.(2010湖北恩施自治州)某班随机抽取6名同学的一次地生测试成绩如下:82,95,82,76,76,82.数据中的众数和中位数分别是()A. 82,76B. 76,82C. 82,79D. 82,826.(2010北京)10名同学分成甲、乙两队进行篮球比赛,他们身高(单位:cm)如下表所示:设两队队员身高的平均数依次为x甲,x乙,身高的方差依次为22,s s乙甲,则下列关系中完全正确的是()A.x甲=x乙,22s s>乙甲B.x甲=x乙,22s s<乙甲C.x甲>x乙,22s s>乙甲D.x甲<x乙,22s s<乙甲7.(2010江西省南昌)某学生某月有零花钱a元,其支出情况如图所示,那么下列说法不正确...的是()A.该学生捐赠款为a6.0元 B.捐赠款所对应的圆心角为︒240C.捐赠款是购书款的2倍D.其他支出占10%8.(2010江苏常州)某一公司共有51名员工(包括经理),经理的工资高于其他员工的工资。

统计与概率《义务教育数学课程标准》解读

定的; (2)知道事件发生的可能性是有大小的; (3)对一些简单事件发生的可能性作出描述。
(一)三个学段内容的安排(第二学段)
1 数据的统计过程 (1)经历收集、整理、描述、分析数据的过程,计
算能运用计算器,设计简单的调查表; (2)认识条形统计图(1格表示多个单位),折线
图、扇形图,能根据需要选择合适的统计图,有 效地表示数据; (3)理解平均数、中位数、众数的意义,会求平均 数、中位数、众数,并解释结果的意义,能选择 适当的统计量,表示数据的不同特征;
(二)第三学段总的目标
1 从事数据统计的全过程(提出问题、确定样 本、收集数据、整理和描述数据、分析数 据、作出决策和预测),
2 感受抽样的必要性,体会用样本估计总体 的思想,掌握必要的数据处理的技能;
3 掌握统计与概率的一些基本的知识和方法, 用统计与概率解决一些实际问题;
(二)第三学段总的目标
统计全过程,能用计算器处理较为复杂的统 计数据; (2)感受抽样的必要性,指出总体、个体、 样本、样本容量. (3)会用扇形统计图表示数据;
(一)三个学段内容的安排(第三学段)
(4)理解加权平均数;根据具体问题选择合 适的统计量表示数据;
(5)会计算方差、极差、并会用它们表示数 据的离散程度;
(6)理解频数、频率、频数分布的意义和作 用,会用频数直方图、频数折线图;
四、统计与概率内容的处理特点
(一)三个学段内容的安排(第一学段)
1 对数据统计过程有初步的体验 (1)如对物体进行比较、排列、分类等活动;
(2)用计数、测量、实验等方法收集数据,并将数据记录 在统计表中;
(3)认识统计表和象形统计图、条形统计图; (4)会求简单数据的平均数(结果为整数) 2 不解定现象 (1)初步体验有些事件的发生是确定的,有些则是不确

北师大版数学六年级上册《总复习第4课时《统计与概率 》教学设计

北师大版数学六年级上册《总复习第4课时《统计与概率》教学设计一. 教材分析《统计与概率》是北师大版数学六年级上册总复习的第4课时,本节课主要引导学生回顾和巩固之前学过的统计和概率知识,包括数据的收集、整理、描述和分析,以及事件的概率计算等。

教材内容分为两部分:一部分是统计知识,包括图表的类型、制作方法以及数据分析;另一部分是概率知识,包括概率的定义、计算方法以及概率在实际问题中的应用。

二. 学情分析六年级的学生在之前的学习中已经接触过统计和概率的相关知识,对于数据的收集、整理、描述和分析以及事件的概率计算有一定的了解。

但部分学生可能对这些知识的理解不够深入,应用能力较弱。

因此,在教学过程中,教师需要关注学生的学习差异,引导学生通过自主学习、合作交流等方式,加深对统计和概率知识的理解,提高解决问题的能力。

三. 教学目标1.知识与技能:使学生掌握统计和概率的基本概念和方法,能够运用统计和概率知识解决实际问题。

2.过程与方法:培养学生收集、整理、分析数据的能力,提高学生运用概率知识解释和解决生活中的问题的能力。

3.情感态度与价值观:激发学生对统计和概率知识的兴趣,培养学生的创新思维和合作精神。

四. 教学重难点1.重点:统计和概率的基本概念和方法。

2.难点:概率的计算方法和在实际问题中的应用。

五. 教学方法1.情境教学法:通过生活实例引导学生理解统计和概率知识,提高学生的学习兴趣。

2.问题驱动法:教师提出问题,引导学生思考和探讨,激发学生的学习积极性。

3.合作学习法:学生进行小组讨论和合作交流,培养学生的团队协作能力。

4.实践操作法:让学生亲自动手操作,提高学生的实践能力。

六. 教学准备1.教师准备:熟悉教材内容,了解学生的学习情况,设计教学方案。

2.学生准备:回顾和预习统计和概率相关知识,准备相关学习资料。

七. 教学过程1.导入(5分钟)教师通过一个生活实例引入本节课的主题,激发学生的学习兴趣。

例如:某班有男生25人,女生20人,问该班男女比例是多少?2.呈现(10分钟)教师引导学生回顾和总结统计和概率的基本概念和方法,包括数据的收集、整理、描述和分析,以及事件的概率计算等。

《概率与统计》的认识及教学建议

《概率与统计》的认识及教学建议《概率与统计》是一门传统的数学学科,主要研究随机事件之间的相互关系以及数据的统计分析方法。

它是一门理论与实践相结合的学科,被广泛应用于各个领域,如自然科学、社会科学、工程技术等。

了解和掌握《概率与统计》对于培养学生的逻辑思维能力、数据分析能力和判断能力具有重要意义。

以下是对《概率与统计》的认识以及教学建议:一、认识《概率与统计》:1.概率与统计是数学的一门重要分支,是研究不确定事件规律性、数据分析的数学工具和方法;2.概率与统计是一门实证科学,其理论与方法都是通过观察和实验得出的;3.概率与统计不仅是一门理论学科,更是一个实用学科,它的应用范围广泛且实用性强;4.掌握《概率与统计》有助于培养学生的逻辑思维能力、数理统计能力和科学研究能力。

二、教学建议:1.强调概率与统计的实际应用:在教学中,应引入丰富的实际应用案例,让学生深刻认识到概率与统计的重要性和实用性,激发学生的学习兴趣;2.注重理论与实践相结合:在教学中,理论知识和实践应该相辅相成。

引导学生通过实际问题的分析与解决,不断丰富自己的概率与统计知识;3.培养学生的数据分析能力:概率与统计的核心是数据的分析和理解,培养学生的数据分析能力是教学的重要目标。

通过反复练习和实践,提高学生的数据处理和分析能力;4.注重学生的动手实践能力:概率与统计是一个实际应用的学科,学生应该通过实际操作和实验来巩固自己的知识。

通过编写简单的程序、使用统计软件等方式,提高学生的实践能力;5.培养学生的逻辑思维能力:概率与统计的理论推导过程需要一定的逻辑思维能力。

在教学中,可以通过引导学生思考和解决问题的方式,培养学生的逻辑思维能力;6.重视团队合作学习:概率与统计的学习中,通过小组合作学习的方式,增强学生的合作精神和解决问题的能力。

通过小组合作学习,培养学生的沟通能力和团队合作能力;7.注重创新能力的培养:概率与统计既是一门理论学科,又是一个实际应用学科,培养学生的创新能力对于其发展具有重要意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
: (1)第一学段(1-3年级) 比较、排列和分类
统计表、象形统计图与条形统计图
平均数 可能性
(2)第二学段(4-6年级)
折线统计图 平均数、中位数、众数 可能性
第一个 学段
(4年级上:条形 统计图 4年级 下:平均数与条 形统计图 5年 级上:可能性 5 年级下
(1年级下:分类 与整理 2年级 下:数据收集与 整理 3年级下: 复式统计表)
问题1:小学数学课程标准中“统计与 概率”的具体教学目标和要求是什么? 问题2:如何在小学数学“统计与概率” 领域开展探究,合理使用教材? 问题3:小学数学“统计与概率”中有哪 些经典案例及选择案例的依据?
问题1:小学数学课程标准中“统 计与概率”的具体教学目标和要 求是什么?
一、统计与概率的发展简史
二、小学数学课程标准中“统计与概率” 的具体教学目标和要求
一、统计与概率的发展简史
概率 论
数理 统计
概率论
卡丹诺 帕斯卡和费尔玛
惠更斯、《论机会游 戏的计算》 雅各· 贝努利、《推测 术》、“大数定律” 柯尔莫哥洛夫、《概 率论的基本概念》
中国
数理统计 西方
古典时期
近代时期 现代时期
二、小学数学课程标准中“统计与概率” 的具体教学目标和要求
2.经历统计过程,运用数据预测,作出合理推断。
3.例题和练习题的设计具有开放性。
4.渗透统计思想,让学生体会统计的意义。
(二)小学数学中“统计与概率”的 知识体系结构各部分内容的联系
教师不了解整个六年的数学教材体系,所以不能掌握 各年段同类知识之间的联系。教师如果仅就某一节课 或某一单元进行备课,往往会导致当前教学不能为后 续教学服务或是教学内容不连贯。那么要想解决这个 问题,数学教师必须吃透小学数学中“统计与概率”的 全部教材,才能做到“整体把握,让教材资源‘通’起来”。
目标
要求
总体目标
经历在实际问题中收集和处理数据、利用数据分 析问题、获取信息的过程,掌握统计与概率的基 础知识和基本技能。体会统计方法的意义,发展 数据分析观念,感受随机现象,获得分析问题和 解决问题的一些基本方法,体验解决问题方法的 多样性,发展创新意识。 积极参与数学活动, 对数学有好奇心和求知欲。体会数学的特点,了 解数学的价值。
第二个 学段
• 要求
问题2:如何在小学数学“统计与概 率”领域开展探究,合理使用教材?
(一)小学数学“统计与概率”教材编排特点 (二)小学数学中“统计与概率”的知识体系结构各部分内 容的联系 (三)读懂教材的前提是读懂学生
(四)如何合理使用教材
(一)小学数学“统计与概率”教材编排特点
1.挖掘生活素材,凸现统计的重要性。
1、小学数学自主探究式教学基本模式(统计与可能性案例)
视频..\课程资源\视频\3.mp4
2、探究式教学法是教育理论和实践的有机结合(统计) 3、要提供有效的教学策略,真正使学生能自主探究。
案例
4、拓展学生学习空间,带着问题,深入思考
案例
内容目标:
第一学段 (1-3年级)课程目标:
《数学课程标准》指出:“对数据的收集、整理、描述 和分析过程有所体验;掌握一些简单的数据处理技能; 初步感受不确定现象。”
体验 技能
感受
第二学段(4-6年级)课程目标:
《数学课程标准》指出:“经历收集、整理、描述和分析数 据的过程;掌握一些数据处理的技能;体验事件发生的等 可能性、游戏规则的公平性,能计算一些简单事件发生的 可能性。”
超链接
(三)读懂教材的前提是读懂学生。
1.学生统计思想的形成
2.学生对事件发生的可能性 的认识
(四)如何合理使用教材
(1)理性解读,让教材资源“活”起来 (2) 联系生活,让教材资源“实”起来 (3)有机补充,让教材资源“厚”起来 (4)课堂延伸,让教材资源“动”起来
案例 案例
案例
案例
问题3:小学数学“统计与概率”中有哪些经典案例及选择案例 的依据?
相关文档
最新文档