机电传动控制课件
合集下载
《机电传动控制》课件-3

• 本章将重点介绍异步交流电动机变频调速方法。
2.交流异步电动机变频调速中的转矩和功率
U1 E1 c1 f1m
• 如果保持U1不变,频率f1从额定值向下降低,磁通则增加,造成磁路过饱和, 使励磁电流增加。这将使电动机带负载能力降低,功率因数变坏,铁损增加,
电动机过热。反之如果频率从额定值向上升高,磁通将减小,允许使用扭矩 下降,电机利用率降低,有过流的危险。由异步电动机的转矩公式:
AC
交-交变频器的主要特点
①基于可逆整流原理,可引用直流技术; ②输出电流近似三相正弦,附加损耗小; ③需采用的元件数量较多; ④输出波形不能高于电网频率的1/3~1/2; ⑤拖动电机的价格便宜、转速较低。适合 大容量场合。
交-交变频器的应用场合
交-交变频器通常用于大功率(500kW或 1000kW以上)、低速(600r/min以下)的场 合,如轧钢机、球磨机、水泥回转窑等。
• 从载波信号和参考信号(或称基准信号)频率 之间的关系来看,可以分为同步或异步调 制两种;
• 从载波信号和参考信号的极性来看,有单 极和双极性调制两种。
(1)脉宽调制的方法
• ①等脉宽调制和正弦脉宽调制
• 等脉宽调制就是把电压型逆变器180°导通的方波控制分 割成若干个脉冲控制,这时控制信号往往是等腰三角波 (称为载波) Uc与可调的直流电压(称为调制或参考信号) Ur 相比较的方法产生。在Uc与Ur波形的交点处发出控制信号。
• 这种用正弦波与三角波相比较的方案为确定各矩形脉冲的宽度,就是 模拟电路实现SPWM的方法。
• 任何一高度是时间函数的圆滑曲线与它相交比较时,就能得到一组宽 度正比于该函数的脉冲序列。显然,改变正弦波与三角波幅值比(称 调制系数M=As/Ar)可以成比例地改变各脉冲的宽度。
2.交流异步电动机变频调速中的转矩和功率
U1 E1 c1 f1m
• 如果保持U1不变,频率f1从额定值向下降低,磁通则增加,造成磁路过饱和, 使励磁电流增加。这将使电动机带负载能力降低,功率因数变坏,铁损增加,
电动机过热。反之如果频率从额定值向上升高,磁通将减小,允许使用扭矩 下降,电机利用率降低,有过流的危险。由异步电动机的转矩公式:
AC
交-交变频器的主要特点
①基于可逆整流原理,可引用直流技术; ②输出电流近似三相正弦,附加损耗小; ③需采用的元件数量较多; ④输出波形不能高于电网频率的1/3~1/2; ⑤拖动电机的价格便宜、转速较低。适合 大容量场合。
交-交变频器的应用场合
交-交变频器通常用于大功率(500kW或 1000kW以上)、低速(600r/min以下)的场 合,如轧钢机、球磨机、水泥回转窑等。
• 从载波信号和参考信号(或称基准信号)频率 之间的关系来看,可以分为同步或异步调 制两种;
• 从载波信号和参考信号的极性来看,有单 极和双极性调制两种。
(1)脉宽调制的方法
• ①等脉宽调制和正弦脉宽调制
• 等脉宽调制就是把电压型逆变器180°导通的方波控制分 割成若干个脉冲控制,这时控制信号往往是等腰三角波 (称为载波) Uc与可调的直流电压(称为调制或参考信号) Ur 相比较的方法产生。在Uc与Ur波形的交点处发出控制信号。
• 这种用正弦波与三角波相比较的方案为确定各矩形脉冲的宽度,就是 模拟电路实现SPWM的方法。
• 任何一高度是时间函数的圆滑曲线与它相交比较时,就能得到一组宽 度正比于该函数的脉冲序列。显然,改变正弦波与三角波幅值比(称 调制系数M=As/Ar)可以成比例地改变各脉冲的宽度。
《机电传动及控制教学课件》

反馈控制原理广泛应用于各种控制系统中,能够提高系统的 控制精度和稳定性。
前馈控制原理
前馈控制原理是通过检测系统输入端的变化,提前对系统进行调节,以减小输出结果的变化。
前馈控制原理能够减少系统对干扰的敏感性,提高系统的响应速度和控制精度,但需要精确的检测和 计算,实现难度较大。
04
机电传动及控制的典型应 用
闭环控制系统
闭环控制系统包含反馈环节,能够对 输出结果进行检测,并将检测结果反 馈给输入端进行处理。
闭环控制系统能够自动调节输出结果 ,使其达到预期值,具有较好的抗干 扰能力和适应性,但结构较ห้องสมุดไป่ตู้杂,调 试和维护成本较高。
反馈控制原理
反馈控制原理是通过检测系统的输出结果,并将其与预期值 进行比较,根据比较结果调整输入信号,以达到控制输出的 目的。
根据传递方式,传动机构可分为齿轮 传动、带传动、链传动等类型。
合理的传动机构能够减小机械冲击, 提高系统稳定性。
执行机构
执行机构是实现机械能转换为实际工作效果的终端部件 。
执行机构的设计应注重精度、刚度和稳定性等方面的要 求。
执行机构的类型多样,如机械手、机器人、机床等,其 结构和功能取决于具体应用需求。
工业自动化
用于生产线上各种机械设备的驱动和控制,提高生产效率和产品质量 。
机器人技术
机器人的运动控制系统是机电传动及控制的重要应用领域,涉及机器 人的关节驱动、轨迹规划和控制等。
数控机床
数控机床的伺服系统是机电传动及控制的典型应用,用于实现高精度 和高效率的加工。
新能源与节能
风力发电、太阳能逆变器等新能源领域也广泛应用机电传动及控制技 术,实现能源的高效转换和利用。
实验要求
前馈控制原理
前馈控制原理是通过检测系统输入端的变化,提前对系统进行调节,以减小输出结果的变化。
前馈控制原理能够减少系统对干扰的敏感性,提高系统的响应速度和控制精度,但需要精确的检测和 计算,实现难度较大。
04
机电传动及控制的典型应 用
闭环控制系统
闭环控制系统包含反馈环节,能够对 输出结果进行检测,并将检测结果反 馈给输入端进行处理。
闭环控制系统能够自动调节输出结果 ,使其达到预期值,具有较好的抗干 扰能力和适应性,但结构较ห้องสมุดไป่ตู้杂,调 试和维护成本较高。
反馈控制原理
反馈控制原理是通过检测系统的输出结果,并将其与预期值 进行比较,根据比较结果调整输入信号,以达到控制输出的 目的。
根据传递方式,传动机构可分为齿轮 传动、带传动、链传动等类型。
合理的传动机构能够减小机械冲击, 提高系统稳定性。
执行机构
执行机构是实现机械能转换为实际工作效果的终端部件 。
执行机构的设计应注重精度、刚度和稳定性等方面的要 求。
执行机构的类型多样,如机械手、机器人、机床等,其 结构和功能取决于具体应用需求。
工业自动化
用于生产线上各种机械设备的驱动和控制,提高生产效率和产品质量 。
机器人技术
机器人的运动控制系统是机电传动及控制的重要应用领域,涉及机器 人的关节驱动、轨迹规划和控制等。
数控机床
数控机床的伺服系统是机电传动及控制的典型应用,用于实现高精度 和高效率的加工。
新能源与节能
风力发电、太阳能逆变器等新能源领域也广泛应用机电传动及控制技 术,实现能源的高效转换和利用。
实验要求
机电传动控制PPT课件

3.2 直流电动机的机械特性
3.2.1他励电动机的机械特性
机械特性是指电动机的电磁转矩与转速 的关系,即n=f(T)
T=TM+T0
T--电动机电磁转矩即机械特性转矩;
TM_--输出转矩; T0—空载转矩(工程计算时可忽略)
1、电原理图(图2-5)
由电路原理公式,推导出
U=E+IaRa;而E=Keφn;T=KtφIa整理出:
继电器-接触器控制、可编程序控制、电力电子 技术、检测技术、直流伺服、交流伺服、步进 电动机伺服等强电控制的内容。 突出应用性
第二章 机电传动的动力学基础
2.1机电传动的运动方程式(图1-1)
TM-TL=J dω/dt 式中:TM--电动机输出的转矩。
TL--单轴传动的负载转矩 J --转动惯量
注意:额定容量,对直流发电机来说,是指电刷 端输出的电功率,对直流电动机来说,是指轴上 输出的机械功率。
所以,直流发电机的额定容量为:
PN U N I N
而直流电动机的额定功率为:
PN U N I NN
3.1.3 直流电机的基本工作原理
以单个电枢绕组线圈为例说明 一、发电机(根据右手定则)
ω--传动系统的角速度
意义:1)当TM= TL时;
2)当TM> TL时;
3)当TM<TL时;
考虑:方向性问题1)拖动: 动: TM 与n转动相反。
TM
与n转动相同;2)制
当Tm>TL时,加速 当Tm<TL时,减速
Tm
Tm
n
n
当Tm=TL时,匀速(平衡) 3.Tm与TL的正反。 以转速的方向为准(n)
3.1直流电机的基本结构和原理
《机电传动控制》讲义(8)PPT课件

PM型电机的特点是励磁功 率小、效率高、造价便宜。
由于转子磁铁的磁化间距 受到限制,难于制造,故 步距角较大。
与VR型相比转矩大,但转 子惯量也较大。
制动力矩大。
混合型(HB型一Hybrid Type)。
❖ 这种电机转子上嵌有永久磁铁,故可以说是永磁型步进电机,但 从定子和转子的导磁体来看,又和可变磁阻型相似,所以是永磁 型和可变磁阻型相结合的一种形式。故称为混合型步进电机,其 结构如图3—12所示。
A
B'
C'
C
B
A'
A
B'
C'
C
B
A'
AB通电
BC通电
A
B'
C'
C
B
A'
CA通电
工作方式为三相双三 拍时,每通入一个电 脉冲,转子也是转
30,即 S = 30。
以上三种工作方式,三相双三拍和三相单双六 拍较三相单三拍稳定,因此较常采用。
步进电机脉冲环形分配方式
步进电机也可以制成四相、五相、六相或更多的相数, 以减小步距角并改善步进电机的性能。
一般情况下,静力矩应为摩擦负载的2-3倍内好,静力矩一旦 选定,电机的机座及长度便能确定下来(几何尺寸)
❖电流的选择
静力矩一样的电机,由于电流参数不同,其运行特性差别很 大,可依据矩频特性曲线图,判断电机的电流(参考驱动电 源、及驱动电压)。
❖力矩与功率换算
步进电机一般在较大范围内调速使用、其功率是变化的,一 般只用力矩来衡量,力矩与功率换算如下:
电机转子均匀分布着很多小齿,定子齿有三个励磁 绕阻,其几何轴线依次分别与转子齿轴线错开。
力矩: 电机一旦通电,在定转子间将产生磁场
由于转子磁铁的磁化间距 受到限制,难于制造,故 步距角较大。
与VR型相比转矩大,但转 子惯量也较大。
制动力矩大。
混合型(HB型一Hybrid Type)。
❖ 这种电机转子上嵌有永久磁铁,故可以说是永磁型步进电机,但 从定子和转子的导磁体来看,又和可变磁阻型相似,所以是永磁 型和可变磁阻型相结合的一种形式。故称为混合型步进电机,其 结构如图3—12所示。
A
B'
C'
C
B
A'
A
B'
C'
C
B
A'
AB通电
BC通电
A
B'
C'
C
B
A'
CA通电
工作方式为三相双三 拍时,每通入一个电 脉冲,转子也是转
30,即 S = 30。
以上三种工作方式,三相双三拍和三相单双六 拍较三相单三拍稳定,因此较常采用。
步进电机脉冲环形分配方式
步进电机也可以制成四相、五相、六相或更多的相数, 以减小步距角并改善步进电机的性能。
一般情况下,静力矩应为摩擦负载的2-3倍内好,静力矩一旦 选定,电机的机座及长度便能确定下来(几何尺寸)
❖电流的选择
静力矩一样的电机,由于电流参数不同,其运行特性差别很 大,可依据矩频特性曲线图,判断电机的电流(参考驱动电 源、及驱动电压)。
❖力矩与功率换算
步进电机一般在较大范围内调速使用、其功率是变化的,一 般只用力矩来衡量,力矩与功率换算如下:
电机转子均匀分布着很多小齿,定子齿有三个励磁 绕阻,其几何轴线依次分别与转子齿轴线错开。
力矩: 电机一旦通电,在定转子间将产生磁场
机电传动控制课件

解决这些矛盾,其核心问题就是减小启动电流 和增大启动转矩。
机电传动控制课件
4.4.1鼠笼式异步电动机的启动方法
有直接启动和降压启动
直接启动又称全压启动,就是将电动机 的定子绕组接在额定电压下启动。
额 启 定 动 电 电 流 流 IIsN t 3 44电 电 源 动 总 机 容 功 量 率
机电传动控制课件
启动电流越小越好。 (3)启动过程中,平滑性越好对生产机
械的冲击就越小;启动设备可靠性越高, 电路越简单,操作维护就越方便。
机电传动控制课件
异步电动机启动的瞬间,由于转子的转速为零, 在转子绕组中感应出很大的转子电势和转子电 流,从而引起很大的定子电流,一般启动电流 Ist可达额定电流IN的4~7倍;而启动时由于转 子功率因数很低,启动转矩却不大,一般 (0.8~1.5)。
4.3.2三相异步电动机的机械特性
三相异步电动机的机械特性也分为固有机械特 性和人为机械特性
图4.17 三相异步电动机的固有机械特性
机电传动控制课件
固有机械特性
(1)理想空载转速点 SN (亦称同步转速点)
n0 nN n0
(2)额定运行点
Tmax
K
U2 2 X 20
(3)临界工作点 (亦称最大转矩点)
mTmax/TN
(4)启动工作点
Tst
K
R2U2 R22 X220
机电传动控制课件
人为机械特性
人为地改变电动机的参数或外加电源电 压、电源频率,异步电动机的机械特性 将发生变化,这时得到的机械特性称为 异步电动机的人为机械特性。
得到人为机械特性常用的方法有:(1) 降低电动机定子电压(2)改变定子电源 频率(3)转子电路串电阻
旋转磁场
机电传动控制课件
4.4.1鼠笼式异步电动机的启动方法
有直接启动和降压启动
直接启动又称全压启动,就是将电动机 的定子绕组接在额定电压下启动。
额 启 定 动 电 电 流 流 IIsN t 3 44电 电 源 动 总 机 容 功 量 率
机电传动控制课件
启动电流越小越好。 (3)启动过程中,平滑性越好对生产机
械的冲击就越小;启动设备可靠性越高, 电路越简单,操作维护就越方便。
机电传动控制课件
异步电动机启动的瞬间,由于转子的转速为零, 在转子绕组中感应出很大的转子电势和转子电 流,从而引起很大的定子电流,一般启动电流 Ist可达额定电流IN的4~7倍;而启动时由于转 子功率因数很低,启动转矩却不大,一般 (0.8~1.5)。
4.3.2三相异步电动机的机械特性
三相异步电动机的机械特性也分为固有机械特 性和人为机械特性
图4.17 三相异步电动机的固有机械特性
机电传动控制课件
固有机械特性
(1)理想空载转速点 SN (亦称同步转速点)
n0 nN n0
(2)额定运行点
Tmax
K
U2 2 X 20
(3)临界工作点 (亦称最大转矩点)
mTmax/TN
(4)启动工作点
Tst
K
R2U2 R22 X220
机电传动控制课件
人为机械特性
人为地改变电动机的参数或外加电源电 压、电源频率,异步电动机的机械特性 将发生变化,这时得到的机械特性称为 异步电动机的人为机械特性。
得到人为机械特性常用的方法有:(1) 降低电动机定子电压(2)改变定子电源 频率(3)转子电路串电阻
旋转磁场
《机电传动控制教案》PPT课件

28
29
8.2.3 生产机械中常用的自动控制方法
自动化生产工艺过程中,工作状态的转换要求自动进行。因此出现了各种 各样的自动控制方法。
❖ 利用电动机主电路的电流来控制 如:交流异步电动机或直流他励电动机中,机械力与负载大小往往与电流成 正比。所以,机床进刀量的控制,机床夹紧机构的夹紧程度等,都可根据 电流来控制。
33
顺序控制 (程序控制)
2.按时间的自动控制
根据反映时间长短的元件的动作来实现控制。 1)时间继电器KT:是一种触点能延时通或断的控制电器。可以实现 从0.05s~几十小时的延时
得电延时型:(延时吸合) 线圈得电后,开始延时 延时时间到,触头动作。
按延时 性质分
失电延时型: (延时释放) 线圈得电时,触头立即动作 线圈失电时,开始延时,延 时到则触头复位。
+
2SB
1SB KM
KM
防止电磁铁线圈过压和触头烧损的控制线路
-
+
KM YA
-
C
KM
R
YAΒιβλιοθήκη +CVD-
KM
R
+ KM YA - + KM
YA -
R
R
电磁离合器的控制线路
启动时,C、R、VD使27电流上升速度加快。 关断时,C对YA反向放电,加快消磁。
• 要求三台电动机按一定顺序工作,1M先启动,2M在1M启动后才能启动,3M在2M启动后 立即自动启动,2M能实现点动工作,停止时同时停止,设计主电路与控制电路。
欠电流继电器
19
2.交流异步电动机正、反转控制线路 实现正、反转的办法:更换电动机供电相序。
正转 KM1
总停
正转按钮
29
8.2.3 生产机械中常用的自动控制方法
自动化生产工艺过程中,工作状态的转换要求自动进行。因此出现了各种 各样的自动控制方法。
❖ 利用电动机主电路的电流来控制 如:交流异步电动机或直流他励电动机中,机械力与负载大小往往与电流成 正比。所以,机床进刀量的控制,机床夹紧机构的夹紧程度等,都可根据 电流来控制。
33
顺序控制 (程序控制)
2.按时间的自动控制
根据反映时间长短的元件的动作来实现控制。 1)时间继电器KT:是一种触点能延时通或断的控制电器。可以实现 从0.05s~几十小时的延时
得电延时型:(延时吸合) 线圈得电后,开始延时 延时时间到,触头动作。
按延时 性质分
失电延时型: (延时释放) 线圈得电时,触头立即动作 线圈失电时,开始延时,延 时到则触头复位。
+
2SB
1SB KM
KM
防止电磁铁线圈过压和触头烧损的控制线路
-
+
KM YA
-
C
KM
R
YAΒιβλιοθήκη +CVD-
KM
R
+ KM YA - + KM
YA -
R
R
电磁离合器的控制线路
启动时,C、R、VD使27电流上升速度加快。 关断时,C对YA反向放电,加快消磁。
• 要求三台电动机按一定顺序工作,1M先启动,2M在1M启动后才能启动,3M在2M启动后 立即自动启动,2M能实现点动工作,停止时同时停止,设计主电路与控制电路。
欠电流继电器
19
2.交流异步电动机正、反转控制线路 实现正、反转的办法:更换电动机供电相序。
正转 KM1
总停
正转按钮
机电传动控制课件第1章
计算机控制:
微处理器取代模拟电路作为电动机控制 器,可使电路更简单、实现较复杂的控制 、无零点飘移、控制精度高、可提供人机 交互界面、能多机联网工作等
数字伺服控制:
伺服系统:
是使物体的位置、方位、状态等输出被控量能够跟 随输入目标值(或给定值)任意变化的自动控制系统。
当今世界伺服驱动的主流及发展方向是交流伺服系统,采 用嵌入式控制器的电动机数字交流伺服系统的出现,使机电 传动控制技术进入了信息化时代
第1章 概述
传动 ——运动的传递
(1)机械传动 (2〕流体传动
第1章 概述
1.1 基本概念:(什么是机电传动?)
生产机械组成: 工作机构、传动机构、 原动机、控制系统。
机电传动:原动机为电 动机时,由电动机通过 传动机构带动工作机构 进行工作。
机电传动系统
“机电传动”部分
包括电动机、电动机和运动部件相互联系的传 动机构及电气控制电路
课程的性质与任务
• 机电一体化技术的主要课程,是以驱动 系统为主导,以控制为主线,将元、器 件与控制系统有机结合的综合性课程。
• 通过本门课程的学习,希望同学们掌握 机电传动系统中主要运用到得元、器件 原理,了解机电传动系统的设计,尤其 是其控制电路设计的主要思路。
(1)成组拖动(初期):一台电动机拖动一根 天轴,由天轴通过皮带轮和皮带分别拖动各生产 机械,一旦电动机出了故障,成组生产机械停车。
(2)单电机拖动:一台电动机拖动一 台生产机械,但当一台生产机械的运动 部件较多时,机械传动机构仍十分复杂。
20世纪40-50年代:老式切削机床 现今:一些中小型通用机床,运动部件较少
“机电传动控制”部分
电梯
机电传动系统的任务