2019 2020广东省中山市八年级下期中考试数学试卷有答案

合集下载

江苏省2019-2020学年八年级数学下学期期中测试卷二(含答案)

江苏省2019-2020学年八年级数学下学期期中测试卷二(含答案)

江苏省2019-2020学年八年级下学期期中测试卷数 学一.选择题(本大题共6小题,每小题2分,共12分,每小题只有一个选项符合题意) 1.下列图形中,既是中心对称图形,又是轴对称图形的是( )A ..B ..C .D ..2.以下调查方式比较合理的是( )A .为了解一沓钞票中有没有假钞,采用抽样调查的方式B .为了解全区七年级学生节约用水的情况,采用抽样调查的方式C .为了解某省中学生爱好足球的情况,采用普查的方式D .为了解某市市民每天丢弃塑料袋数量的情况,采用普查的方式3.如图,在两个同心圆中,四条直径把大圆分成八等份,若往圆面投掷飞镖,则飞镖落在黑色区域的概率是( ) A .12B .13C .14D .16(第3题)(第4题)4.如图,在四边形ABCD 中,对角线AC ,BD 相交于点O ,添加下列条件后仍不能判定四边形ABCD 是平行四边形的是( ) A .//AD BC ,AO CO = B .AD BC =,AO OC = C .AD BC =,CD AB =D .AOD COD BOC S S S ∆∆∆==5.如图,已知菱形ABCD 的对角线交于点O ,6DB =,5AD =,则菱形ABCD 的面积为()A.20 B.24 C.30 D.36(第5题)(第6题)6.如图是由三个边长分别是2,3和x的正方形所组成的图形,若直线AB将它分成面积相等的两部分,则x的值是()A.1或4 B.2或3 C.3或4 D.1或2二.填空题(本大题共10小题,每小题2分,共12分,请将答案填写到答题卡对应的位置上)7.某校七年级为调查该年级400名学生一分钟跳绳次数成绩,打算从中随机抽取50人进行测试,则该问题中的样本容量为.8.3月12日是中国的植树节,如图是某种幼树在移植过程中成活率的统计图,估计该种幼树在此条件下移植成活的概率为(结果精确到0.01).9.李老师组织本班学生进行跳绳测试,根据学生测试的成绩,列出了如下表格,则成绩为“良”的频率为.成绩优良及格不及格频数10 22 15 310.在一次捐款活动中,某班50名同学都拿出自己的零花钱,有捐5元、10元、20元的,还有捐50元和100元的,如图所示的统计图反映了不同捐款数的人数比例,那么根据图中信息,该班同学平均每人捐款元.11.为了了解全区近3600名初三学生数学学习状况,随机抽取600名学生的测试成绩作为样本,将他们的成绩整理后分组情况如下:(每组数据含最低值,不含最高值) 分组(分) 40~5050~6060~7070~8080~9090~100频数 12 18 180 频率0.160.04根据上表信息,由此样本请你估计全区此次成绩在70~80分的人数大约是 .12.如图,平行四边形ABCD 中,60B ∠=︒,12BC =,10AB =,点E 在AD 上,且4AE =,点F 是AB 上一点,连接EF ,将线段EF 绕点E 逆时针旋转120︒得到EG ,连接GD ,则线段GD 长度的最小值为 .(第12题)(第13题) (第14题)13.如图,为估计池塘岸边A ,B ,两点间的距离,在池塘的一侧选取点O ,分别取OA ,OB 的中点M ,N ,测得40MN m =,则A ,B 两点间的距离是m .14.如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,60AOB ∠=︒,点E 、F 分别是BO 、BC 的中点,若6AB cm =,则BEF ∆的周长为 cm .15.如图,在平行四边形ABCD 中,8AD cm =,4AB cm =,AE 平分BAD ∠交BC 边于点E ,交DC 的延长线于点F ,则下列结论:①4CE cm =; ②线段AF 、BC 互相平分; ③AC DF ⊥.④DE AF ⊥;其中正确的结论是: (填序号).(第15题)(第16题)16.如图,矩形纸片ABCD ,4AD =,3AB =,如果点E 在边BC 上,将纸片沿AE 折叠,使点B 落在点F 处,联结FC ,当EFC ∆是直角三角形时,那么BE 的长为 . 三.解答题(本大题共11小题,共计88分)17.如图所示,已知ABC ∆的三个顶点的坐标分别为(2,3)A -,(6,0)B -,(1,0)C -. (1)请直接写出点A 关于x 轴、y 轴、原点对称的点的坐标分别是什么;(2)将ABC ∆绕坐标原点O 顺时针旋转90︒,不画出图形,直接写出点A 、B 、C 的对应点的坐标;(3)请直接写出:以A ,B ,C 为顶点的平行四边形 的第四个顶点D 的坐标.18.如图,E,F是四边形ABCD对角线AC上的两点,//=.AD BC,//DF BE,AE CF求证:(1)AFD CEB∆≅∆;(2)四边形ABCD是平行四边形.19.我区对七年级学生体育测试情况进行调查,从全区3600名学生中抽取了部分学生的成绩(成绩分为A,B,C三个层次)进行分析,绘制了频数分布表与频数分布直方图,请根据图表信息解答下列问题:分组频数频率C10 0.1B a0.5A40 b合计100 1(1)表中的a=,b=;(2)补全频数分布直方图;(3)如果成绩为A等级的同学属于优秀,请你估计全区七年级的有多少人达到优秀水平?20.在一个不透明的盒子里装有黑、白两种颜色的球共40只,这些球除颜色外其余完全相同.小颖做摸球实验,搅匀后,她从盒子里随机摸出一只球记下颜色后,再把球放回盒子中,不断重复上述过程,如表是实验中的一组统计数据:(1)请估计:当n很大时,摸到白球的频率将会接近(精确到0.01);(2)若从盒子里随机摸岀一只球,则摸到白球的概率的估计值为;(3)试估算盒子里白球有只;(4)某小组在“用频率估计概率”的试验中,符合这一结果的试验最有可能的是.A.从一副扑克牌中任意抽取一张,这张牌是“红色的”B.掷一枚质地均匀的硬币,落地时结果是“正面朝上”C.掷一个质地均匀的正六面体骰子(面的点数标记分别为1到6),落地时面朝上的点数小于521.某校开设武术、舞蹈、剪纸三项活动课程,为了了解学生对这三项活动课程的兴趣情况,随机抽取了部分学生进行调查(每人从中只能选一顶),并将调查结果绘制成下面两幅统计图,请你结合图中信息解答问题.(1)将条形统计图补充完整;(2)本次抽样调查的样本容量是;(3)在扇形统计图中,计算女生喜欢剪纸活动课程人数对应的圆心角度数;(4)已知该校有1200名学生,请结合数据简要分析该校学生对三项活动课程的兴趣情况.22.已知:如图,平行四边形ABCD各角的平分线分别相交于点E,F,G,H.求证:四边形EFGH是矩形.23.定义:一条对角线垂直平分另一条对角线的四边形叫做筝形,如图,筝形ABCD的对角线AC、BD相交于点O.且AC垂直平分BD.(1)请结合图形,写出筝形两种不同类型的性质:性质1:;性质2:.(2)若//AB CD,求证:四边形ABCD为菱形.24.已知如图平行四边形ABCD中,EF垂直平分对角线BD,交点为O,求证:四边形BFDE 是菱形.25.如图,ABC∆中,D是BC边上一点,E是AD的中点,过点A作BC的平行线交CE的延长线于F,且AF BD=,连接BF.(1)求证:D是BC的中点.(2)当ABC∆满足什么条件时,四边形AFBD是正方形,并说明理由.26.如图,在平行四边形ABCD中,以点A为圆心AB长为半径画弧交AD于点F,再分别以点B,F为圆心,大于12BF的长度为半径画弧,两弧交于点P;连接AP并延长交BC于点E,连接EF.(1)求证:四边形ABEF是菱形;(2)若60C∠=︒,43AE=,求菱形ABEF的面积.27.已知:正方形ABCD,45∠=︒.EAF(1)如图1,当点E、F分别在边BC、CD上,连接EF,求证:EF BE DF=+;童威同学是这样思考的,请你和他一起完成如下解答:证明:将ADF∆绕点A顺时针旋转∆≅∆.∆,所以ADF ABG90︒,得ABG(2)如图2,点M、N分别在边AB、CD上,且BN DM=.当点E、F分别在BM、DN 上,连接EF,探究三条线段EF、BE、DF之间满足的数量关系,并证明你的结论.(3)如图3,当点E、F分别在对角线BD、边CD上.若2FC=,则BE的长为.期中测试卷(解析版)一.选择题(本大题共6小题,每小题2分,共12分,每小题只有一个选项符合题意)1.下列图形中,既是中心对称图形,又是轴对称图形的是()A..B..C.D..【解答】A、不是轴对称图形,也不是中心对称图形.故不合题意.B、不是轴对称图形,是中心对称图形.故不合题意;C、既是轴对称图形,也是中心对称图形.故符合题意;D、是轴对称图形,不是中心对称图形.故不合题意.故选:C.2.以下调查方式比较合理的是()A.为了解一沓钞票中有没有假钞,采用抽样调查的方式B.为了解全区七年级学生节约用水的情况,采用抽样调查的方式C.为了解某省中学生爱好足球的情况,采用普查的方式D.为了解某市市民每天丢弃塑料袋数量的情况,采用普查的方式【解答】A .为了解一沓钞票中有没有假钞,采用全面调查的方式,故不符合题意;B .为了解全区七年级学生节约用水的情况,采用抽样调查的方式,故符合题意;C .为了解某省中学生爱好足球的情况,采用抽样调查的方式,故不符合题意;D .为了解某市市民每天丢弃塑料袋数量的情况,采用抽样调查的方式,故不符合题意;故选:B .3.如图,在两个同心圆中,四条直径把大圆分成八等份,若往圆面投掷飞镖,则飞镖落在黑色区域的概率是( )A .12B .13C .14D .16【解答】因为两个同心圆等分成八等份,飞镖落在每一个区域的机会是均等的,其中黑色区域的面积占了其中的四等份, 所以P (飞镖落在黑色区域)4182==. 故选:A .4.如图,在四边形ABCD 中,对角线AC ,BD 相交于点O ,添加下列条件后仍不能判定四边形ABCD 是平行四边形的是( )A .//AD BC ,AO CO =B .AD BC =,AO OC = C .AD BC =,CD AB = D .AOD COD BOC S S S ∆∆∆==【解答】若//AD BC Q ,ADO CBO ∴∠=∠,且AO CO =,AOD BOC ∠=∠,()AOD COB AAS ∴∆≅∆ AD BC ∴=,∴四边形ABCD 是平行四边形,故A 选项不合题意;若AD BC =,CD AB =,∴四边形ABCD 是平行四边形,故C 选项不合题意;若AOD COD BOC S S S ∆∆∆==, AO CO ∴=,BO DO =,∴四边形ABCD 是平行四边形,故D 选项不合题意;故选:B .5.如图,已知菱形ABCD 的对角线交于点O ,6DB =,5AD =,则菱形ABCD 的面积为( )A .20B .24C .30D .36【解答】Q 四边形ABCD 是菱形, 12AO CO AC ∴==,132BO DO BD ===,AC BD ⊥, 222594AO AD DO ∴=-=-=, 8AC ∴=,∴菱形ABCD 的面积1242AC BD =⨯⨯=, 故选:B .6.如图是由三个边长分别是2,3和x 的正方形所组成的图形,若直线AB 将它分成面积相等的两部分,则x 的值是( )A .1或4B .2或3C .3或4D .1或2【解答】如图,Q若直线AB将它分成面积相等的两部分,∴11(23)3(3)(23)321 22x x x x++⨯--=⨯++⨯-⨯g,解得1x=或2x=,故选:D.二.填空题(本大题共10小题,每小题2分,共12分,请将答案填写到答题卡对应的位置上)7.某校七年级为调查该年级400名学生一分钟跳绳次数成绩,打算从中随机抽取50人进行测试,则该问题中的样本容量为50 .【解答】从中随机抽取50人进行测试,则该问题中的样本容量为,在这个问题中,样本容量是50,故答案为:50.8.3月12日是中国的植树节,如图是某种幼树在移植过程中成活率的统计图,估计该种幼树在此条件下移植成活的概率为0.88 (结果精确到0.01).【解答】概率是大量重复实验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率∴这种幼树移植成活率的概率约为0.88.故答案为:0.88.9.李老师组织本班学生进行跳绳测试,根据学生测试的成绩,列出了如下表格,则成绩为“良”的频率为0.44 .成绩优良及格不及格频数10 22 15 3【解答】成绩为“良”的频率为220.44 1022153=+++;故答案为:0.44.10.在一次捐款活动中,某班50名同学都拿出自己的零花钱,有捐5元、10元、20元的,还有捐50元和100元的,如图所示的统计图反映了不同捐款数的人数比例,那么根据图中信息,该班同学平均每人捐款33 元.【解答】由统计图可得,捐款100元的学生有:5012%6⨯=(人),捐款10元的学生有:5041911610----=(人),该班同学平均每人捐款:5410102019501110063350⨯+⨯+⨯+⨯+⨯=(元),故答案为:33.11.为了了解全区近3600名初三学生数学学习状况,随机抽取600名学生的测试成绩作为样本,将他们的成绩整理后分组情况如下:(每组数据含最低值,不含最高值)分组(分)40~5050~6060~7070~8080~9090~100频数12 18 180频率0.16 0.04根据上表信息,由此样本请你估计全区此次成绩在70~80分的人数大约是1620 .【解答】由题意可得,样本中成绩在70~80分的人数为:60012181806000.166000.04270----⨯-⨯=,27036001620600⨯=,故答案为:1620.12.如图,平行四边形ABCD中,60B∠=︒,12BC=,10AB=,点E在AD上,且4AE=,点F是AB上一点,连接EF,将线段EF绕点E逆时针旋转120︒得到EG,连接GD,则线段GD 长度的最小值为 23 .【解答】将线段AE 绕点E 逆时针旋转120︒得到EH ,连接HG ,过点H 作HM AD ⊥, Q 四边形ABCD 是平行四边形,180A B ∴∠+∠=︒, 120A ∴∠=︒,Q 将线段AE 绕点E 逆时针旋转120︒得到EH ,将线段EF 绕点E 逆时针旋转120︒得到EG ,4EF EG ∴==,AE EH =,120AEH FEG ∠=∠=︒, 60DEH ∴∠=︒,AEF HEG ∠=∠,且EF EG =,AE EH =,()AEF HEG SAS ∴∆≅∆120A EHG AEH ∴∠=∠=︒=∠, //AD HG ∴,∴点G 的轨迹是过点H 且平行于AD 的直线, ∴当DG HG ⊥时,线段GD 长度有最小值,60HEM ∠=︒Q ,4EH =,HM AD ⊥,2EM ∴=,323MH EM ==,∴线段GD 长度的最小值为23,故答案为:23.13.如图,为估计池塘岸边A ,B ,两点间的距离,在池塘的一侧选取点O ,分别取OA ,OB 的中点M ,N ,测得40MN m =,则A ,B 两点间的距离是 80m .【解答】Q 点M 、N 是OA 、OB 的中点,MN ∴是OAB ∆的中位线,224080()AB MN m ∴==⨯=,故答案为:80.14.如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,60AOB ∠=︒,点E 、F 分别是BO 、BC 的中点,若6AB cm =,则BEF ∆的周长为 633+ cm .【解答】Q 矩形ABCD ,OA OB = 又60AOB ∠=︒Q AOB ∴∆是等边三角形. 6OA AB cm ∴==,6OC OB cm ∴==,12AC cm =, 2212663()BC cm ∴=-=,Q 点E 、F 分别是BO 、BC 的中点,12EF CO ∴=,12BE BO =,12BF BC =,BEF ∴∆的周长为BOC ∆周长的一半为:1(6663)6332++=+.故答案是:633+.15.如图,在平行四边形ABCD 中,8AD cm =,4AB cm =,AE 平分BAD ∠交BC 边于点E ,交DC 的延长线于点F ,则下列结论:①4CE cm =; ②线段AF 、BC 互相平分; ③AC DF ⊥.④DE AF ⊥;其中正确的结论是: ①②④ (填序号).【解答】Q 四边形ABCD 是平行四边形,AB CD ∴=,8BC AD cm ==,//AB DF ,//AD BC ,BEA EAD ∴∠=∠, AE Q 平分BAD ∠,BAE EAD ∴∠=∠, BEA BAE ∴∠=∠,4AB BE cm ∴==,844CE BC BE cm cm cm ∴=-=-=,①正确; 4BE CE cm ∴==, //AB DF Q , ABE FCE ∴∠=∠,在BAE ∆和CFE ∆中,ABE FCE BE CE BEA CEF ∠=∠⎧⎪=⎨⎪∠=∠⎩,()BAE CFE ASA ∴∆≅∆,EFC BAE ∴∠=∠,AB CF =,AE EF =,∴线段AF 、BC 互相平分,②正确;AB CF =Q ,AB CD =, 4CF CD ∴==, CE CF ∴=,只有60B ∠=︒时,60F ADF ∠=∠=︒,才能AC DF ⊥,而B ∠没有给出60︒的条件, AC ∴不一定垂直DF ,③错误; EFC BAE ∠=∠Q ,BAE EAD ∠=∠, EFC EAD ∴∠=∠,AE EF =Q ,DE AF ∴⊥,④正确;故答案为:①②④.16.如图,矩形纸片ABCD ,4AD =,3AB =,如果点E 在边BC 上,将纸片沿AE 折叠,使点B 落在点F 处,联结FC ,当EFC ∆是直角三角形时,那么BE 的长为 1.5或3 .【解答】分两种情况: ①当90EFC ∠=︒时,如图1, 90AFE B ∠=∠=︒Q ,90EFC ∠=︒,∴点A 、F 、C 共线,Q 矩形ABCD 的边4AD =,4BC AD ∴==,在Rt ABC ∆中,2222345AC AB BC =+=+=, 设BE x =,则4CE BC BE x =-=-,由翻折的性质得,3AF AB ==,EF BE x ==, 532CF AC AF ∴=-=-=,在Rt CEF ∆中,222EF CF CE +=, 即2222(4)x x +=-, 解得 1.5x =, 即 1.5BE =;②当90CEF ∠=︒时,如图2,由翻折的性质得,190452AEB AEF ∠=∠=⨯︒=︒,∴四边形ABEF 是正方形,3BE AB ∴==,综上所述,BE 的长为1.5或3. 故答案为:1.5或3.三.解答题(本大题共11小题,共计88分)17.如图所示,已知ABC ∆的三个顶点的坐标分别为(2,3)A -,(6,0)B -,(1,0)C -. (1)请直接写出点A 关于x 轴、y 轴、原点对称的点的坐标分别是什么;(2)将ABC ∆绕坐标原点O 顺时针旋转90︒,不画出图形,直接写出点A 、B 、C 的对应点的坐标;(3)请直接写出:以A,B,C为顶点的平行四边形的第四个顶点D的坐标.【解答】(1)点(2,3)--,A-关于x轴的对称点坐标为(2,3)点(2,3)A-关于y轴的对称点坐标为(2,3),点(2,3)-;A-关于原点的对称点坐标为(2,3)(2)点(2,3)-,A-的对应点的坐标为(3,2)点(6,0)B-的对应点坐标为(0,6),点(1,0)C-的对应点坐标为(0,1);(3)如图,点D的坐标为(7,3)--.-或(3,3)或(5,3)18.如图,E,F是四边形ABCD对角线AC上的两点,//=.DF BE,AE CFAD BC,//求证:(1)AFD CEB∆≅∆;(2)四边形ABCD是平行四边形.【解答】证明:(1)如图,//AD BC Q ,//DF BE ,12∴∠=∠,34∠=∠.又AE CF =,AE EF CF EF ∴+=+,即AF CE =.在AFD ∆与CEB ∆中, 1234AF CE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()AFD CEB ASA ∴∆≅∆;(2)由(1)知,AFD CEB ∆≅∆,则AD CB =. 又//AD BC Q ,∴四边形ABCD 是平行四边形.19.我区对七年级学生体育测试情况进行调查,从全区3600名学生中抽取了部分学生的成绩(成绩分为A ,B ,C 三个层次)进行分析,绘制了频数分布表与频数分布直方图,请根据图表信息解答下列问题: 分组 频数 频率 C100.1 B a0.5 A40 b合计1001(1)表中的a = 50 ,b = ; (2)补全频数分布直方图;(3)如果成绩为A等级的同学属于优秀,请你估计全区七年级的有多少人达到优秀水平?【解答】(1)本次调查的人数是:100.1100÷=,1000.550a=⨯=,401000.4b=÷=,故答案为:50,0.4;(2)由(1)知,B组人数为50,补全的频数分布直方图如右图所示;(3)36000.41440⨯=(人),答:全区七年级的有1440人达到优秀水平.20.在一个不透明的盒子里装有黑、白两种颜色的球共40只,这些球除颜色外其余完全相同.小颖做摸球实验,搅匀后,她从盒子里随机摸出一只球记下颜色后,再把球放回盒子中,不断重复上述过程,如表是实验中的一组统计数据:摸球的次数n100 200 300 500 800 1000 3000摸到白球的次数m70 124 190 325 538 660 2004摸到白球的频率mn0.70 0.62 0.633 0.65 0.6725 0.660 0.668(1)请估计:当n很大时,摸到白球的频率将会接近0.67 (精确到0.01);(2)若从盒子里随机摸岀一只球,则摸到白球的概率的估计值为;(3)试估算盒子里白球有只;(4)某小组在“用频率估计概率”的试验中,符合这一结果的试验最有可能的是.A.从一副扑克牌中任意抽取一张,这张牌是“红色的”B.掷一枚质地均匀的硬币,落地时结果是“正面朝上”C.掷一个质地均匀的正六面体骰子(面的点数标记分别为1到6),落地时面朝上的点数小于5【解答】(1)由表可知,当n很大时,摸到白球的频率将会接近0.67,故答案为:0.67;(2)若从盒子里随机摸岀一只球,则摸到白球的概率的估计值为0.67,故答案为:0.67;(3)试估算盒子里白球约有400.6726.827⨯=≈(只),故答案为:27;(4)A.从一副扑克牌中任意抽取一张,这张牌是“红色的”的概率为270.50.16 54==>,故此选项不符合题意;B.掷一枚质地均匀的硬币,落地时结果是“正面朝上”的概率为10.52=,不符合题意;C.掷一个质地均匀的正六面体骰子(面的点数标记分别为1到6),落地时面朝上的点数小于5的概率为40.676≈,符合题意;所以某小组在“用频率估计概率”的试验中,符合这一结果的试验最有可能的是C,故答案为:C.21.某校开设武术、舞蹈、剪纸三项活动课程,为了了解学生对这三项活动课程的兴趣情况,随机抽取了部分学生进行调查(每人从中只能选一顶),并将调查结果绘制成下面两幅统计图,请你结合图中信息解答问题.(1)将条形统计图补充完整;(2)本次抽样调查的样本容量是100 ;(3)在扇形统计图中,计算女生喜欢剪纸活动课程人数对应的圆心角度数;(4)已知该校有1200名学生,请结合数据简要分析该校学生对三项活动课程的兴趣情况.【解答】(1)被调查的女生人数为1020%50÷=人,则女生舞蹈类人数为50(1016)24-+=人,补全图形如下:(2)样本容量为5030614100+++=,故答案为:100;(3)扇形图中舞蹈类所占的圆心角度数为16360115.250︒⨯=︒, 故答案为:115.2;(4)估计全校学生中喜欢剪纸的人数是14161200360100+⨯=,全校学生中喜欢武术的有401200480100⨯=,故全校喜欢武术的有的学生多. 22.已知:如图,平行四边形ABCD 各角的平分线分别相交于点E ,F ,G ,H .求证:四边形EFGH 是矩形.【解答】证明:Q 四边形ABCD 是平行四边形,//AD BC ∴,180DAB ABC ∴∠+∠=︒,AH Q ,BH 分别平分DAB ∠与ABC ∠,12HAB DAB ∴∠=∠,12HBA ABC ∠=∠,11()1809022HAB HBA DAB ABC ∴∠+∠=∠+∠=⨯︒=︒,90H ∴∠=︒,同理90HEF F ∠=∠=︒,∴四边形EFGH 是矩形.23.定义:一条对角线垂直平分另一条对角线的四边形叫做筝形,如图,筝形ABCD 的对角线AC 、BD 相交于点O .且AC 垂直平分BD . (1)请结合图形,写出筝形两种不同类型的性质: 性质1: 对角线互相垂直 ;性质2: . (2)若//AB CD ,求证:四边形ABCD 为菱形.【解答】(1)由筝形的定义得:对角线互相垂直,即AC BD⊥;是轴对称图形,对称轴为AC;故答案为:对角线互相垂直,是轴对称图形;(2)证明:ACQ垂直平分BD,AB AD∴=,BO DO=,同理:BC DC=,//AB CDQ,ABO ODC∴∠=∠,在ABO∆和CDO∆中,ABO ODCBO DOAOB DOC∠=∠⎧⎪=⎨⎪∠=∠⎩,()AOB CDO ASA∴∆≅∆,AB CD∴=,AB CD BC AD∴===,∴四边形ABCD为菱形.24.已知如图平行四边形ABCD中,EF垂直平分对角线BD,交点为O,求证:四边形BFDE 是菱形.【解答】证明:Q在平行四边形ABCD中,O为对角线BD的中点,BO DO∴=,EDB FBO∠=∠,在DOE∆和BOF∆中,EDO FBO OD OBEOD FOB ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()DOE BOF ASA ∴∆≅∆; OE OF ∴=,又OB OD =Q ,∴四边形EBFD 是平行四边形,EF BD ⊥Q ,∴四边形BFDE 为菱形.25.如图,ABC ∆中,D 是BC 边上一点,E 是AD 的中点,过点A 作BC 的平行线交CE 的延长线于F ,且AF BD =,连接BF . (1)求证:D 是BC 的中点.(2)当ABC ∆满足什么条件时,四边形AFBD 是正方形,并说明理由.【解答】(1)证明://AF BC Q , AFE DCE ∴∠=∠, Q 点E 为AD 的中点,AE DE ∴=,在AEF ∆和DEC ∆中,AFE DCEAEF DEC AE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,()AEF DEC AAS ∴∆≅∆, AF CD ∴=,AF BD =Q ,CD BD ∴=,D ∴是BC 的中点;(2)若ABC ∆是等腰直角三角形时,四边形AFBD 是正方形,理由如下:AEF DEC ∆≅∆Q , AF CD ∴=,AF BD =Q ,CD BD ∴=;//AF BD Q ,AF BD =,∴四边形AFBD 是平行四边形,AB AC =Q ,BD CD =, 90ADB ∴∠=︒,AD BD =,∴平行四边形AFBD 是正方形.26.如图,在ABCD Y 中,以点A 为圆心AB 长为半径画弧交AD 于点F ,再分别以点B ,F 为圆心,大于12BF 的长度为半径画弧,两弧交于点P ;连接AP 并延长交BC 于点E ,连接EF .(1)求证:四边形ABEF 是菱形;(2)若60C ∠=︒,43AE =,求菱形ABEF 的面积.【解答】(1)EAB EAF ∠=∠Q , //AD BC Q ,EAF AEB EAB ∴∠=∠=∠, BE AB AF ∴==.//AF BE Q ,∴四边形ABEF 是平行四边形,AB BE =Q ,∴四边形ABEF 是菱形;(2)如图,连结BF ,交AE 于G . Q 四边形ABCD 是平行四边形,60BAD C ∴∠=∠=︒, Q 四边形ABEF 菱形,BF AE ∴⊥,23AG EG ==,30BAG FAG ∠=∠=︒,32BG FG AG ∴===, 4BF ∴=,∴菱形ABEF 的面积114348322AE BF =••=⨯⨯=. 27.已知:正方形ABCD ,45EAF ∠=︒.(1)如图1,当点E 、F 分别在边BC 、CD 上,连接EF ,求证:EF BE DF =+; 童威同学是这样思考的,请你和他一起完成如下解答:证明:将ADF ∆绕点A 顺时针旋转90︒,得ABG ∆,所以ADF ABG ∆≅∆.(2)如图2,点M 、N 分别在边AB 、CD 上,且BN DM =.当点E 、F 分别在BM 、DN 上,连接EF ,探究三条线段EF 、BE 、DF 之间满足的数量关系,并证明你的结论. (3)如图3,当点E 、F 分别在对角线BD 、边CD 上.若2FC =,则BE 的长为2 .【解答】(1)证明:将ADF ∆绕点A 顺时针旋转90︒,得ABG ∆, ADF ABG ∴∆≅∆AF AG ∴=,DF BG =,DAF BAG ∠=∠ Q 正方形ABCD90D BAD ABE ∴∠=∠=∠=︒,AB AD =90ABG D ∴∠=∠=︒,即G 、B 、C 在同一直线上 45EAF ∠=︒Q904545DAF BAE ∴∠+∠=︒-︒=︒45EAG BAG BAE DAF BAE ∴∠=∠+∠=∠+∠=︒即EAG EAF ∠=∠ 在EAG ∆与EAF ∆中,EA EA EAG EAF AG AF =⎧⎪∠=∠⎨⎪=⎩()EAG EAF SAS ∴∆≅∆ EG EF ∴=BE DF BE BG EG +=+=QEF BE DF ∴=+(2)222EF BE DF =+,证明如下:将ADF ∆绕点A 顺时针旋转90︒,得ABH ∆,(如图2)ADF ABH ∴∆≅∆AF AH ∴=,DF BH =,DAF BAH ∠=∠,ADF ABH ∠=∠45EAF ∠=︒Q904545DAF BAE ∴∠+∠=︒-︒=︒45EAH BAH BAE DAF BAE ∴∠=∠+∠=∠+∠=︒即EAH EAF ∠=∠ 在EAH ∆与EAF ∆中, EA EA EAH EAF AH AF =⎧⎪∠=∠⎨⎪=⎩()EAH EAF SAS ∴∆≅∆EH EF ∴=BN DM =Q ,//BN DM∴四边形BMDN 是平行四边形ABE MDN ∴∠=∠90EBH ABH ABE ADF MDN ADM ∴∠=∠+∠=∠+∠=∠=︒222EH BE BH ∴=+ 222EF BE DF ∴=+(3)作ADF ∆的外接圆⊙ O ,连接EF 、EC ,过点E 分别作EM CD ⊥于M ,EN BC ⊥于N (如图3) 90ADF ∠=︒QAF ∴为⊙O 直径BD Q 为正方形ABCD 对角线45EDF EAF ∴∠=∠=︒∴点E 在⊙ O 上90AEF ∴∠=︒AEF ∴∆为等腰直角三角形 AE EF ∴=在ABE ∆与CBE ∆中 AB CB ABE CBE BE BE =⎧⎪∠=∠⎨⎪=⎩()ABE CBE SAS ∴∆≅∆ AE CE ∴= CE EF ∴=EM CF ⊥Q ,2CF = 112CM CF ∴==EN BC ⊥Q ,90NCM ∠=︒∴四边形CMEN 是矩形1EN CM ∴== 45EBN ∠=︒Q 22BE EN ∴==。

2019-2020学年北京师大二附中西城实验学校八年级下学期期中数学试卷 (解析版)

2019-2020学年北京师大二附中西城实验学校八年级下学期期中数学试卷 (解析版)

2019-2020学年北京师大二附中西城实验学校八年级第二学期期中数学试卷一、选择题1.下列二次根式中,属于最简二次根式的是()A.B.C.D.2.下列每一组数据中的三个数值分别为三角形的三边长,不能构成直角三角形的是()A.3,4,5B.6,8,10C.,2,D.1,1,3.下列运算正确的是()A.﹣=B.=2C.﹣=D.=2﹣4.矩形具有而平行四边形不一定具有的性质是()A.对边相等B.对角相等C.对角线相等D.对角线互相平分5.在四边形ABCD中,对角线AC,BD互相平分,若添加一个条件使得四边形ABCD是菱形,则这个条件可以是()A.∠ABC=90°B.AB=BC C.AB=CD D.AB∥CD6.如图,菱形中,对角线AC、BD交于点O,E为AD边中点,菱形ABCD的周长为28,则OE的长等于()A.3.5B.4C.7D.147.如图,矩形ABCD的对角线AC、BD交于点O.AC=4,∠AOD=120°,则BC的长为()A.4B.4C.2D.28.为了迎接新年的到来,同学们做了许多拉花布置教室,准备举办新年晚会,大林搬来一架高为2.5米的木梯,准备把拉花挂到2.4米的墙上,开始梯脚与墙角的距离为1.5米,但高度不够.要想正好挂好拉花,梯脚应向前移动(人的高度忽略不计)()A.0.7米B.0.8米C.0.9米D.1.0米9.如图,在平面直角坐标系xOy中,菱形ABCD的顶点D在x轴上,边BC在y轴上,若点A的坐标为(12,13),则点C的坐标是()A.(0,﹣5)B.(0,﹣6)C.(0,﹣7)D.(0,﹣8)10.如图,四边形ABCD中,AD∥BC,∠B=60°,AB=AD=BO=4cm,OC=8cm,点M从B点出发,按从B→A→D→C的方向,沿四边形BADC的边以1cm/s的速度作匀速运动,运动到点C即停止.若运动的时间为t,△MOD的面积为y,则y关于t的函数图象大约是()A.B.C.D.二、填空题(每小题4分,共20分)11.使式子有意义的条件是.12.若+(n+1)2=0,则m+n的值为.13.已知菱形的两条对角线长分别是4和8,则菱形的面积为.14.如图,菱形ABCD中,AB=2,∠BAD=60°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是.15.在数学课上,老师提出如下问题:尺规作图:过直线外一点作已知直线的平行线.已知:直线l及其外一点A.求作:l的平行线,使它经过点A.小云的作法如下:(1)在直线l上任取一点B;(2)以B为圆心,BA长为半径作弧,交直线l于点C;(3)分别以A、C为圆心,BA长为半径作弧,两弧相交于点D;(4)作直线AD.直线AD即为所求.小云作图的依据是.三.计算题(共40分)16.计算:(1);(2)17.已知,,求x2﹣xy+y2的值.18.如图,E、F是平行四边形ABCD的对角线AC上的两点,AE=CF.求证:四边形DEBF是平行四边形.19.如图,在四边形ABCD中,∠B=90°,AB=BC=2,AD=1,CD=3.求∠DAB的度数.20.在矩形ABCD中,BE平分∠ABC交CD边于点E.点F在BC边上,且FE⊥AE.如图.(1)∠BEC=°;(2)在图中已有的三角形中,找到一对全等的三角形,并证明你的结论;21.在平行四边形ABCD中,分别作∠BAD与∠ABC的平分线分别交BC于点E,交AD 于点F连接EF.(1)补全图形;(2)判断四边形ABEF的形状,并证明你的结论.参考答案一、选择题(每小题4分,共40分)1.下列二次根式中,属于最简二次根式的是()A.B.C.D.【分析】根据最简二次根式的概念判断即可.解:A、=2,不是最简二次根式;B、是最简二次根式;C、=2,不是最简二次根式;D、=,不是最简二次根式;故选:B.2.下列每一组数据中的三个数值分别为三角形的三边长,不能构成直角三角形的是()A.3,4,5B.6,8,10C.,2,D.1,1,【分析】利用勾股定理的逆定理,只要验证每组数中的两个较小的数的平方和等于最大的边的平方,即可构成直角三角形;否则,则不能构成.解:A,32+42=25=52,故能构成直角三角形;B、62+82=100=102,故能构成直角三角形;C、()2+22=7,()2=5,因而()2+22≠()2,则不能构成直角三角形;D、12+12=2=()2,故能构成直角三角形;故选:C.3.下列运算正确的是()A.﹣=B.=2C.﹣=D.=2﹣【分析】根据二次根式的加减法对各选项进行逐一分析即可.解:A、与不是同类项,不能合并,故本选项错误;B、=,故本选项错误;C、﹣=2﹣=,故本选项正确;D、=﹣2,故本选项错误.故选:C.4.矩形具有而平行四边形不一定具有的性质是()A.对边相等B.对角相等C.对角线相等D.对角线互相平分【分析】矩形的对角线互相平分且相等,而平行四边形的对角线互相平分,不一定相等.解:矩形的对角线相等,而平行四边形的对角线不一定相等.故选:C.5.在四边形ABCD中,对角线AC,BD互相平分,若添加一个条件使得四边形ABCD是菱形,则这个条件可以是()A.∠ABC=90°B.AB=BC C.AB=CD D.AB∥CD【分析】对角线AC,BD互相平分,可得四边形ABCD是平行四边形,再由菱形、矩形的判定,即可求得答案.解:∵在四边形ABCD中,对角线AC,BD互相平分,∴四边形ABCD是平行四边形,当∠ABC=90°时,平行四边形ABCD是矩形.当AB=BC时,平行四边形ABCD是菱形.当AB=CD时,平行四边形ABCD还是平行四边形.当AB∥CD时,平行四边形ABCD还是平行四边形.故选:B.6.如图,菱形中,对角线AC、BD交于点O,E为AD边中点,菱形ABCD的周长为28,则OE的长等于()A.3.5B.4C.7D.14【分析】根据菱形的四条边都相等求出AB,再根据菱形的对角线互相平分可得OB=OD,然后判断出OE是△ABD的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半求解即可.解:∵菱形ABCD的周长为28,∴AB=28÷4=7,OB=OD,∵E为AD边中点,∴OE是△ABD的中位线,∴OE=AB=×7=3.5.故选:A.7.如图,矩形ABCD的对角线AC、BD交于点O.AC=4,∠AOD=120°,则BC的长为()A.4B.4C.2D.2【分析】利用矩形对角线的性质得到OA=OB.结合∠AOD=120°知道∠AOB=60°,则△AOB是等边三角形;最后在直角△ABC中,利用勾股定理来求BC的长度即可.解:如图,∵矩形ABCD的对角线AC,BD交于点O,AC=4,∴OA=OB=AC=2,又∵∠AOD=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴AB=OA=OB=2.∴在直角△ABC中,∠ABC=90°,AB=2,AC=4,∴BC===2故选:C.8.为了迎接新年的到来,同学们做了许多拉花布置教室,准备举办新年晚会,大林搬来一架高为2.5米的木梯,准备把拉花挂到2.4米的墙上,开始梯脚与墙角的距离为1.5米,但高度不够.要想正好挂好拉花,梯脚应向前移动(人的高度忽略不计)()A.0.7米B.0.8米C.0.9米D.1.0米【分析】仔细分析题意得:梯子、地面、墙刚好形成一直角三角形,梯高为斜边,利用勾股定理解此直角三角形即可.解:梯脚与墙角距离:=0.7(米),∵开始梯脚与墙角的距离为1.5米,∴要想正好挂好拉花,梯脚应向前移动:1.5﹣0.7=0.8(米).故选:B.9.如图,在平面直角坐标系xOy中,菱形ABCD的顶点D在x轴上,边BC在y轴上,若点A的坐标为(12,13),则点C的坐标是()A.(0,﹣5)B.(0,﹣6)C.(0,﹣7)D.(0,﹣8)【分析】在Rt△ODC中,利用勾股定理求出OC即可解决问题;解:∵A(12,13),∴OD=12,AD=13,∵四边形ABCD是菱形,∴CD=AD=13,在Rt△ODC中,OC===5,∴C(0,﹣5).故选:A.10.如图,四边形ABCD中,AD∥BC,∠B=60°,AB=AD=BO=4cm,OC=8cm,点M从B点出发,按从B→A→D→C的方向,沿四边形BADC的边以1cm/s的速度作匀速运动,运动到点C即停止.若运动的时间为t,△MOD的面积为y,则y关于t的函数图象大约是()A.B.C.D.【分析】根据平行四边形的判定与性质,可得OD=AB=4cm,根据∠DOC=∠B=60°,OC=2OD,可得△OCD的形状,根据勾股定理,可得DC长,根据三角形的面积公式,可得答案.解:M在BA上运动时,面积不变是4;M在AD上运动时,面积变小;M在DC上运动时,面积变大,在C点时,面积最大,最大面积是8.故选:B.二、填空题(每小题4分,共20分)11.使式子有意义的条件是x≥4.【分析】根据二次根式的被开方数为非负数,可得出关于x的不等式,解出即可得出答案.解:∵式子有意义,∴x﹣4≥0,解得:x≥4.故答案为:x≥4.12.若+(n+1)2=0,则m+n的值为2.【分析】首先根据非负数的性质列出关于m、n方程组,解方程组即可求出n、m的值,代入m+n进行计算即可.解:∵+(n+1)2=0,∴,解得m=3,n=﹣1,∴m+n=3+(﹣1)=2.故答案为:2.13.已知菱形的两条对角线长分别是4和8,则菱形的面积为16.【分析】直接利用菱形的面积等于对角线乘积的一半,进而得出答案.解:∵菱形的两条对角线长分别是4和8,∴菱形的面积为:×4×8=16.故答案为:16.14.如图,菱形ABCD中,AB=2,∠BAD=60°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是.【分析】根据轴对称最短问题作法首先求出P点的位置,再结合菱形的性质得出△AEE′为等边三角形,进而求出PE+PB的最小值.解:作E点关于AC对称点E′点,连接E′B,E′B与AC的交点即是P点,∵菱形ABCD中,AB=2,∠BAD=60°,E是AB的中点,∴AE′=AE=BE=1,∴△AEE′为等边三角形,∴∠AEE′=60°,∴∠E′EB=120°,∵BE=EE′,∴∠EE′B=30°,∴∠AE′B=90°,BE′==,∵PE+PB=BE′,∴PE+PB的最小值是:.故答案为:.15.在数学课上,老师提出如下问题:尺规作图:过直线外一点作已知直线的平行线.已知:直线l及其外一点A.求作:l的平行线,使它经过点A.小云的作法如下:(1)在直线l上任取一点B;(2)以B为圆心,BA长为半径作弧,交直线l于点C;(3)分别以A、C为圆心,BA长为半径作弧,两弧相交于点D;(4)作直线AD.直线AD即为所求.小云作图的依据是四条边相等的四边形为菱形,菱形的对边平行.【分析】利用作法可判定四边形ABCD为菱形,然后根据菱形的性质得到AD与l平行.解:由作法得BA=BC=AD=CD,所以四边形ABCD为菱形,所以AD∥BC.故答案为四条边相等的四边形为菱形,菱形的对边平行.三.计算题(共40分)16.计算:(1);(2)【分析】(1)先化简各二次根式,再合并同类二次根式即可得;(2)先化简各二次根式、将除法转化为乘法,再计算乘法即可得.解:(1)原式=3+2﹣2+4=5+2;(2)原式=2××=8.17.已知,,求x2﹣xy+y2的值.【分析】求出x+y,xy的值,再运用完全平方公式得出(x+y)2﹣3xy,代入求出即可.解:∵,,∴x+y=2,xy=7﹣5=2,∴x2﹣xy+y2=(x+y)2﹣3xy=(2)2﹣3×2=22.18.如图,E、F是平行四边形ABCD的对角线AC上的两点,AE=CF.求证:四边形DEBF 是平行四边形.【分析】连接BD,与AC交于点O,由平行四边形的对角线互相平分得到OA=OC,OB=OD,进而得到OE=OF,利用对角线互相平分的四边形是平行四边形即可得证.【解答】证明:∵连接BD,与AC交于点O,∵四边形ABCD为平行四边形,∴OA=OC,OB=OD,∵AE=CF,∴OA﹣AE=OC﹣CF,即OE=OF,∴四边形DEBF是平行四边形.19.如图,在四边形ABCD中,∠B=90°,AB=BC=2,AD=1,CD=3.求∠DAB的度数.【分析】由于∠B=90°,AB=BC=2,利用勾股定理可求AC,并可求∠BAC=45°,而CD=3,DA=1,易得AC2+DA2=CD2,可证△ACD是直角三角形,于是有∠CAD=90°,从而易求∠BAD.解:连接AC,∵∠B=90°,AB=BC=2,∴AC===2,∠BAC=45°,∵AD=1,CD=3,∴AD2+AC2==9,CD2=9,∴AD2+AC2=CD2,∴△ADC是直角三角形,∴∠DAC=90°,∴∠DAB=∠DAC+∠BAC=135°20.在矩形ABCD中,BE平分∠ABC交CD边于点E.点F在BC边上,且FE⊥AE.如图.(1)∠BEC=45°;(2)在图中已有的三角形中,找到一对全等的三角形,并证明你的结论;【分析】(1)根据矩形的性质得到∠ABC=∠BCD=90°,根据角平分线的定义得到∠EBC=45°,根据三角形内角和定理计算即可;(2)利用ASA证明△ADE≌△ECF.解:(1)∵四边形ABCD为矩形,∴∠ABC=∠BCD=90°,∵BE平分∠ABC,∴∠EBC=45°,∴∠BEC=45°,故答案为:45;(2)△ADE≌△ECF,理由如下:∵四边形ABCD是矩形,∴∠ABC=∠C=∠D=90°,AD=BC.∵FE⊥AE,∴∠AEF=90°.∴∠AED+∠FEC=180°﹣∠AEF=90°.∵∠AED+∠DAE=90°,∴∠FEC=∠EAD,∵BE平分∠ABC,∴∠EBC=∠ABC=45°.∴∠BEC=45°.∴∠EBC=∠BEC.∴BC=EC.∴AD=EC.在△ADE和△ECF中,,∴△ADE≌△ECF(ASA).21.在平行四边形ABCD中,分别作∠BAD与∠ABC的平分线分别交BC于点E,交AD 于点F连接EF.(1)补全图形;(2)判断四边形ABEF的形状,并证明你的结论.【分析】(1)根据角平分线的作法作出图形即可;(2)根据平行四边形的性质结合角平分线的性质证明AB=BE,AB=AF,然后可得四边形ABEF是菱形.解:(1)如图所示:(2)四边形ABEF是菱形,理由:∵AE平分∠BAD,∴∠BAE=∠FAE,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠FAE=∠AEB,∴∠BAE=∠AEB,∴AB=BE,同理:AB=AF,∴AF=BE,∵AD∥BC,∴四边形ABEF是平行四边形,∵AB=AF,∴四边形ABEF是菱形.。

2019-2020学年广东省珠海市八年级(上)期中数学试卷解析版

2019-2020学年广东省珠海市八年级(上)期中数学试卷解析版

2019-2020学年广东省珠海市八年级(上)期中数学试卷一、选择题(本大题10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,请把答题卡上对应题目所选的选项涂黑)1.(3分)下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为轴对称图形的是()A.B.C.D.2.(3分)下列图形中有稳定性的是()A.正方形B.长方形C.直角三角形D.平行四边形3.(3分)画△ABC中AB边上的高,下列画法中正确的是()A.B.C.D.4.(3分)一个三角形的两边长分别是3和7,则第三边长可能是()A.2B.3C.9D.105.(3分)要测量河两岸相对的两点A、B的距离,先在AB的垂线BF上取两点C、D,使CD=BC,再定出BF的垂线DE,使A、C、E在同一条直线上,如图,可以得到△EDC≌△ABC,所以ED=AB,因此测得ED的长就是AB的长,判定△EDC≌△ABC的理由是()A.SAS B.ASA C.SSS D.HL6.(3分)在三角形内部,到三角形三边距离相等的点是()A.三条中线的交点B.三条高线交点C.三边垂直平分线交点D.三个内角平分线交点7.(3分)如图,△ABC≌△EBD,AB=4cm,BD=7cm,则CE的长度为()A.4cm B.3cm C.2cm D.3.5cm8.(3分)如图所示,△ABC中,AC=AD=BD,∠DAC=80°,则∠B的度数是()A.40°B.35°C.25°D.20°9.(3分)如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD10.(3分)如图,直线m,n交于点B,点A是直线m上的点,在直线n上寻找一点C,使△ABC是等腰三角形,这样的C点有多少个?()A.2个B.3个C.4个D.5个二、填空题(本大题6小题,每小题4分,共24分)11.(4分)在平面直角坐标系中,点P(﹣8,7)关于x轴对称的点的坐标为.12.(4分)正五边形的每个内角为度.13.(4分)已知等腰三角形的一个角为20°,则它的底角的度数为.14.(4分)如图,△ABC中,点D、E分别是BC,AD的中点,且△ABC的面积为8,则阴影部分的面积是.15.(4分)如图,把一张纸片△ABC进行折叠,使点A落在BC上的点F处,折痕为DE,点D,点E分别在AB 和AC上,DE∥BC,若∠B=75°,则∠BDF的度数为.16.(4分)如图,△ABC是等边三角形,AD是BC边上的高,E是AC的中点,P是AD上的一个动点,当PC与PE的和最小时,∠CPE的度数是.三、解答题(一)(本大题3小题,每小题6分,共18分)17.(6分)一个多边形的内角和比它的外角和的3倍还多180度,求这个多边形的边数.18.(6分)如图,在△ABC中,D是AB上一点,E是AC上一点,BE与CD相交于点O,∠A=60°,∠ABE=15°,∠ACD=25°,求∠BEC和∠COE的度数.19.(6分)如图,点A、C、F、D在同一直线上,AB∥DE,AF=DC,∠B=∠E,求证:BC=EF.四、解答题(二)(本大题3小题,每小题7分,共21分)20.(7分)△ABC在平面直角坐标系中的位置如图所示,A、B、C三点在格点上.(1)作出△ABC关于y轴对称的△A1B1C1;(2)写出点C1关于x轴对称的点的坐标;(3)求△ABC的面积.21.(7分)已知,如图,BD是∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD,PN⊥CD,垂足分别是M、N.试说明:PM=PN.22.(7分)如图,△ABC和△EBD中,∠ABC=∠DBE=90°,AB=CB,BE=BD,连接AE,CD,AE与CD交于点M,AE与BC交于点N.(1)求证:AE=CD;(2)求证:AE⊥CD五、解答罳(三)(本大题3小题,每小题9分,共27分)23.(9分)如图,△ABC中,AD⊥BC且BD=DE,EF垂直平分AC,交AC于点F,交BC于点E,(1)若∠BAE=30°,求∠C的度数;(2)若AC=6cm,DC=5cm,求△ABC的周长.24.(9分)如图1,△ABC是边长为4cm的等边三角形,D是边AB上的一点,DQ⊥AB交BC于点Q,RQ⊥BC 交AC于点R,RP⊥AC交AB于点E,交QD的延长线于点P.(1)求证:△PQR是等边三角形;(2)如图2,当点E恰好与点D重合时,求出BE的长度.25.(9分)如图1,在平面直角坐标系中,OA=OB,点B的坐标为(1,0),AB=,点C为线段OB上的动点(点C不与O,B重合),连接AC,作AC⊥CD,且AC=CD,过点D作DE⊥x轴,垂足为点E.(1)求证:△ACO≌△CDE;(2)猜想△BDE的形状并证明结论;(3)如图2,当△BCD为等腰三角形时,求点D的坐标.2019-2020学年广东省珠海市八年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,请把答题卡上对应题目所选的选项涂黑)1.【解答】解:A、不是轴对称图形,故错误;B、不是轴对称图形,故错误;C、不是轴对称图形,故错误;D、是轴对称图形,故正确.故选:D.2.【解答】解:根据三角形具有稳定性,可得四个选项中只有直角三角形具有稳定性.故选:C.3.【解答】解:过点C作AB边的垂线,正确的是C.故选:C.4.【解答】解:设第三边长为x,由题意得:7﹣3<x<7+3,则4<x<10,故选:C.5.【解答】解:∵AB⊥BF,DE⊥BF,∴∠ABC=∠EDC=90°,在△EDC和△ABC中,,∴△EDC≌△ABC(ASA).故选:B.6.【解答】解:在三角形内部,到三角形三边距离相等的点是:三个内角平分线交点.故选:D.7.【解答】解:∵△ABC≌△EBD,∴AB=BE=4cm,BC=BD=7cm,∴EC=BC﹣BE=7﹣4=3cm,故选:B.8.【解答】解:∵AD=AC,∠DAC=80°,∴∠ADC==50°,又∵AD=BD,∴∠B=∠BAD,∵∠B+∠BAD=∠ADC,∴2∠B=∠ADC,∴∠B=∠ADC=25°,故选:C.9.【解答】解:A、添加∠A=∠D可利用AAS判定△ABC≌△DCB,故此选项不合题意;B、添加AB=DC可利用SAS定理判定△ABC≌△DCB,故此选项不合题意;C、添加∠ACB=∠DBC可利用ASA定理判定△ABC≌△DCB,故此选项不合题意;D、添加AC=BD不能判定△ABC≌△DCB,故此选项符合题意;故选:D.10.【解答】解:分两种情况:①当AB为腰长时,存在3个等腰三角形,如图1所示:其中AB=AC时,有1个;AB=BC时,有2个;②当AB为底边时,有1个,如图2所示:∴△ABC是等腰三角形时,这样的C点有4个.故选:C.二、填空题(本大题6小题,每小题4分,共24分)11.【解答】解点P(﹣8,7)关于x轴对称的点的坐标为(﹣8,﹣7),故答案为:(﹣8,﹣7).12.【解答】解:正五边形的内角和是:(5﹣2)×180°=540°,则每个内角是:540÷5=108°.故答案为:108.13.【解答】解:当20°的角为等腰三角形的顶角时,底角==80°;当20°的角为等腰三角形的底角时,其底角为20°,故它的底角的度数是80°或20°.故答案为:20°或80°.14.【解答】解:∵D、E分别是BC,AD的中点,∴S△AEC=S△ACD,S△ACD=S△ABC,∴S△AEC=S△ABC=×8=2.故答案为:2.15.【解答】解:∵DE∥BC,∴∠ADE=∠B=75°,又∵∠ADE=∠EDF=75°,∴∠BDF=180°﹣75°﹣75°=30°,故答案为30°.16.【解答】解:如连接BE,与AD交于点P,此时PE+PC最小,∵△ABC是等边三角形,AD⊥BC,∴PC=PB,∴PE+PC=PB+PE=BE,即BE就是PE+PC的最小值,∵△ABC是等边三角形,∴∠BCE=60°,∵BA=BC,AE=EC,∴BE⊥AC,∴∠BEC=90°,∴∠EBC=30°,∵PB=PC,∴∠PCB=∠PBC=30°,∴∠CPE=∠PBC+∠PCB=60°,故答案为60°.三、解答题(一)(本大题3小题,每小题6分,共18分)17.【解答】解:设这个多边形的边数为n,则内角和为180°(n﹣2),依题意得:180(n﹣2)=360×3+180,解得n=9.答:这个多边形的边数是9.18.【解答】解:在△ABE中,∵∠A=60°,∠ABE=15°,∴∠BEC=60°+15°=75°,∴∠COE=180°﹣∠BEC﹣∠ACD=180°﹣75°﹣25°=80°.19.【解答】证明:∵AF=DC,∴AF﹣FC=DC﹣FC,即AC=DF,∵AB∥DE,∴∠A=∠D,在△ACB和△DFE中,∴△ACB≌△DFE(AAS),∴BC=EF.四、解答题(二)(本大题3小题,每小题7分,共21分)20.【解答】解:(1)如图所示,△A1B1C1即为所求.(2)如图所示,点C1关于x轴对称的点的坐标为(﹣3,﹣2),故答案为:(﹣3,﹣2);(3)△ABC的面积为2×3﹣×1×2﹣×1×3﹣×1×2=.21.【解答】证明:在△ABD和△CBD中,AB=BC(已知),∠ABD=∠CBD(角平分线的性质),BD=BD(公共边),∴△ABD≌△CBD(SAS),∴∠ADB=∠CDB(全等三角形的对应角相等);∵PM⊥AD,PN⊥CD,∴PM=PN(角平分线的性质).22.【解答】证明:(1)∵∠ABC=∠DBE,∴∠ABC+∠CBE=∠DBE+∠CBE,即∠ABE=∠CBD,在△ABE和△CBD中,,∴△ABE≌△CBD(SAS),∴AE=CD.(2)∵△ABE≌△CBD,∴∠BAE=∠BCD,∵∠NMC=180°﹣∠BCD﹣∠CNM,∠ABC=180°﹣∠BAE﹣∠ANB,又∠CNM=∠ABC,∵∠ABC=90°,∴∠NMC=90°,∴AE⊥CD.五、解答罳(三)(本大题3小题,每小题9分,共27分)23.【解答】解:(1)∵AD⊥BC,BD=DE,EF垂直平分AC,∴AB=AE=EC,∴∠C=∠CAE,∵∠BAE=30°,∴∠AED=(180°﹣30°)=75°,∴∠C=∠AED=37.5°;(2)由(1)知:AE=EC=AB,∵BD=DE,∴AB+BD=EC+DE=DC,∴△ABC的周长=AB+BC+AC=AB+BD+DC+AC=2DC+AC=2×5+6=16(cm).24.【解答】(1)证明:如图1,∵△ABC为等边三角形,∴∠B=60°.又∵DQ⊥AB,∴∠B+∠BQD=∠BQD+∠PQR=90°,∴∠PQR=60°.同理,得∠PRQ=60°∴△PQR是等边三角形;(2)由(1)知,△PQR是等边三角形.则DQ=QR.如图2,∵在△BDQ与△RQC中,,∴△BDQ≌△RQC(AAS).同理,△RQC≌△ADR.∴△BDQ≌△RQC≌△ADR,∴DB=AR,∵RQ⊥BC,∠A=60°,∴2AR=AD,∴3DB=AB,∴DB=×4=(cm).25.【解答】(1)证明:∵AC⊥CD,∴∠ACD=90°,∴∠ACO+∠DCE=90°,∵作DE⊥x轴,AO⊥OB,∴∠DEC=∠COA=90°,∴∠CDE+∠DCE=90°,∴∠ACO=∠CDE,在△ACO与△CDE中,∴△ACO≌△CDE(AAS);(2)解:△BDE为等腰直角三角形,理由:∵△ACO≌△CDE,∴AO=CE,CO=DE,∵OA=CE,CO=DE,∵OA=OB,∴OB=CE,∴OC+CB=BE+CB,即OC=BE=DE,∵∠DEB=90°,∴△BDE是等腰直角三角形;(3)解:设D点的纵坐标为m,当△BCD为等腰三角形时,①BC=BD,∵△BDE是等腰直角三角形,∴DE=BE=m,∴BD=BC=m,∵CE=AO=1,∴m+m=1,∴m=﹣1,∴D(,﹣1);②CD=BD=m,∵OC=DE=m,∴AC=CD==m,解得:m=±1(舍去),③当CD=BC>CE(这种情况不存在0,综上所述,当△BCD为等腰三角形时,点D的坐标(,﹣1).。

2019-2020学年广东省揭阳市普宁市八年级下学期期末数学试卷 (解析版)

2019-2020学年广东省揭阳市普宁市八年级下学期期末数学试卷 (解析版)

2019-2020学年广东揭阳市普宁市八年级第二学期期末数学试卷一、选择题(共10小题).1.下列图案中是中心对称图形但不是轴对称图形的是()A.B.C.D.2.下列各式中,从左边到右边的变形是因式分解的是()A.(x+2y)(x﹣2y)=x2﹣4y2B.x2y﹣xy2﹣1=xy(x﹣y)﹣1C.a2﹣4ab+4b2=(a﹣2b)2D.ax+ay+a=a(x+y)3.不等式﹣2x+6>0的解集在数轴上表示正确的是()A.B.C.D.4.如图,在△ABC中,AB=3,BC=6,AC=4,点D,E分别是边AB,CB的中点,那么DE的长为()A.1.5B.2C.3D.45.如图是“一带一路”示意图,若记北京为A地,莫斯科为B地,雅典为C地,分别连接AB、AC、BC,形成一个三角形.若想建立一个货物中转仓,使其到A、B、C三地的距离相等,则中转仓的位置应选在()A.△ABC三条中线的交点处B.△ABC三条高所在直线的交点处C.△ABC三条角平分线的交点处D.△ABC三边的垂直平分线的交点处6.如图,▱ABCD中,点O为对角线AC、BD的交点,下列结论错误的是()A.AC=BD B.AB∥DC C.BO=DO D.∠ABC=∠CDA 7.对于实数a、b、c中,给出下列命题:①若a<b,则a﹣c<b﹣c;②若ab>c,则a>;③若﹣3a>2a,则a<0;④若a>b,则ac2>bc2.其中真命题有()A.①②B.①③C.②④D.③④8.下列各分式中,最简分式是()A.B.C.D.9.关于x的方程无解,则m的值为()A.﹣5B.﹣8C.﹣2D.510.如图,在△ABC中,∠B=30°,∠C=45°,AD平分∠BAC交BC于点D,DE⊥AB,垂足为E.若DE=1,则BC的长为()A.3B.+C.+2D.2+二、填空题(共7小题.)11.分解因式:2x3﹣18x=.12.分式方程+=1的解为.13.若一个正多边形的每一个外角都是30°,则这个正多边形的内角和等于度.14.用反证法证明“三角形的三个内角中,至少有一个大于或等于60°”时,应先假设.15.如图,将等腰直角△ABC沿BC方向平移得到△A1B1C1.若BC=3,△ABC与△A1B1C1重叠部分面积为2,则BB1=.16.如图,函数y1=﹣2x与y2=ax+3的图象相交于点A(m,2),则关于x的不等式﹣2x ≤ax+3的解集是.17.如图,在直角坐标系中,已知点A(﹣3,0),B(0,4),对△OAB连续作旋转变换,依次得到△1、△2、△3、△4…,则△2020的直角顶点的坐标为.三、解答题(一)(本大题3小题,每小题6分,共18分.)18.解不等式组,并把解集在数轴上表示出来.19.先化简,再求值:•﹣(+1),其中x=﹣6.20.在△ABC中,AB=AC,∠BAC=120°,AB边的垂直平分线交AB于D,交BC于E,求证:BE=CE.四、解答题(二)(本大题3小题,每小题8分,共24分.)21.已知平行四边形ABCD.(1)尺规作图:作∠BAD的平分线交直线BC于点E,交DC延长线于点F(要求:尺规作图,保留作图痕迹,不写作法);(2)在(1)的条件下,求证:CE=CF.22.某学习平台为提高学生的积极性,推出学习积分,所得积分可兑换礼品.某品牌的圆珠笔每支需要40积分,笔芯每支需要10积分.现积分超市推出以下两种活动:活动一:按兑换物品所需的积分打八折扣积分;活动二:兑换一支圆珠笔送两支笔芯.王叔叔有1000积分,想兑换这种圆珠笔10支,笔芯x支(x≥20).(1)请你分别写出活动一、活动二兑换所需的积分y1,y2与笔芯x(支)之间的函数关系式;(2)若只能选择一种兑换活动,请你帮助王叔叔判断选择哪种活动更优惠.23.如图,等边△ABC中,D、E分别为AB、AC的中点,延长BC至点F,使CF=BC,连接CD和EF.(1)求证:四边形DCFE是平行四边形;(2)求∠F的度数.五、解答题(三)(本大题2小题,每小题10分,共20分.)24.为防控“新型冠状病毒”,某超市分别用1600元、6000元购进两批防护口罩,第二批防护口罩每个进货价格比第一批贵2元,购进的数量是第一批的3倍.(1)第一批口罩进货单价多少元?(2)若这两次购进防护口罩过程中所产生其他费用不少于600元,那么该超市这两批防护口罩的平均购进单价至少为多少元?25.将▱OABC放在平面直角坐标系中,O为原点,点C(﹣6,0),点A在第一象限,OA =2,∠A=60°,AB与y轴交于点N.(1)如图①,求点A的坐标;(2)如图②,将平行四边形OABC绕点O逆时针旋转得到平行四边形OA′B′C',当点A的对应点A′落在y轴正半轴上时,求旋转角及点B的对应点B′的坐标;(3)将平行四边形OABC绕点A旋转得到平行四边形DAEF,使点B的对应点E落在直线OA上,请在图③中画出旋转后的图形,并直接写出OE、AB、BC之间的关系.参考答案一、选择题(本大题共10小题,每小题3分,共30分.)1.下列图案中是中心对称图形但不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.解:A、是中心对称图形,也是轴对称图形,不符合题意;B、不是中心对称图形,是轴对称图形,不符合题意;C、是中心对称图形,不是轴对称图形,符合题意;D、不是轴对称图形,也不是中心对称图形,不符合题意.故选:C.2.下列各式中,从左边到右边的变形是因式分解的是()A.(x+2y)(x﹣2y)=x2﹣4y2B.x2y﹣xy2﹣1=xy(x﹣y)﹣1C.a2﹣4ab+4b2=(a﹣2b)2D.ax+ay+a=a(x+y)【分析】根据因式分解的意义:把一个多项式化成几个整式积的形式,左边是一个多项式,右边是整式的积的形式,进行判断即可.解:根据因式分解的意义:把一个多项式化成几个整式积的形式,A、右边不是积的形式,故本选项错误;B、右边最后不是积的形式,故本选项错误;C、右边是(a﹣2b)(a﹣2b),故本选项正确;D、结果是a(x+y+1),故本选项错误.故选:C.3.不等式﹣2x+6>0的解集在数轴上表示正确的是()A.B.C.D.【分析】不等式﹣2x+6>0的解集是x<3,小于应向左画,且不包括3时,应用空心圆表示,不能用实心的原点表示3这一点,据此可求得不等式的解以及解集再数轴上的表示.解:不等式移项,得﹣2x>﹣6,系数化1,得x<3;∵不包括3时,应用圈表示,不能用实心的原点表示3这一点答案;故选:B.4.如图,在△ABC中,AB=3,BC=6,AC=4,点D,E分别是边AB,CB的中点,那么DE的长为()A.1.5B.2C.3D.4【分析】根据三角形中位线定理解答即可.解:∵点D,E分别是边AB,CB的中点,∴DE=AC=2,故选:B.5.如图是“一带一路”示意图,若记北京为A地,莫斯科为B地,雅典为C地,分别连接AB、AC、BC,形成一个三角形.若想建立一个货物中转仓,使其到A、B、C三地的距离相等,则中转仓的位置应选在()A.△ABC三条中线的交点处B.△ABC三条高所在直线的交点处C.△ABC三条角平分线的交点处D.△ABC三边的垂直平分线的交点处【分析】根据题意和线段垂直平分线的性质,可以解答本题.解:∵到A、B、C三地的距离相等,∴中转仓的位置应选在△ABC三边的垂直平分线的交点处,故选:D.6.如图,▱ABCD中,点O为对角线AC、BD的交点,下列结论错误的是()A.AC=BD B.AB∥DC C.BO=DO D.∠ABC=∠CDA 【分析】根据平行四边形的性质即可判断.解:∵四边形ABCD是平行四边形,∴AB∥CD,OB=OD,∠ABC=∠ADC,∴B、C、D正确,故选:A.7.对于实数a、b、c中,给出下列命题:①若a<b,则a﹣c<b﹣c;②若ab>c,则a>;③若﹣3a>2a,则a<0;④若a>b,则ac2>bc2.其中真命题有()A.①②B.①③C.②④D.③④【分析】根据不等式的性质对各命题的真假进行判断.解:若a<b,则a﹣c<b﹣c,所以①为真命题;若ab>c,当b>0时,则a>,所以②为假命题;若﹣3a>2a,则a<0,所以③为真命题;若a>b,当c≠0时,则ac2>bc2.所以④为假命题.故选:B.8.下列各分式中,最简分式是()A.B.C.D.【分析】最简分式是指分子和分母没有公因式.解:(A)原式=,故A不是最简分式;(B)原式==,故B不是最简分式;(C)原式=,故C是最简分式;(D)原式==,故D不是最简分式;故选:C.9.关于x的方程无解,则m的值为()A.﹣5B.﹣8C.﹣2D.5【分析】分式方程去分母转化为整式方程,由分式方程无解得到x+1=0,求出x的值,代入整式方程求出m的值即可.解:去分母得:3x﹣2=2x+2+m,由分式方程无解,得到x+1=0,即x=﹣1,代入整式方程得:﹣5=﹣2+2+m,解得:m=﹣5,故选:A.10.如图,在△ABC中,∠B=30°,∠C=45°,AD平分∠BAC交BC于点D,DE⊥AB,垂足为E.若DE=1,则BC的长为()A.3B.+C.+2D.2+【分析】如图.过点D作DF⊥AC于F.首先证明DE=DF=1,解直角三角形分别求出BD,DC即可解决问题.解:如图.过点D作DF⊥AC于F.∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF=1,在Rt△BED中,∵∠BED=90°,∠B=30°,∴BD=2DE=2,在Rt△DFC中,∵∠DFC=90°,∠C=45°,∴CD=DF=,∴BC=BD+CD=2+,故选:D.二、填空题(本大题共7小题,每小题4分,共28分.)11.分解因式:2x3﹣18x=2x(x+3)(x﹣3).【分析】先提取公因式2x,再对余下的多项式利用平方差公式继续分解.解:原式=2x(x2﹣9)=2x(x+3)(x﹣3),故答案为:2x(x+3)(x﹣3).12.分式方程+=1的解为x=1.【分析】根据解分式方程的步骤,即可解答.解:方程两边都乘以x﹣2,得:3﹣2x﹣2=x﹣2,解得:x=1,检验:当x=1时,x﹣2=1﹣2=﹣1≠0,所以分式方程的解为x=1,故答案为:x=1.13.若一个正多边形的每一个外角都是30°,则这个正多边形的内角和等于1800度.【分析】根据任何多边形的外角和都是360°,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.n边形的内角和是(n﹣2)•180°,把多边形的边数代入公式,就得到多边形的内角和.解:多边形的边数:360°÷30°=12,正多边形的内角和:(12﹣2)•180°=1800°.14.用反证法证明“三角形的三个内角中,至少有一个大于或等于60°”时,应先假设三角形的三个内角都小于60°.【分析】熟记反证法的步骤,直接填空即可.解:用反证法证明“三角形的三个内角中,至少有一个大于或等于60°”时,应先假设三角形的三个内角都小于60°.15.如图,将等腰直角△ABC沿BC方向平移得到△A1B1C1.若BC=3,△ABC与△A1B1C1重叠部分面积为2,则BB1=.【分析】重叠部分为等腰直角三角形,设B1C=2x,则B1C边上的高为x,根据重叠部分的面积列方程求x,再求BB1.解:设B1C=2x,根据等腰三角形的性质可知,重叠部分为等腰直角三角形,则B1C边上的高为x,∴×x×2x=2,解得x=(舍去负值),∴B1C=2,∴BB1=BC﹣B1C=.故答案为.16.如图,函数y1=﹣2x与y2=ax+3的图象相交于点A(m,2),则关于x的不等式﹣2x ≤ax+3的解集是x≥﹣1.【分析】首先利用待定系数法求出A点坐标,再以交点为分界,结合图象写出不等式﹣2x≤ax+3的解集即可.解:∵函数y1=﹣2x过点A(m,2),∴﹣2m=2,解得:m=﹣1,∴A(﹣1,2),∴不等式﹣2x<ax+3的解集为x≥﹣1.故答案为:x≥﹣1.17.如图,在直角坐标系中,已知点A(﹣3,0),B(0,4),对△OAB连续作旋转变换,依次得到△1、△2、△3、△4…,则△2020的直角顶点的坐标为(8076,0).【分析】根据勾股定理列式求出AB的长,再根据第四个三角形与第一个三角形的位置相同可知每三个三角形为一个循环组依次循环,然后求出一个循环组旋转前进的长度,再用2020除以3,根据商为673余数为1,可知第20,20个三角形的直角顶点为循环组的最后一个三角形的顶点,求出即可.解:∵点A(﹣3,0)、B(0,4),∴AB==5,由图可知,每三个三角形为一个循环组依次循环,一个循环组前进的长度为:4+5+3=12,∵2020÷3=673…1,∴△2020的直角顶点是第673个循环组的最后一个三角形的直角顶点,∵673×12=8076,∴△2019的直角顶点的坐标为(8076,0).故答案为(8076,0).三、解答题(一)(本大题3小题,每小题6分,共18分.)18.解不等式组,并把解集在数轴上表示出来.【分析】分别求出各不等式的解集,再求出其公共解集,并把解集在数轴上表示出来即可.解:,由①得x≤1,由②得x>﹣2,故不等式组的就为﹣2<x≤1.把解集在数轴上表示出来为:19.先化简,再求值:•﹣(+1),其中x=﹣6.【分析】根据分式的加减法和乘法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.解:•﹣(+1)===,当x=﹣6时,原式==.20.在△ABC中,AB=AC,∠BAC=120°,AB边的垂直平分线交AB于D,交BC于E,求证:BE=CE.【分析】先根据等腰三角形性质和三角形内角和定理求出∠B=∠C=30°,根据线段垂直平分线性质和等腰三角形性质求出∠BAD=30°,根据含30度角的直角三角形性质解答即可.【解答】证明:∵AB=AC,∠BAC=120°∴∠B=∠C=30°,又∵DE垂直平分AB∴EA=EB∴∠EAB=∠B=30°∴∠CAE=120°﹣30°=90°,∴在Rt△AEC中∵∠C=30°,∴AE=CE∴BE=CE.四、解答题(二)(本大题3小题,每小题8分,共24分.)21.已知平行四边形ABCD.(1)尺规作图:作∠BAD的平分线交直线BC于点E,交DC延长线于点F(要求:尺规作图,保留作图痕迹,不写作法);(2)在(1)的条件下,求证:CE=CF.【分析】(1)作∠BAD的平分线交直线BC于点E,交DC延长线于点F即可;(2)先根据平行四边形的性质得出AB∥DC,AD∥BC,故∠1=∠2,∠3=∠4.再由AF平分∠BAD得出∠1=∠3,故可得出∠2=∠4,据此可得出结论.解:(1)如图所示,AF即为所求;(2)∵四边形ABCD是平行四边形,∴AB∥DC,AD∥BC,∴∠1=∠2,∠3=∠4.∵AF平分∠BAD,∴∠1=∠3,∴∠2=∠4,∴CE=CF.22.某学习平台为提高学生的积极性,推出学习积分,所得积分可兑换礼品.某品牌的圆珠笔每支需要40积分,笔芯每支需要10积分.现积分超市推出以下两种活动:活动一:按兑换物品所需的积分打八折扣积分;活动二:兑换一支圆珠笔送两支笔芯.王叔叔有1000积分,想兑换这种圆珠笔10支,笔芯x支(x≥20).(1)请你分别写出活动一、活动二兑换所需的积分y1,y2与笔芯x(支)之间的函数关系式;(2)若只能选择一种兑换活动,请你帮助王叔叔判断选择哪种活动更优惠.【分析】(1)根据题意可以得到两种活动下兑换所需的积分y1,y2与笔芯x(支)之间的函数关系式;(2)再利用分类讨论的方法即可得到王叔叔选择哪种活动更优惠.解:由题意可得,y1=(40×10+10x)×0.8=8x+320,y2=40×10+10(x﹣10×2)=10x+200;(2)当y1=y2时,8x+320=10x+200,得x=60,当y1<y2时,8x+320<10x+200,得x>60,当y1>y2时,8x+320>10x+200,得x<60,当y1=1000时,8x+320=1000,得x=85,当y2=1000时,10x+200=1000,得x=80,∴当x=60时,选择活动一和活动二一样优惠,当60<x≤85时,选择活动一更优惠,当20≤x<60时,选择活动二更优惠.23.如图,等边△ABC中,D、E分别为AB、AC的中点,延长BC至点F,使CF=BC,连接CD和EF.(1)求证:四边形DCFE是平行四边形;(2)求∠F的度数.【分析】(1)直接利用三角形中位线定理得出四边形DCFE是平行四边形即可;(2)由平行四边形的性质得出CD∥FE,则∠F=∠BCD,由等边三角形的性质得出∠BCD=30°,即可得出∠F=30°.【解答】(1)证明:∵D、E分别为AB、AC的中点,∴DE为△ABC的中位线,∴DE∥BC,DE=BC,∵CF=BC,∴DE=CF,∵DE∥CF,∴四边形DCFE是平行四边形,(2)解:由(1)得:四边形DCFE是平行四边形,∴CD∥FE,∴∠F=∠BCD,∵△ABC是等边三角形,D是AB的中点,∴∠ACB=60°,CD平分∠ACB,∴∠BCD=30°,∴∠F=30°.五、解答题(三)(本大题2小题,每小题10分,共20分.)24.为防控“新型冠状病毒”,某超市分别用1600元、6000元购进两批防护口罩,第二批防护口罩每个进货价格比第一批贵2元,购进的数量是第一批的3倍.(1)第一批口罩进货单价多少元?(2)若这两次购进防护口罩过程中所产生其他费用不少于600元,那么该超市这两批防护口罩的平均购进单价至少为多少元?【分析】(1)设第一批口罩进货单价为x元,则第二批口罩进货单价为(x+2)元,根据数量=总价÷单价结合第二批购进的数量是第一批的3倍,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)根据数量=总价÷单价可求出第一批购进的数量,结合第二批购进的数量是第一批的3倍可求出第二批购进的数量,设该超市这两批防护口罩的平均购进单价为y元,根据总价=单价×数量结合这两次购进防护口罩过程中所产生其他费用不少于600元,即可得出关于y的一元一次不等式,解之取其中的最小值即可得出结论.解:(1)设第一批口罩进货单价为x元,则第二批口罩进货单价为(x+2)元,依题意,得:=3×,解得:x=8,经检验,x=8是原方程的解,且符合题意.答:第一批口罩进货单价为8元.(2)第一批购进数量为1600÷8=200(个),第二批购进数量为200×3=600(个).设该超市这两批防护口罩的平均购进单价为y元,依题意,得:(200+600)y≥1600+6000+600,解得:y≥10.25.答:该超市这两批防护口罩的平均购进单价至少为10.25元.25.将▱OABC放在平面直角坐标系中,O为原点,点C(﹣6,0),点A在第一象限,OA =2,∠A=60°,AB与y轴交于点N.(1)如图①,求点A的坐标;(2)如图②,将平行四边形OABC绕点O逆时针旋转得到平行四边形OA′B′C',当点A的对应点A′落在y轴正半轴上时,求旋转角及点B的对应点B′的坐标;(3)将平行四边形OABC绕点A旋转得到平行四边形DAEF,使点B的对应点E落在直线OA上,请在图③中画出旋转后的图形,并直接写出OE、AB、BC之间的关系.【分析】(1)利用含30度角的直角三角形的性质求出AN,ON即可得出结论;(2)先求出A'B'=6,∠OA'B'=60°,进而利用含30度角的直角三角形的性质求出B'E,AE即可得出结论;(3)分顺时针旋转和逆时针旋转两种情况,由旋转的性质可求解.解:(1)如图①,在Rt△AON中,∠A=60°,∴∠AON=30°,∵OA=2,∴AN=1,ON=,∴A(1,);(2)如图②,过点B'作B'E⊥y轴于E,∵C(﹣6,0),∴OC=6,∵四边形ABCO是平行四边形,∴AB=OC=6,当点A的对应点A′落在y轴正半轴上时,旋转角为∠AOA'=30°,由旋转知,A'B'=AB=6,OA'=OA=2,∠OA'B=∠A=60°,∴∠A'B'E=30°,∴A'E=3,B'E=3,∴OE=A'E﹣OA'=3﹣2=1,∴B'(﹣3,﹣1);(3)如图3,①当顺时针旋转时,∠BAE=120°,∵将平行四边形OABC绕点A旋转得到平行四边形DAEF,∴AB=AE,∵四边形ABCO是平行四边形,∴BC=OA,∴OE=OA+AE=BC+AB;①当逆时针旋转时,∠BAE'=60°,∵将平行四边形OABC绕点A旋转得到平行四边形DAE'F',∴AB=AE',∵四边形ABCO是平行四边形,∴BC=OA,∴OE=AE'﹣AO=AB﹣BC;综上所述:OE=BC+AB或OE=AB﹣BC.。

广东省广州市越秀区2019-2020学年八年级(上)期中数学试卷(含答案解析)

广东省广州市越秀区2019-2020学年八年级(上)期中数学试卷(含答案解析)

广东省广州市越秀区2019-2020学年八年级(上)期中试卷数学一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为轴对称图形的是()A.B.C.D.2.一个三角形的两边长为3和8,第三边长为奇数,则第三边长为()A.5或7 B.7或9 C.7 D.93.到三角形三边的距离相等的点是()A.三角形三条高的交点B.三角形三条中线的交点C.三角形三条角平分线的交点D.不存在这个点4.如图所示,已知∠1=∠2,若添加一个条件使△ABC≌△ADC,则添加错误的是()A.AB=AD B.∠B=∠D C.∠BCA=∠DCA D.BC=DC5.如图,把一个含30°角的直角三角尺的直角顶点放在直尺的一边上,如果∠1=20°,那么∠2的度数为()A.20°B.50°C.60°D.70°6.点(5,﹣2)关于x轴的对称点是()A.(5,﹣2)B.(5,2)C.(﹣5,2)D.(﹣5.﹣2)7.如图,在△ABC中,∠BDC=110°,点D是∠ABC和∠ACB角平分线的交点,则∠A=()A.40°B.50°C.60°D.70°8.点P在∠AOB的平分线上,点P到OA边的距离等于6,点Q是OB边上的任意一点,则下列选项正确的是()A.PQ>6 B.PQ≥6 C.PQ<6 D.PQ≤69.如图,等边△ABC的边长为1cm,D、E分别AB、AC是上的点,将△ADE沿直线DE折叠,点A落在点A′处,且点A′在△ABC外部,则阴影部分的周长为()cmA.1 B.2 C.3 D.410.如图,已知Rt△ABC中,∠C=90°,∠A=30°,在直线BC或AC上取一点P,使得△PAB是等腰三角形,则符合条件的P点有()A.5个B.6个C.7个D.8个二、填空题(本大题共6小题,每小题3分,共18分)11.如图,已知△OAB≌△OCD,∠A=30°,∠AOB=105°,则∠D=°.12.一个正多边形的每个内角都等于140°,那么它是正边形.13.等腰三角形中,已知两边的长分别是9和6,则周长为.14.如图:∠EAF=15°,AB=BC=CD,则∠ECD等于°.15.如图所示,点P为∠AOB内一点,分别作出点P关于OA、OB的对称点P1、P2.连接P1P2交OA于M,交OB于N,若P1P2=6,则△PMN的周长为.16.如图,在△ABC中,∠ABC,∠ACB的平分线交于点O,OD⊥BC于D,如果AB=25cm,BC=20cm,AC=15cm,且S△ABC=150cm2,那么OD=cm.三、解答题(本大题共有8小题,满分72分,解答要写出文字说明,证明过程或计算步骤)17.(6分)一个多边形的内角和比它的外角和的3倍少180°,求这个多边形的边数.18.(6分)如图,M,N分别是正五边形ABCDE的边BC,CD上的点,且BM=CN,AM交BN于点P.求证:△ABM≌△BCN.19.(8分)如图:(1)画出△ABC关于y轴对称的△A1B1C1;(2)在y轴上画出点P,使PA+PC最小;(3)求△ABC的面积.20.(8分)如图所示,在△ABC中,AB=AC=CD,AD=DB,求∠BAC的度数.21.(8分)如图,在△ABC中,AB=AC,BD⊥AC于D,CE⊥AB于E,BD、CE相交于F.求证:AF平分∠BAC.22.(10分)如图,在△ABC中,AB=AC,∠BAC=120°.(1)作线段AC的垂直平分线,分别交BC、AC于点D、E.(尺规作图,保留作图痕迹,不写作法)(2)连接AD,若DE=2cm,求BC的长.23.(12分)如图,在△ABC中,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F.(1)求证:∠EFA=90°﹣∠B;(2)若∠B=60°,求证:EF=DF.24.(14分)已知:在等腰三角形ABC中,AB=AC,AD⊥BC于点D,以AC为边作等边三角形ACE,直线BE交直线AD于点F,连接FC.(1)如图1,120°<∠BAC<180°,△ACE与△ABC在直线AC的异侧,且FC交AE于点M.①求证:∠FEA=∠FCA;②猜想线段FE,AD,FD之间的数量关系,并证明你的结论;(2)当60°<∠BAC<120°,且△ACE与△ABC在直线AC的异侧时,利用图2画出图形探究线段FE,AD,FD之间的数量关系,并直接写出你的结论.广东省广州市越秀区八年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,故错误;B、不是轴对称图形,故错误;C、不是轴对称图形,故错误;D、是轴对称图形,故正确.故选:D.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.一个三角形的两边长为3和8,第三边长为奇数,则第三边长为()A.5或7 B.7或9 C.7 D.9【分析】首先根据三角形的三边关系求得第三边的取值范围,再根据第三边又是奇数得到答案.【解答】解:根据三角形的三边关系,得第三边大于8﹣3=5,而小于两边之和8+3=11.又第三边应是奇数,则第三边等于7或9.故选:B.【点评】此类求三角形第三边的范围的题,实际上就是根据三角形三边关系定理列出不等式,然后解不等式即可.3.到三角形三边的距离相等的点是()A.三角形三条高的交点B.三角形三条中线的交点C.三角形三条角平分线的交点D.不存在这个点【分析】根据角平分线上的点到角的两边的距离相等的性质解答.【解答】解:到三角形三边的距离相等的点是:三角形三条角平分线的交点.故选:C.【点评】本题考查了角平分线的性质,熟记角平分线上的点到角的两边的距离相等是解题的关键.4.如图所示,已知∠1=∠2,若添加一个条件使△ABC≌△ADC,则添加错误的是()A.AB=AD B.∠B=∠D C.∠BCA=∠DCA D.BC=DC【分析】本题是开放题,要使△ABC≌△ADC,已知∠1=∠2,AC是公共边,具备了一组边和一组角对应相等,再结合选项一一论证即可.【解答】解:A、添加AB=AD,能根据SAS判定△ABC≌△ADC,故选项正确;B、添加∠B=∠D,能根据ASA判定△ABC≌△ADC,故选项正确;C、添加∠BCA=∠DCA,能根据ASA判定△ABC≌△ADC,故选项正确;D、添加BC=DC,SSA不能判定△ABC≌△ADC,故选项错误.故选:D.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.5.如图,把一个含30°角的直角三角尺的直角顶点放在直尺的一边上,如果∠1=20°,那么∠2的度数为()A.20°B.50°C.60°D.70°【分析】根据三角形的外角性质得出∠2=∠A+∠1,代入求出即可.【解答】解:∠2=∠A+∠1=30°+20°=50°,故选:B.【点评】本题考查了三角形的外角性质,能根据三角形的外角性质得出∠2=∠A+∠1是解此题的关键.6.点(5,﹣2)关于x轴的对称点是()A.(5,﹣2)B.(5,2)C.(﹣5,2)D.(﹣5.﹣2)【分析】关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.【解答】解:(5,﹣2)关于x轴的对称点为(5,2),故选:B.【点评】此题主要考查了关于x轴对称点的坐标,关键是掌握点的坐标的变化规律.7.如图,在△ABC中,∠BDC=110°,点D是∠ABC和∠ACB角平分线的交点,则∠A=()A.40°B.50°C.60°D.70°【分析】根据三角形内角和定理得到∠DBC+∠DCB=70°,根据角平分线的定义和三角形内角和定理计算即可.【解答】解:∵∠BDC=110°,∴∠DBC+∠DCB=180°﹣110°=70°,∵点D是∠ABC和∠ACB角平分线的交点,∴∠ABC=2∠DBC,∠ACB=2∠DCB,∴∠ABC+∠ACB=2×(∠DBC+2∠DCB)=140°,∴∠A=180°﹣140°=40°,故选:A.【点评】本题考查的是三角形内角和定理,掌握三角形内角和等于180°是解题的关键.8.点P在∠AOB的平分线上,点P到OA边的距离等于6,点Q是OB边上的任意一点,则下列选项正确的是()A.PQ>6 B.PQ≥6 C.PQ<6 D.PQ≤6【分析】根据角平分线上的点到角的两边距离相等可得点P到OB的距离为6,再根据垂线段最短解答.【解答】解:∵点P在∠AOB的平分线上,点P到OA边的距离等于6,∴点P到OB的距离为6,∵点Q是OB边上的任意一点,∴PQ≥6.故选:B.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,垂线段最短的性质,熟记性质是解题的关键.9.如图,等边△ABC的边长为1cm,D、E分别AB、AC是上的点,将△ADE沿直线DE折叠,点A落在点A′处,且点A′在△ABC外部,则阴影部分的周长为()cmA.1 B.2 C.3 D.4【分析】由题意得AE=A′E,AD=A′D,故阴影部分的周长可以转化为三角形ABC的周长.【解答】解:将△ADE沿直线DE折叠,点A落在点A′处,所以AD=A′D,AE=A′E.则阴影部分图形的周长等于BC+BD+CE+A′D+A′E,=BC+BD+CE+AD+AE,=BC+AB+AC,=3cm.故选:C.【点评】此题考查翻折问题,折叠问题的实质是“轴对称”,解题关键是找出经轴对称变换所得的等量关系.10.如图,已知Rt△ABC中,∠C=90°,∠A=30°,在直线BC或AC上取一点P,使得△PAB是等腰三角形,则符合条件的P点有()A.5个B.6个C.7个D.8个【分析】根据等腰三角形的判定定理,结合图形即可得到结论.【解答】解:如图,第1个点在CA延长线上,取一点P,使BA=AP;第2个点在CB延长线上,取一点P,使AB=PB;第3个点在AC延长线上,取一点P,使AB=PB;第4个点在BC延长线上,取一点P,使AB=PA;第5个点在AC延长线上,取一点P,使AB=AP;第6个点在AC上,取一点P,使∠PBA=∠PAB;∴符合条件的点P有6个点.故选:B.【点评】本题考查了等腰三角形的判定来解决实际问题,其关键是根据题意,画出符合实际条件的图形,再利用数学知识来求解.二、填空题(本大题共6小题,每小题3分,共18分)11.如图,已知△OAB≌△OCD,∠A=30°,∠AOB=105°,则∠D=45 °.【分析】根据三角形内角和定理求出∠B,根据全等三角形的对应角相等解答.【解答】解:∠B=180°﹣∠A﹣∠AOB=45°,∵△OAB≌△OCD,∴∠D=∠B=45°,故答案为:45.【点评】本题考查的是全等三角形的性质,三角形内角和定理,掌握全等三角形的对应角相等是解题的关键.12.一个正多边形的每个内角都等于140°,那么它是正九边形.【分析】首先根据多边形的内角与相邻的外角互补可得外角为180°﹣140°=40°,再利用外角和360°除以外角的度数可得边数.【解答】解:∵正多边形的每个内角都等于140°,∴多边形的外角为180°﹣140°=40°,∴多边形的边数为360°÷40°=9,故答案为:九.【点评】此题主要考查了多边形的内角与外角,关键是掌握外角和360°除以外角的度数可得边数.13.等腰三角形中,已知两边的长分别是9和6,则周长为21或24 .【分析】分9是底和腰两种情况进行讨论,利用三角形的三边关系来判断,再计算其周长即可.【解答】解:当边长为9的边为底时,三角形的三边长为:9、6、6,满足三角形的三边关系,此时其周长为21;当边长为9的边为腰时,三角形的三边长为:9、9、6,满足三角形的三边关系,此时其周长为24.故答案为:21或24.【点评】本题主要考查等腰三角形的性质和三角形的三边关系,注意分两种情况进行讨论是解题的关键.14.如图:∠EAF=15°,AB=BC=CD,则∠ECD等于45 °.【分析】根据等腰三角形的性质以及三角形的外角的性质即可解决问题;【解答】解:∵AB=BC,∴∠BAC=∠BCA=15°,∴∠CBD=∠A+∠BCA=30°,∵CB=CD,∴∠CBD=∠CDB=30°,∴∠ECD=∠A+∠CDB=15°+30°=45°,故答案为45.【点评】本题考查等腰三角形的性质、三角形的外角的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.15.如图所示,点P为∠AOB内一点,分别作出点P关于OA、OB的对称点P1、P2.连接P1P2交OA于M,交OB于N,若P1P2=6,则△PMN的周长为 6 .【分析】根据轴对称的性质可得P1M=PM,PN=P2N,然后求出△PMN的周长=P1P2.【解答】解:∵点P关于OA的对称点P1,∴OA是PP1的中垂线,∴P1M=PM,同理可得:P2N=PN,∵△PMN的周长=PM+PN+MN,∴△PMN的周长=P1M+MN+P2N=P1P2=6,故答案为:6.【点评】本题考查轴对称的性质,对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等.16.如图,在△ABC中,∠ABC,∠ACB的平分线交于点O,OD⊥BC于D,如果AB=25cm,BC=20cm,AC=15cm,且S△ABC=150cm2,那么OD= 5 cm.【分析】先连接OA ,过点O 分别作AC ,AB 的垂线,垂足分别为E 、F ,由角平分线的性质可知OD =OE =OF ,再根据S △ABC =S △AOB +S △BOC +S △AOC 进行解答即可.【解答】解:连接OA ,过点O 分别作AC ,AB 的垂线,垂足分别为E 、F ,∵∠ABC ,∠ACB 的平分线交于点O ,OD ⊥BC 于D ,∴OD =OE =OF ,∴S △ABC =S △AOB +S △BOC +S △AOC =AB •OF +BC •OD +AC •OE =OD (AB +BC +AC )=×OD ×(25+20+15)=150,解得OD =5cm .故答案为:5.【点评】本题考查的是三角形的面积及角平分线的性质,根据题意作出辅助线,把△ABC 的面积分为S △AOB +S △BOC +S △AOC 是解答此题的关键.三、解答题(本大题共有8小题,满分72分,解答要写出文字说明,证明过程或计算步骤)17.(6分)一个多边形的内角和比它的外角和的3倍少180°,求这个多边形的边数.【分析】多边形的外角和是360度,根据多边形的内角和比它的外角和的3倍少180°,即可得到多边形的内角和的度数.根据多边形的内角和定理即可求得多边形的边数.【解答】解:设这个多边形的边数是n ,依题意得(n ﹣2)×180°=3×360°﹣180°,n ﹣2=6﹣1,n =7.∴这个多边形的边数是7.【点评】本题考查了多边形的内角和与外角和定理,任意多边形的外角和都是360°,与边数无关.18.(6分)如图,M ,N 分别是正五边形ABCDE 的边BC ,CD 上的点,且BM =CN ,AM 交BN 于点P .求证:△ABM ≌△BCN .【分析】利用正五边形的性质得出AB =BC ,∠ABM =∠C ,再利用全等三角形的判定即可证明△ABM ≌△BCN .【解答】证明:∵五边形ABCDE 是正五边形,∴AB =BC ,∠ABM =∠C ,∴在△ABM 和△BCN 中,∴△ABM ≌△BCN (SAS ).【点评】此题主要考查了全等三角形的判定以及正五边形的性质等知识,熟练掌握全等三角形的判定方法是解题关键.19.(8分)如图:(1)画出△ABC 关于y 轴对称的△A 1B 1C 1;(2)在y 轴上画出点P ,使PA +PC 最小;(3)求△ABC 的面积.【分析】(1)分别作出点A 、B 、C 关于y 轴对称的点A 1,B 1,C 1,然后顺次连接,并写出坐标.(2)连接AC 1交y 轴于点P ,则PA +PC 最小,点P 即为所求.(3)利用△ABC 所在梯形面积减去周围三角形面积,进而得出答案.【解答】解:(1)如图所示,△A 1B 1C 1即为所求;(2)如图所示,点P 即为所求;(3)如图所示,S △ABC =S 梯形BCDE ﹣S △ACD ﹣S △ABE=﹣﹣=12﹣2.5﹣3=6.5.【点评】本题考查轴对称变换、三角形的面积、两点之间线段最短等知识,解答本题的关键是根据网格结构作出对应点的位置,然后顺次连接.20.(8分)如图所示,在△ABC中,AB=AC=CD,AD=DB,求∠BAC的度数.【分析】AB=AC=CD,AD=BD可得∠B=∠C=∠BAD,∠CDA=∠CAD,且利用外角可得∠CDA=2∠B =2∠C,在△ACD中利用三角形内角和可求得∠C,进一步可求得∠CAC,再利用角的和差求得∠BAC.【解答】解:∵AB=AC,DA=DB,∴∠B=∠C=∠BAD,∵CA=CD,∴∠CDA=∠CAD,又∠CDA=∠B+∠BAD=2∠B=2∠C,∴∠CAD=2∠C,在△ACD中,∠C+∠CDA+∠CAD=180°,∴2∠C+2∠C+∠C=180°,∴∠C=36°,∴∠BAD=36°,∠CAD=2∠C=72°,∴∠BAC=∠BAD+∠CAD=36°+72°=108°.【点评】本题主要考查等腰三角形的性质及外角性质、三角形内角和定理,由条件得到2∠C+2∠C+∠C=180°求出∠C是解题的关键,注意外角性质及三角形内角和定理的应用.21.(8分)如图,在△ABC中,AB=AC,BD⊥AC于D,CE⊥AB于E,BD、CE相交于F.求证:AF平分∠BAC.【分析】先根据AB=AC,可得∠ABC=∠ACB,再由垂直,可得90°的角,在△BCE和△BCD中,利用内角和为180°,可分别求∠BCE和∠DBC,利用等量减等量差相等,可得FB=FC,再易证△ABF ≌△ACF,从而证出AF平分∠BAC.【解答】证明:∵AB=AC(已知),∴∠ABC=∠ACB(等边对等角).∵BD、CE分别是高,∴BD⊥AC,CE⊥AB(高的定义).∴∠CEB=∠BDC=90°.∴∠ECB=90°﹣∠ABC,∠DBC=90°﹣∠ACB.∴∠ECB=∠DBC(等量代换).∴FB=FC(等角对等边),在△ABF和△ACF中,,∴△ABF≌△ACF(SSS),∴∠BAF=∠CAF(全等三角形对应角相等),∴AF平分∠BAC.【点评】本题考查了等腰三角形的性质及三角形的内角和定理;等量减等量差相等的利用是解答本题的关键.22.(10分)如图,在△ABC中,AB=AC,∠BAC=120°.(1)作线段AC的垂直平分线,分别交BC、AC于点D、E.(尺规作图,保留作图痕迹,不写作法)(2)连接AD,若DE=2cm,求BC的长.【分析】(1)利用尺规作出线段AC的垂直平分线即可;(2)先求出AD=CD,得出∠DAC=∠C=30°,求出AD=CD=2DE=10,再证∠BAD=90°,得出BD =2AD=20,即可求出BC的长.【解答】解:(1)线段AC的垂直平分线如图所示:(2)∵AB=AC,∠BAC=120°,∴∠C=∠B=30°,∵DE是AC的垂直平分线,∴AD=CD,∴∠DAC=∠C=30°,∴AD=CD=2DE=2×2=4cm,∠BAD=120°﹣30°=90°,∴BD=2AD=8cm,∴BC=BD+CD=8+4=12(cm).【点评】本题考查了等腰三角形的性质、线段垂直平分线的性质以及含30°的直角三角形的性质;利用线段垂直平分线得出线段相等、角相等是解题的关键.23.(12分)如图,在△ABC中,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F.(1)求证:∠EFA=90°﹣∠B;(2)若∠B=60°,求证:EF=DF.【分析】(1)由∠FAC=∠BAC,∠FCA=∠BCA,推出∠FAC+∠FCA=×(∠ABC+∠ACB)=(180°﹣∠B)=90°﹣∠B;(2)过点F作FG⊥BC于G,作FH⊥AB于H,作FM⊥AC于,构造全等三角形解决问题即可;【解答】证明:(1)∵∠BAC+∠BCA=180°﹣∠B,又∵AD、CE分别是∠BAC、∠BCA的平分线,∴∠FAC=∠BAC,∠FCA=∠BCA,∴∠FAC+∠FCA=×(180°﹣∠B)=90°﹣∠B,∵∠EFA=∠FAC+∠FCA,∴∠EFA=90°﹣∠B.(2)如图,过点F作FG⊥BC于G,作FH⊥AB于H,作FM⊥AC于M.∵AD、CE分别是∠BAC、∠BCA的平分线,∴FG=FH=FM,∵∠EFH+∠DFH=120°,∠DFG+∠DFH=360°﹣90°×2﹣60°=120°,∴∠EFH=∠DFG,在△EFH和△DFG中,,∴△EFH≌△DFG(AAS),∴EF=DF.【点评】本题考查全等三角形的判定和性质,角平分线的定义等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.24.(14分)已知:在等腰三角形ABC中,AB=AC,AD⊥BC于点D,以AC为边作等边三角形ACE,直线BE交直线AD于点F,连接FC.(1)如图1,120°<∠BAC<180°,△ACE与△ABC在直线AC的异侧,且FC交AE于点M.①求证:∠FEA=∠FCA;②猜想线段FE,AD,FD之间的数量关系,并证明你的结论;(2)当60°<∠BAC<120°,且△ACE与△ABC在直线AC的异侧时,利用图2画出图形探究线段FE,AD,FD之间的数量关系,并直接写出你的结论.【分析】(1)①由题意可得AB=AC=AE,即可求∠ABF=∠AEF,由AD是BC的中垂线可得BF=CF,可证△ABF≌△ACF,可得∠ABF=∠ACF,则结论可得;②延长AD使DP=AD,连接CP,由题意可得AC=CP=CE,∠ACD=∠PCD,即可证∠ECF=∠FCP,则可证△ECF≌△FCP,可得EF=FP=FD+AD;(2)连接CF,延长AD使FD=DP,连接CP,由题意可得∠ABF=∠ACF=∠AEF,△FCP是等边三角形,可证△ACP≌△ECF,即可得EF=AD+DP=AD+DF.【解答】证明:(1)①∵△AEC是等边三角形∴∠EAC=∠ACE=60°,CE=AC=AE,且AB=AC∴AB=AE∴∠ABF=∠AEF∵AB=AC,AD⊥BC∴AD是BC的垂直平分线∴BF=FC,且AF=AF,AB=AC∴△ABF≌△ACF(SSS)∴∠ABF=∠ACF∴∠ACF=∠AEF②EF=FD+AD延长AD使DP=AD,连接CP∵AD=DP,∠ADC=∠PDC,CD=CD∴△ADC≌△PDC(SAS)∴AC=CP=CE,∠ACD=∠PCD∵∠ACF=∠AEF,且∠AMC=∠FME∴∠EFC=∠EAC=60°∵BF=CF,且∠EFC=60°∴∠FCD=30°∵∠FCA=∠FCD﹣∠ACD∴∠FCA=30°﹣∠ACD∵∠ECF=∠ECA﹣∠FCA∴∠ECF=30°+∠ACD∵∠FCP=∠FCD+∠DCP∴∠FCP=30°+∠ACD∴∠ECF=∠FCP,且FC=FC,CP=CE∴△ECF≌△FCP(SAS)∴EF=FP∴EF=FD+AD(2)连接CF,延长AD使FD=DP,连接CP.∵△AEC是等边三角形∴∠EAC=∠ACE=60°,CE=AC=AE,且AB=AC∴AB=AE∴∠ABF=∠AEF∵AB=AC,AD⊥BC∴AD是BC的垂直平分线∴BF=FC,且AF=AF,AB=AC∴△ABF≌△ACF(SSS)∴∠ABF=∠ACF∴∠ACF=∠AEF且∠AME=∠CMF∴∠EAC=∠EFC=60°∵BF=CF,∠EFC=60°∴∠FCB=30°∵FD=DP,∠FDC=∠PDC,CD=CD∴△FDC≌△PDC(SAS)∴FC=CP,∠FCD=∠PCD=30°∴∠FCP=60°=∠ACE∴∠ACP=∠FCE且CF=CP,AC=CE∴△ACP≌△ECF(SAS)∴EF=AP∴EF=AD+DP=AD+DF【点评】本题考查了三角形综合题,等腰三角形的性质,全等三角形的性质和判定,添加恰当的辅助线构造全等三角形是本题的关键.。

2019-2020学年北京市房山区八年级(下)期中数学试卷

2019-2020学年北京市房山区八年级(下)期中数学试卷

2019-2020学年北京市房山区八年级(下)期中数学试卷一、选择题(每题3分,共24分)1.(3分)在平面直角坐标系中,点P(﹣2,5)在()A.第一象限B.第二象限C.第三象限D.第四象限2.(3分)下列各曲线中,不表示y是x的函数的是()A.B.C.D.3.(3分)若点A(2,y1),B(3,y2)都在一次函数y=﹣2x+m的图象上,则y1与y2的大小关系是()A.y1>y2B.y1=y2C.y1<y2D.无法比较大小4.(3分)下列实数中,方程x2﹣2x=0的根是()A.0B.2C.0或1D.0或25.(3分)一元二次方程2x2+6x+3=0经过配方后可变形为()A.(x+3)2=6B.(x﹣3)2=12C.D.6.(3分)对于一次函数y=kx+b(k,b为常数),如表中给出几组自变量及其对应的函数值,其中恰好有一个函数值计算有误,则这个错误的函数值是()x﹣1013y752﹣1A.﹣1B.2C.5D.77.(3分)如图,若点P为函数y=kx+b(﹣4≤x≤4)图象上的一动点,m表示点P到原点O的距离,则下列图象中,能表示m与点P的横坐标x的函数关系的图象大致是()A.B.C.D.8.(3分)为了让市民享受到更多的优惠,相关部门拟确定一个折扣线,计划使50%左右的人获得折扣优惠.某市针对乘坐地铁的人群进行了调查.调查小组在各地铁站随机调查了该市1000人上一年乘坐地铁的月均花费(单位:元),绘制了频数分布直方图,如图所示.下列说法正确的是()①每人乘坐地铁的月均花费最集中的区域在80~100元范围内;②每人乘坐地铁的月均花费的平均数范围是40~60元范围内;③每人乘坐地铁的月均花费的中位数在60~100元范围内;④乘坐地铁的月均花费达到80元以上的人可以享受折扣.A.①②④B.①③④C.③④D.①②二、填空题(每题2分,共16分)9.(2分)在函数y=中,自变量x的取值范围是.10.(2分)若点P(﹣1,a)与Q(b,2)关于x轴对称,则a+b=.11.(2分)2022年将在北京﹣张家口举办冬季奥运会,北京将成为世界上第一个既举办夏季奥运会,又举办冬季奥运会的城市.某队要从两名选手中选取一名参加比赛,为此对这两名队员进行了五次测试,测试成绩如图所示,你会选择选手(填A或B),理由是.12.(2分)若一次函数y=kx+b(k≠0)的图象如图所示,点P(2.5,3)在函数图象上,则关于x的方程kx+b=3的解是.13.(2分)关于x的一元二次方程ax2+bx﹣2020=0有一个根为x=﹣1,写出一组满足条件的实数a,b的值:a=,b=.14.(2分)一个y关于x的函数同时满足以下两个条件:(1)图象经过点(﹣3,4);(2)y随x增大而减小.这个函数的表达式可以是(写出一个即可).15.(2分)关于x的一元二次方程ax2﹣3x+1=0有两个不相等实数根,则a的取值范围是.16.(2分)如图,在平面直角坐标系xOy中,一次函数y=x+1与x、y轴分别交于点A、B,在直线AB上截取BB1=AB,过点B1分别作y轴的垂线,垂足为点C1,得到△BB1C1;在直线AB上截取B1B2=BB1,过点B2分别作y轴的垂线,垂足为点C2,得到△BB2C2;在直线AB上截取B2B3=B1B2,过点B3作y轴的垂线,垂足为点C3,得到△BB3C3;…;第3个△BB3C3的面积是;第n个△BB n∁n的面积是(用含n的式子表示,n是正整数).三、解答题(60分)17.(4分)用公式法解方程:2x2+3x﹣1=0.18.(4分)解方程:x2﹣3x=4x﹣6.19.(5分)函数y=(3m+5)x﹣m是关于x的一次函数,且y随着x的增大而减小,求m 的取值范围并指出图象经过哪几个象限?20.(5分)已知关于x的一元二次方程mx2﹣(m+2)x+2=0(m≠0)(1)求证:方程一定有两个实数根;(2)若此方程的两根为不相等的整数,求整数m的值.21.(5分)已知一次函数y=﹣2x+3.(1)在平面直角坐标系内画出该函数的图象;(2)当自变量x=﹣4时,函数y的值;(3)当x<0时,请结合图象,直接写出y的取值范围:.22.(5分)在平面直角坐标系xOy中,已知点A(﹣1,1)、点B(0,2),一次函数y=3x 的图象与直线AB交于点P.(1)求直线AB的函数表达式及P点的坐标;(2)若点Q是y轴上一点,且△BPQ的面积为2,求点Q的坐标.23.(5分)列方程解应用题:北京大兴国际机场,是建设在北京市大兴区与河北省廊坊市广阳区之间的超大型国际航空综合交通枢纽.机场主体工程占地多在北京境内,70万平米航站楼,客机近机位92个.2019年9月25日,北京大兴国际机场正式投入运营.据调查,10月大兴机场载客量约为112万人,12月载客量约为175万人,若10月到12月载客量的月增长率相同,求每月载客量的平均月增长率?24.(6分)第二十四届冬季奥林匹克运动会将于2022年在北京市和张家口市举行.为了调查学生对冬奥知识的了解情况,从甲、乙两校各随机抽取20名学生进行了相关知识测试,获得了他们的成绩(百分制),并对数据(成绩)进行了整理、描述和分析.下面给出了部分信息.a.甲校20名学生成绩的频数分布表和频数分布直方图如图:甲校学生样本成绩频数分布表成绩m(分)频数(人数)频率50≤m<6010.0560≤m<70c0.1070≤m<8030.1580≤m<90a b90≤m<10060.30合计20 1.0b.甲校成绩在80≤m<90的这一组的具体成绩是:8181898389828389c.甲、乙两校成绩的平均分、中位数、众数、方差如图:学校平均分中位数众数方差甲84n89129.7乙84.28585138.6根据以如图表提供的信息,解答下列问题:(1)表中a=;表中的中位数n=;(2)补全甲校学生样本成绩频数分布直方图;(3)在此次测试中,某学生的成绩是84分,在他所属学校排在前10名,由表中数据可知该学生是校的学生(填“甲”或“乙”),理由是;(4)假设甲校1000名学生都参加此次测试,若成绩80分及以上为优秀,估计成绩优秀的学生人数为人.25.(5分)小明租用共享单车从家出发,匀速骑行到相距2400米的邮局办事.小明出发的同时,他的爸爸以每分钟100米的速度从邮局沿同一条道路步行回家,小明在邮局停留了2分钟后沿原路按原速返回.设他们出发后经过t(分)时,小明与家之间的距离为s1(米),小明爸爸与家之间的距离为s2(米),图中折线OABD,线段EF分别表示s1,s2与t之间的函数关系的图象.(1)求s1与t之间的函数表达式;(2)小明从家出发,经过分在返回途中追上爸爸.26.(4分)如果关于x的一元二次方程ax2+bx+c=0有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”,研究发现了此类方程的一般性结论:设其中一根为t,则另一个根为2t,因此ax2+bx+c=a(x﹣t)(x﹣2t)=ax2﹣3atx+2t2a,所以有b2﹣ac=0;我们记“K=b2﹣ac”即K=0时,方程ax2+bx+c=0为倍根方程.下面我们根据此结论来解决问题:(1)方程①2x2﹣3x+1=0;方程②x2﹣2x﹣8=0;方程③x2+x=﹣,这几个方程中,是倍根方程的是(填序号即可);(2)若(x﹣1)(mx﹣n)=0是倍根方程,则的值为.27.(6分)有这样一个问题:探究函数y=的图象与性质.小华根据学习函数的经验,对函数y=的图象与性质进行了探究.下面是小华的探究过程,请补充完整:(1)函数y =的自变量x 的取值范围是;(2)如表是y 与x 的几组对应值.m 的值为;x ﹣2﹣﹣1﹣1234…y﹣m﹣1…(3)如图,在平面直角坐标系xOy 中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(4)结合函数的图象,写出该函数的一条性质:.(5)结合函数图象估计﹣x ﹣4=0的解的个数为个.28.(6分)在平面直角坐标系xOy 中,点P 的坐标为(a ,b ),点P 的“变换点”P ′的坐标.定义如下:当a ≥b 时,P ′点坐标为(b ,a );当a <b 时,P ′点坐标为(﹣a ,﹣b ).(1)写出A (5,3)的变换点坐标,B (1,6)的变换点坐标,C (﹣2,4)的变换点坐标;(2)如果直线l :y =﹣x +3上所有点的变换点组成一个新的图形,记作图形W ,请画出图形W ;(3)在(2)的条件下,若直线y =kx ﹣1(k ≠0)与图形W 有两个交点,请直接写出k 的取值范围.2019-2020学年北京市房山区八年级(下)期中数学试卷参考答案与试题解析一、选择题(每题3分,共24分)1.【解答】解:点在平面直角坐标系中,点P(﹣2,5)在第二象限.故选:B.2.【解答】解:A、B、D选项的图象,符合一个x有唯一的y与之对应,故表示y是x的函数;C选项的图象存在一个x对应两个y的情况,故y不是x的函数,故选:C.3.【解答】解:因为k=﹣2<0,y随x的增大而减小,又2<3,所以,y1>y2.故选:A.4.【解答】解:∵x2﹣2x=0,∴x(x﹣2)=0,则x=0或x﹣2=0,解得x=0或x=2,故选:D.5.【解答】解:∵2x2+6x=﹣3,∴x2+3x=﹣,则x2+3x+=﹣+,即(x+)2=,故选:C.6.【解答】解:∵(﹣1,7),(0,5),(3,﹣1)符合解析式y=﹣2x+5,当x=1时,y=3≠2,∴这个计算有误的函数值是2,故选:B.7.【解答】解:如图所示:过点O作OP垂直于直线y=kx+b,∵OP垂直于直线y=kx+b,∴OP<2,且点P的横坐标<0.故此当x<0时,函数有最小值,且最小值<2,根据选项可知A符合题意.故选:A.8.【解答】解:①根据频数分布直方图,可得众数为60﹣80元范围,故每人乘坐地铁的月均花费最集中的区域在60﹣80元范围内,故①错误;②每人乘坐地铁的月均花费的平均数==87.6元,故每人乘坐地铁的月均花费不在40~60元范围内,故②错误;③每人乘坐地铁的月均花费的中位数约为80元,在60~100元范围内,故③正确;④为了让市民享受到更多的优惠,若使50%左右的人获得折扣优惠,则乘坐地铁的月均花费达到80元以上的人可以享受折扣,故④正确.故选:C.二、填空题(每题2分,共16分)9.【解答】解:∵x﹣1≠0,∴x≠1,故答案为x≠1.10.【解答】解:∵点P(﹣1,a)与Q(b,2)关于x轴对称,∴a=﹣2,b=﹣1,∴a+b=﹣2﹣1=﹣3.故答案为:﹣3.11.【解答】解:A选手成绩的平均数为:(7+8+8+9+8)=8,B选手成绩的平均数为:(10+8+11+6+5)=8,A选手成绩的方差为:[(7﹣8)2+(8﹣8)2×3+(9﹣8)2]=0.4,B选手成绩的方差为:[(10﹣8)2+(8﹣8)2+(11﹣8)2+(6﹣8)2+(5﹣8)2]=5.2,∵04<5.2,∴A选手的成绩比较稳定.12.【解答】解:观察函数的图象知:y=kx+b的图象经过点P(2.5,3),即当x=2.5时y=kx+b=3,所以关于x的方程kx+b=3的解为x=2.5,故答案为:x=2.5.13.【解答】解:把x=﹣1代入ax2+bx﹣2020=0得a﹣b﹣2020=0,当a=1时,b=﹣2019.故答案为:1,﹣2019.14.【解答】解:①图象经过(﹣3,4)点;②y随x的增大而减小,这个函数解析式为y=﹣x+1,故答案为:y=﹣x+1.15.【解答】解:∵关于x的一元二次方程ax2﹣3x+1=0有两个不相等的实数根,∴a≠0且△=b2﹣4ac=(﹣3)2﹣4×a×1=9﹣4a>0,解得:a<且a≠0.故答案为:a<且a≠0.16.【解答】解:∵一次函数y=x+1与x、y轴分别交于点A、B,∴A(﹣1,0),B(0,1),∴AB==.设B1(a,a+1),B2(b,b+1),B3(c,c+1),∵BB1=AB,∴a2+(a+1﹣1)2=2,解得a1=1,a2=﹣1(舍去),∴B1(1,2),同理可得,B2(2,3),B3(3,4),∴S==×12=,S=×2×(3﹣1)==2,S=×3×(4﹣1)==∴S=n2.故答案为:,n2.三、解答题(60分)17.【解答】解:∵a=2,b=3,c=﹣1,∴△=32﹣4×2×(﹣1)=17>0,则x=.18.【解答】解:x2﹣3x=4x﹣6,整理得:x2﹣7x+6=0,分解因式得:(x﹣1)(x﹣6)=0,可得x﹣1=0或x﹣6=0,解得:x1=1,x2=6.19.【解答】解:∵y=(3m+5)x﹣m是关于x的一次函数,且y随着x的增大而减小,∴3m+5<0,解得:m<﹣,∴﹣m>,∴图象经过第一,二,四象限.20.【解答】解:(1)由题意可知:m≠0时,△=(m+2)2﹣8m=m2+4m+4﹣8m=m2﹣4m+4=(m﹣2)2,∴△≥0,故不论m为何值时,方程总有两个实数根;(2)由题意可知:△>0,∴m≠2,∵mx2﹣(m+2)x+2=0,∴(x﹣1)(mx﹣2)=0,∴x=1或x=,∵方程有两个不相等的整数根,∴m=±1或m=﹣2,∴整数m的值为1或﹣1或﹣2.21.【解答】解:(1)∵一次函数y=﹣2x+3的图象是一条直线,当x=0时,解得y=3;当y=0时,解得x=,∴直线与坐标轴的两个交点分别是(0,3)和(,0),其图象如下:(2)把x=﹣4代入y=﹣2x+3,得y=11,故答案为11;(3)由图可知,当x<0时,y>3,故答案为y>3.22.【解答】解:(1)设直线AB的解析式为:y=kx+b(k≠0),∵A(﹣1,1)、点B(0,2),∴,解得,,∴直线AB的解析式为:y=x+2,联立方程组,解得,,∴P(1,3);(2)设Q(0,n),∵△BPQ的面积为2,∴,解得,n=﹣2或6,∴Q(0,﹣2)或Q(0,6).23.【解答】解:设每月载客量的平均月增长率为x,依题意,得:112(1+x)2=175,解得:x1=0.25=25%,x2=﹣2.25(不合题意,舍去).答:每月载客量的平均月增长率为25%.24.【解答】解:(1)a=20×(1﹣0.05﹣0.10﹣0.15﹣0.30)=8,由频数分布表和频数分布直方图中的信息可知,排在中间的两个数是83和83,∴n==83;故答案为:8,83;(2)补全图1甲校学生样本成绩频数分布直方图如图所示;(3)在此次测试中,某学生的成绩是84分,在他所属学校排在前10名,由表中数据可知该学生是甲校的学生,理由:甲校的中位数是83,84>83;故答案为:甲,甲校的中位数是83,84>83;(4)1000×=700,答:成绩优秀的学生人数为700人.故答案为:700人.25.【解答】解:(1)根据题意得,点B的坐标为(10,2400),点D的坐标为(18,0),当0≤x≤8时,设s1与t之间的函数表达式是s1=kt,则8k=2,00,解得k=300,即s1=300t;当8<x≤10时,s1=2400;当10<x≤18时,设s1与t之间的函数表达式是s1=mt+n,则,解得,即s1=﹣300t+5400.∴.(2)∵2400÷100=24,∴点F的坐标为(24,0),设s2与t之间的函数表达式是s2=k2t+b2,则,解得,∴s2与t之间的函数表达式是s2=﹣100t+2400,由﹣100t+2400=﹣300t+5400得t=15,即小明从家出发,经过15分在返回途中追上爸爸.故答案为:15.26.【解答】解:(1)在方程①2x2﹣3x+1=0中,K=(﹣3)2﹣×2×1=0;在方程②x2﹣2x﹣8=0中,K=(﹣2)2﹣×1×(﹣8)=40≠0;在方程③x2+x=﹣中,K=12﹣×1×=0,∴是倍根方程的是①③.故答案为:①③.(2)整理(x﹣1)(mx﹣n)=0得:mx2﹣(m+n)x+n=0,∵(x﹣1)(mx﹣n)=0是倍根方程,∴K=[﹣(m+n)]2﹣m•n=0,∴m2﹣mn+n2=0,即2m2﹣5mn+2n2=0,∴(2m﹣n)(m﹣2n)=0,∴2m﹣n=0或m﹣2n=0,∴m=n或m=2n,∴的值为4或1,故答案为4或1.27.【解答】解:(1)由题意得:x+2≥0且x≠0,解得x≥﹣2且x≠0,故答案为x≥﹣2且x≠0;(2)当x=﹣1时,y===﹣1=m,故答案为﹣1;(3)描点连线绘出如下函数图象:(4)从图象看,在每个象限内,函数y随x增大而减小,故答案为在每个象限内,函数y随x增大而减小(答案不唯一);(5)在(3)的基础上,画出y=x+4的图象,从图象看,两个函数有1个交点,故答案为1.28.【解答】解:(1)∵5>3,1<6,﹣2<4,∴A(5,3)的变换点坐标(3,5),B(1,6)的变换点坐标(﹣1,﹣6),C(﹣2,4)的变换点坐标(2,﹣4);(2)直线DE的解析式为y=﹣x+3.当x=y时,有x=﹣x+3,解得:x=y=2.画出图形W,如图所示.画图的思路,将直线DE点(2,2)左侧(不包括该点)的射线作关于x=y对称的射线,再将直线DE点(2,2)左侧(不包括该点)作关于原点对称的射线,由此即可得出图形W.(3)当x≤2时,y=﹣2x+6;当x>﹣2时,旋转后的图形解析式为﹣x=﹣y﹣3;令kx﹣1=﹣2x+6,则有x=≤2且k≠0,k≠﹣2,解得:k≥或k<﹣2;令kx﹣1=﹣x﹣3,则有x=>﹣2(k≠2)k≠0,2k+1≠0,解得:k>或k<﹣.综上可知:若直线y=kx﹣1(k≠0)与图形W有两个交点,k的取值范围为k<﹣2或k≥.故答案为:(3,5),(﹣1,﹣6),(2,﹣4).。

2018-2019学年广州市海珠区八年级下期中数学试卷(含答案解析)

2018-2019学年广州市海珠区八年级下期中数学试卷(含答案解析)

2018-2019学年广东省广州市海珠区八年级(下)期中数学试卷一、选择题(本大题共10小题,每小题2分,共20分.在每小题给出的四个选项中,只有一个符合题意)1.下列运算正确的是()A.+=B.•=C.=D.=32.若,则()A.b>3B.b<3C.b≥3D.b≤33.若的整数部分为x,小数部分为y,则(x+)y的值是()A.B.3C.D.﹣34.下列给出的条件中,不能判断四边形ABCD是平行四边形的是()A.AB∥CD,AD=BC B.∠A=∠C,∠B=∠DC.AB∥CD,AD∥BC D.AB=CD,AD=BC5.如图,铁路MN和公路PQ在点O处交汇,∠QON=30°.公路PQ上A处距O点240米.如果火车行驶时,周围200米以内会受到噪音的影响.那么火车在铁路MN上沿ON方向以72千米/时的速度行驶时,A处受噪音影响的时间为()A.12秒B.16秒C.20秒D.30秒.6.在矩形ABCD中,AB=3,BC=4,则点A到对角线BD的距离为()A.B.2C.D.7.如图,在△ABC中,D,E,F分别为BC,AC,AB边的中点,AH⊥BC于H,FD=8,则HE等于()A.20B.16C.12D.88.如图,在菱形ABCD中,M,N分别在AB,CD上,且AM=CN,MN与AC交于点O,连接BO.若∠DAC=28°,则∠OBC的度数为()A.28°B.52°C.62°D.72°9.如图,点A,B为定点,定直线l∥AB,P是l上一动点,点M,N分别为PA,PB的中点,对下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB的大小.其中会随点P的移动而变化的是()A.②③B.②⑤C.①③④D.④⑤10.如图,正方形ABCB1中,AB=1,AB与直线l的夹角为30°,延长CB1交直线l于点A1,作正方形A1B1C1B2,延长C1B2交直线1于点A2,作正方形A2B2C2B3,延长C2B3交直线l于点A3,作正方形A3B3C3B4…依此规律,则A2018A2018=()A.()2018B.()2018C.2()2018D.2()2018二、填空题:(本大题共6小题,每小题3分,共18分,只要求写出最后的结果11.若式子+有意义,则x的取值范围是.12.若x,y满足+|3x+y+m|=0且y<0,则m的取值范围是.13.在四边形ABCD中,AB∥CD,AD∥BC,如果∠B=50°,则∠D=.14.一个矩形的两条对角线所夹的锐角是60°,这个角所对的边长为20cm,则该矩形的面积为.15.如图,已知菱形的两条对角线分别为6cm和8cm,则这个菱形的高DE为cm.16.如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为.三、解答题(本大题共7小题,共62分,作答时应写出文字说明、推理依据、演算步骤)17.(8分)(1)÷2﹣×+4;(2)(+)2﹣(3+2)(3﹣2)18.(6分)已知实数m,n满足n=,求的值.19.(8分)如图,在△ABC中,∠A=45°,∠B=30°,BC=8,求∠ACB及AC、AB的长.20.(7分)如图,菱形ABCD的对角线AC、BD相交于点O,DE∥AC,AE∥BD.试判断四边形AODE的形状,并说明理由.21.(9分)已知a、b、c满足|a﹣|++(c﹣4)2=0.(1)求a、b、c的值;(2)判断以a、b、c为边能否构成三角形?若能构成三角形,此三角形是什么形状?并求出三角形的面积;若不能,请说明理由.22.(12分)如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?23.(12分)如图1,在正方形ABCD中,P是对角线BD的一点,点E在AD的延长线上,且PA =PE,PE交CD于点F.(1)求证:PC=PE;(2)若PD=DE,求证:BP=BC;(3)如图2把正方形ABCD改为菱形ABCD,其它条件不变,当∠ABC=120°时,连接CE,∠BAP与∠DCE有何数量关系?证明你的结论.2018-2019学年广东省广州市海珠区八年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题2分,共20分.在每小题给出的四个选项中,只有一个符合题意)1.下列运算正确的是()A.+=B.•=C.=D.=3【分析】利用二次根式的加减法对A进行判断;根据二次根式的乘法法则对B进行判断;根据二次根式的除法法则对C进行判断;根据二次根式的性质对D进行判断.【解答】解:A、与不能合并,所以A选项错误;B、原式==,所以B选项正确;C、原式=,所以C选项错误;D、原式==2,所以D选项错误.故选:B.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.2.若,则()A.b>3B.b<3C.b≥3D.b≤3【分析】等式左边为非负数,说明右边3﹣b≥0,由此可得b的取值范围.【解答】解:∵,∴3﹣b≥0,解得b≤3.故选D.【点评】本题考查了二次根式的性质:≥0(a≥0),=a(a≥0).3.若的整数部分为x,小数部分为y,则(x+)y的值是()A.B.3C.D.﹣3【分析】先估算出的范围,再求出x、y的值,最后代入求出即可.【解答】解:∵2<<3,∴x=2,y=﹣2,∴(x+)y=(2+)×(﹣2)=7﹣4=3,故选:B.【点评】本题考查了估算无理数的大小,能估算出的范围是解此题的关键.4.下列给出的条件中,不能判断四边形ABCD是平行四边形的是()A.AB∥CD,AD=BC B.∠A=∠C,∠B=∠DC.AB∥CD,AD∥BC D.AB=CD,AD=BC【分析】直接根据平行四边形的判定定理判断即可.【解答】解:平行四边形的定义:两组对边分别平行的四边形叫做平行四边形.∴C能判断,平行四边形判定定理1,两组对角分别相等的四边形是平行四边形;∴B能判断;平行四边形判定定理2,两组对边分别相等的四边形是平行四边形;∴D能判定;平行四边形判定定理3,对角线互相平分的四边形是平行四边形;平行四边形判定定理4,一组对边平行相等的四边形是平行四边形;故选:A.【点评】此题是平行四边形的判定,解本题的关键是掌握和灵活运用平行四边形的5个判断方法.5.如图,铁路MN和公路PQ在点O处交汇,∠QON=30°.公路PQ上A处距O点240米.如果火车行驶时,周围200米以内会受到噪音的影响.那么火车在铁路MN上沿ON方向以72千米/时的速度行驶时,A处受噪音影响的时间为()A.12秒B.16秒C.20秒D.30秒.【分析】过点A作AC⊥ON,利用锐角三角函数的定义求出AC的长与200m相比较,发现受到影响,然后过点A作AD=AB=200m,求出BD的长即可得出居民楼受噪音影响的时间.【解答】解:如图:过点A作AC⊥ON,AB=AD=200米,∵∠QON=30°,OA=240米,∴AC=120米,当火车到B点时对A处产生噪音影响,此时AB=200米,∵AB=200米,AC=120米,∴由勾股定理得:BC=160米,CD=160米,即BD=320米,∵72千米/小时=20米/秒,∴影响时间应是:320÷20=16秒.故选:B.【点评】本题考查的是点与圆的位置关系,根据火车行驶的方向,速度,以及它在以A为圆心,200米为半径的圆内行驶的BD的弦长,求出对A处产生噪音的时间,难度适中.6.在矩形ABCD中,AB=3,BC=4,则点A到对角线BD的距离为()A.B.2C.D.【分析】本题只要根据矩形的性质,利用面积法来求解.=×3×4=6,【解答】解:因为BC=4,故AD=4,AB=3,则S△DBC=×5AE,故×5AE=6,AE=.又因为BD==5,S△ABD故选:A.【点评】本题考查矩形的性质,矩形具有平行四边形的性质,又具有自己的特性,要注意运用矩形具备而一般平行四边形不具备的性质.7.如图,在△ABC中,D,E,F分别为BC,AC,AB边的中点,AH⊥BC于H,FD=8,则HE等于()A.20B.16C.12D.8【分析】利用三角形中位线定理知DF=AC;然后在直角三角形AHC中根据“直角三角形斜边上的中线等于斜边的一半”即可将所求线段EH与已知线段DF联系起来了.【解答】解:∵D、F分别是AB、BC的中点,∴DF是△ABC的中位线,∴DF=AC(三角形中位线定理);又∵E是线段AC的中点,AH⊥BC,∴EH=AC,∴EH=DF=8.故选:D.【点评】本题综合考查了三角形中位线定理、直角三角形斜边上的中线.三角形的中位线平行于第三边且等于第三边的一半.8.如图,在菱形ABCD中,M,N分别在AB,CD上,且AM=CN,MN与AC交于点O,连接BO.若∠DAC=28°,则∠OBC的度数为()A.28°B.52°C.62°D.72°【分析】根据菱形的性质以及AM=CN,利用ASA可得△AMO≌△CNO,可得AO=CO,然后可得BO⊥AC,继而可求得∠OBC的度数.【解答】解:∵四边形ABCD为菱形,∴AB∥CD,AB=BC,∴∠MAO=∠NCO,∠AMO=∠CNO,在△AMO和△CNO中,∵,∴△AMO≌△CNO(ASA),∴AO=CO,∵AB=BC,∴BO⊥AC,∴∠BOC=90°,∵∠DAC=28°,∴∠BCA=∠DAC=28°,∴∠OBC=90°﹣28°=62°.故选:C.【点评】本题考查了菱形的性质和全等三角形的判定和性质,注意掌握菱形对边平行以及对角线相互垂直的性质.9.如图,点A,B为定点,定直线l∥AB,P是l上一动点,点M,N分别为PA,PB的中点,对下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB的大小.其中会随点P的移动而变化的是()A.②③B.②⑤C.①③④D.④⑤【分析】根据三角形的中位线平行于第三边并且等于第三边的一半可得MN=AB,从而判断出①不变;再根据三角形的周长的定义判断出②是变化的;确定出点P到MN的距离不变,然后根据等底等高的三角形的面积相等确定出③不变;根据平行线间的距离相等判断出④不变;根据角的定义判断出⑤变化.【解答】解:∵点A,B为定点,点M,N分别为PA,PB的中点,∴MN是△PAB的中位线,∴MN=AB,即线段MN的长度不变,故①错误;PA、PB的长度随点P的移动而变化,所以,△PAB的周长会随点P的移动而变化,故②正确;∵MN的长度不变,点P到MN的距离等于l与AB的距离的一半,∴△PMN的面积不变,故③错误;直线MN,AB之间的距离不随点P的移动而变化,故④错误;∠APB的大小点P的移动而变化,故⑤正确.综上所述,会随点P的移动而变化的是②⑤.故选:B.【点评】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,等底等高的三角形的面积相等,平行线间的距离的定义,熟记定理是解题的关键.10.如图,正方形ABCB1中,AB=1,AB与直线l的夹角为30°,延长CB1交直线l于点A1,作正方形A1B1C1B2,延长C1B2交直线1于点A2,作正方形A2B2C2B3,延长C2B3交直线l于点A3,作正方形A3B3C3B4…依此规律,则A2018A2018=()A.()2018B.()2018C.2()2018D.2()2018【分析】由四边形ABCB1是正方形,得到AB=AB1=1,AB∥CB1,于是得到AB∥A1C,根据平行线的性质得到∠CA1A=30°,解直角三角形得到A1B1=,AA1=2,同理:A2A3=2()2,A3A4=2()3,找出规律A n A n+1=2()n,答案即可求出.【解答】解:∵四边形ABCB1是正方形,∴AB=AB1=1,AB∥CB1,∴AB∥A1C,∴∠CA1A=30°,∴A1B1=AB1=,AA1=2AB1=2,∴A1B2=A1B1=,∴A1A2=2A1B2=2,同理:A2A3=2()2,A3A4=2()3,…∴A n A n+1=2()n,∴A2018A2018=2()2018,故选:C.【点评】本题考查了正方形的性质,含30°直角三角形的性质,平行线的性质,熟记各性质并求出后一个正方形的边长是前一个正方形的边长的倍是解题的关键.二、填空题:(本大题共6小题,每小题3分,共18分,只要求写出最后的结果11.若式子+有意义,则x的取值范围是x>﹣2且x≠1.【分析】直接利用二次根式有意义的条件以及分式有意义的条件分析得出答案.【解答】解:若式子+有意义,则x+2≥0,且(x﹣1)(x+2)≠0,解得:x>﹣2且x≠1.故答案为:x>﹣2且x≠1.【点评】此题主要考查了二次根式有意义的条件以及分式有意义的条件,正确把握相关定义是解题关键.12.若x,y满足+|3x+y+m|=0且y<0,则m的取值范围是m>6.【分析】根据非负数的性质列方程求出x的值并表示出y,再根据y<0列出关于m的不等式,然后求解即可.【解答】解:由题意得,x+2=0,3x+y+m=0,解得x=﹣2,y=6﹣m,∵y<0,∴6﹣m<0,∴m>6.故答案为:m>6.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.13.在四边形ABCD中,AB∥CD,AD∥BC,如果∠B=50°,则∠D=50°.【分析】首先根据两组对边分别平行的四边形是平行四边形可判定出四边形ABCD是平行四边形,再根据平行四边形两组对角相等可得∠B=∠D=50°.【解答】解:∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,∴∠B=∠D=50°,故答案为:50°.【点评】此题主要考查了平行四边形的判定与性质,关键是掌握平行四边形的判定定理与性质定理.14.一个矩形的两条对角线所夹的锐角是60°,这个角所对的边长为20cm,则该矩形的面积为400cm2.【分析】本题首先求证由两条对角线的所夹锐角为60°的角的为等边三角形,易求出短边边长.【解答】解:∵已知矩形的两条对角线所夹锐角为60°,矩形的对边平行且相等.∴根据矩形的性质可求得由两条对角线所夹锐角为60°的三角形为等边三角形.又∵这个角所对的边长为20cm,所以矩形短边的边长为20cm.∴对角线长40cm.根据勾股定理可得长边的长为20cm.∴矩形的面积为20×20=400cm2.故答案为400cm2.【点评】本题考查的是矩形的性质(对角线相等),先求出短边边长后根据勾股定理可求出长边边长,最后可求出矩形的面积.15.如图,已知菱形的两条对角线分别为6cm和8cm,则这个菱形的高DE为 4.8cm.【分析】直接利用勾股定理得出菱形的边长,再利用菱形的面积求法得出答案.【解答】解:∵菱形的两条对角线分别为6cm和8cm,∴菱形的边长为:=5(cm),设菱形的高为:xcm,则5x=×6×8,解得:x=4.8.故答案为:4.8.【点评】此题主要考查了菱形的性质,正确得出菱形的边长是解题关键.16.如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为4.【分析】设BN=x,则由折叠的性质可得DN=AN=9﹣x,根据中点的定义可得BD=3,在Rt △BND中,根据勾股定理可得关于x的方程,解方程即可求解.【解答】解:设BN=x,由折叠的性质可得DN=AN=9﹣x,∵D是BC的中点,∴BD=3,在Rt△BND中,x2+32=(9﹣x)2,解得x=4.故线段BN的长为4.故答案为:4.【点评】此题考查了翻折变换(折叠问题),折叠的性质,勾股定理,中点的定义以及方程思想,综合性较强.三、解答题(本大题共7小题,共62分,作答时应写出文字说明、推理依据、演算步骤)17.(8分)(1)÷2﹣×+4;(2)(+)2﹣(3+2)(3﹣2)【分析】(1)先把二次根式化为最简二次根式,再利用二次根式的乘除法则运算,然后化简后合并即可;(2)利用完全平方公式和平方差公式计算.【解答】解:(1)原式=4÷2﹣3×+2=2﹣3+2=2﹣;(2)原式=2+2+3﹣(18﹣12)=5+2﹣6=2﹣1.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.(6分)已知实数m,n满足n=,求的值.【分析】根据二次根式有意义的条件即可求出答案.【解答】解:由题意可知:∴m=﹣2,∴n==0∴=0【点评】本题考查二次根式有意义的条件,解题的关键是熟练运用二次根式有意义的条件,本题属于基础题型.19.(8分)如图,在△ABC中,∠A=45°,∠B=30°,BC=8,求∠ACB及AC、AB的长.【分析】根据三角形的内角和定理可得出∠ACB的度数,过点C作CD⊥AB与点D,在RT△CDB 中先求出CD、BD的长,然后在RT△ACD中可求出AD的长,继而根据AB=AD+DB可求出AB 的长.【解答】解:∠ACB=180°﹣∠A﹣∠B=105°,过点C作CD⊥AB于点D,在RT△ACD中,CD=BC sin∠B=4,BD=BC cos∠B=4,在RT△ACD中,AD=CD tan∠A=4,AC==4,∴AB=AD+BD=4+4.综上可得∠ACB=105°,AC=4,AB=4+4.【点评】本题考查解直角三角形的应用,对于此类题目一般要先构造直角三角形,作高是最直接的手段,难点在于找到过度线段CD的长.20.(7分)如图,菱形ABCD的对角线AC、BD相交于点O,DE∥AC,AE∥BD.试判断四边形AODE的形状,并说明理由.【分析】根据题意可判断出四边形AODE是平行四边形,再由菱形的性质可得出AC⊥BD,即∠AOD=90°,继而可判断出四边形AODE是矩形.【解答】解:四边形AODE是矩形.∵DE∥AC,AE∥BD,∴四边形AODE是平行四边形,∵四边形ABCD是菱形,∴AC⊥BD∴∠AOD=90°,∴四边形AODE是矩形.【点评】本题考查了菱形的性质及矩形的判定,解答本题的关键是掌握菱形对角线互相垂直的性质及矩形的判定定理.21.(9分)已知a、b、c满足|a﹣|++(c﹣4)2=0.(1)求a、b、c的值;(2)判断以a、b、c为边能否构成三角形?若能构成三角形,此三角形是什么形状?并求出三角形的面积;若不能,请说明理由.【分析】(1)根据非负数的性质得到方程,解方程即可得到结果;(2)根据三角形的三边关系,勾股定理的逆定理判断即可.【解答】解:(1)∵a、b、c满足|a﹣|++(c﹣4)2=0.∴|a﹣|=0,=0,(c﹣4)2=0.解得:a=,b=5,c=4;(2)∵a=,b=5,c=4,∴a+b=+5>4,∴以a、b、c为边能构成三角形,∵a2+b2=()2+52=32=(4)2=c2,∴此三角形是直角三角形,==.∴S△【点评】本题考查了勾股定理的逆定理,非负数的性质,求三角形的面积,熟练掌握勾股定理的逆定理是解题的关键.22.(12分)如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?【分析】(1)由DF=BE,四边形ABCD为正方形可证△CEB≌△CFD,从而证出CE=CF.(2)由(1)得,CE=CF,∠BCE+∠ECD=∠DCF+∠ECD即∠ECF=∠BCD=90°又∠GCE =45°所以可得∠GCE=∠GCF,故可证得△ECG≌△FCG,即EG=FG=GD+DF.又因为DF =BE,所以可证出GE=BE+GD成立.【解答】(1)证明:在正方形ABCD中,∵,∴△CBE≌△CDF(SAS).∴CE=CF.(2)解:GE=BE+GD成立.理由是:∵由(1)得:△CBE≌△CDF,∴∠BCE=∠DCF,∴∠BCE+∠ECD=∠DCF+∠ECD,即∠ECF=∠BCD=90°,又∵∠GCE=45°,∴∠GCF=∠GCE=45°.∵,∴△ECG≌△FCG(SAS).∴GE=GF.∴GE=DF+GD=BE+GD.【点评】本题主要考查证两条线段相等往往转化为证明这两条线段所在三角形全等的思想,在第二问中也是考查了通过全等找出和GE相等的线段,从而证出关系是不是成立.23.(12分)如图1,在正方形ABCD中,P是对角线BD的一点,点E在AD的延长线上,且PA =PE,PE交CD于点F.(1)求证:PC=PE;(2)若PD=DE,求证:BP=BC;(3)如图2把正方形ABCD改为菱形ABCD,其它条件不变,当∠ABC=120°时,连接CE,∠BAP与∠DCE有何数量关系?证明你的结论.【分析】(1)欲证明PC=PE,只要证明△ADP≌△CDP即可.(2)只要证明∠BPC=∠BCP即可.(3)结论:∠BAP=∠DCE,只要证明△PCE是等边三角形即可解决问题.【解答】(1)证明:∵四边形ABCD是正方形,∴AD=CD,∠ADP=∠CDP,在△ADP和△CDP中,,∴△ADP≌△CDP∴PA=PC,∵PA=PE,∴PC=PE.(2)证明:四边形ABCD为正方形,∴∠ADC=∠CDE=90°,∴∠E+∠DFE=90°,∵PA=PE,∴∠PAD=∠E,由(1)知△ADP≌△CDP,∴∠PAD=∠PCD,∴∠PCD=∠E,∵∠PFC=∠DFE,∴∠PCD+∠PFC=∠E+∠DFE=90°,∴∠CPE=90°,∴∠BPC+∠DPE=90°,∵PD=DE,∴∠DPE=∠E,∴∠DPE=∠PCD,∵∠BCP+∠PCD=90°,∴∠BPC=∠BCP,∴BP=BC.(3)∠BAP=∠DCE,∵四边形ABCD是菱形,BD是对角线,∴AB=BC,∠ABP=∠PBC,∠BAD=∠BCD,在△ABP和△CBP中,,∴△ABP≌△CBP,∴PA=PC,∠BAP=∠BCP,∴∠PAD=∠PCD∵PA=PE,∴PC=PE,∠PAE=∠PEA,∴∠PEA=∠PCD,∵∠EFC=∠CPE+∠PCD=∠CDE+∠PEA,∴∠CPE=∠CDE,∵四边形ABCD为菱形,∠ABC=120°,∴∠BCD=60°,∠ADC=120°,∴∠CDE=60°,∴∠CPE=60°,∴△PCE是等边三角形,∴∠PCE=60°,∴∠BCP=∠DCE,∴∠BAP=∠DCE.【点评】本题考查四边形综合题、正方形、菱形的性质、全等三角形的判定和性质,勾股定理等知识,正确寻找全等三角形是解题的关键,属于中考常考题型.。

2019-2020学年安庆市八年级下学期期中数学试卷(含答案解析)

2019-2020学年安庆市八年级下学期期中数学试卷(含答案解析)

2019-2020学年安庆市八年级下学期期中数学试卷一、选择题(本大题共10小题,共40.0分)1.使分式x有意义的x的取值范围是()2x−4A. x=2B. x≠2C. x=−2D. x≠−22.下列方程是一元二次方程的是()A. ax2+bx+c=0B. x2−y+1=0−1=0C. x2=5D. x+1x23.下列条件中,不能判断一个三角形是直角三角形的是A. 三条边的比为1:2:3B. 三条边满足关系a 2=b 2−c2C. 三个角的比为1:2:3D. 三个角满足关系∠B+∠C=∠A4.化简√3−√3(1+√3)的结果为()A. 3B. −3C. √3D. −√35.下列方程中有一根为3的是()A. x2=3B. x2−4x−3=0C. x2−4x=−3D. x(x−1)=x−36.对于√5−2,下列说法中正确的是()A. 它是一个无理数B. 它比0小C. 它不能用数轴上的点表示出来D. 它的相反数为√5+27.在平面直角坐标系中,A(3,0)、B(a,2)、C(0,m),D(n,0),且m2+n2=4,若E为CD中点.则AB+BE的最小值为()A. 3B. 4C. 5D. 2√58.在−2,√4,√2,3.14,3−27,π,这6个数中,无理数共有()5A. 4个B. 3个C. 2个D. 1个9.若一元二次方程x2−2x−7=0的两根是x1和x2,则x1+x2−x1x2的值是()A. 10B. 9C. 7D. 810.设一个正方形的边长为,若边长增加,则新正方形的面积增加了A. B. C. D. 无法确定二、填空题(本大题共4小题,共20.0分)11.在正整数中,(1−122)=(1−12)(1+12)(1−132)=(1−13)(1+13)(1−142)=(1−14)(1+14)利用上述规律,计算:(1−122)×(1−132)×(1−142)×…×(1−120192)=______ .12.化简√1−2x+x2−(√x−2)2的结果是______.13.方程(x+3)2=5(x+3)的解为______14.已知在矩形ABCD中,AC=12,∠ACB=15°,那么顶点D到AC的距离为______ .三、解答题(本大题共9小题,共90.0分)15.计算:(1)(√5+√3)−√3(2)2√3−4√316.解下列方程(1)x2+2x−1=0(2)(3x−7)2=2(3x−7)17.先观察下列算式,再解答问题.1−122=12×32、1−132=23×43、1−142=34×54(1)按上述规律填空:1−11002=______×______1−120092=______×______.(2)计算:(1−122)⋅(1−132)⋅…⋅(1−120182)⋅(1−120192)18.小红同学要测量A、C两地的距离,但A、C之间有一水池,不能直接测量,于是她在A、C同一平面上选取了一点B,测量得到AB=80米,BC=20米,∠ABC=120°,请你帮助小红同学求出A、C两点之间的距离(参考数据√20≈4.5,√21≈4.6)19. 已知关于x 的方程x 2+2(2−m)x −3=0,(1)求证:无论m 取什么实数,该方程一定有两个不相等的实数根.(2)若已知该方程的一个根是−1,请求出另一个根.20. 如图:在△ABC 中,CD 是AB 边上的高,AC =20,BC =15,DB =9.(1)求CD 的长;(2)△ABC 是直角三角形吗?为什么?21. 已知x =√3−1√3+1,y =√3+1√3−1,求x 2+3xy +y 2的值.22.如图,一块长5米宽4米的地毯,为了美观设计了两横、两纵的配色条纹(图中阴影部分),已.求配色条纹的宽度.知配色条纹的宽度相同,所占面积是整个地毯面积的178023.如图,在平面直角坐标中,ABC的三顶点坐标为A(−3,4)B(−,),C(−1),且AB1与△AC于原点O成中心对称.Pa,b)是△ABC的AC边一点,C经平后P的应点′(a+3,b+1),画平移后的△A2B22.【答案与解析】1.答案:B解析:解:由题意得:2x−4≠0,解得:x≠2,故选:B.根据分式有意义分母不为零可得2x−4≠0,再解即可.此题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.2.答案:C解析:解:A、当a=0时,该方程不是一元二次方程,故本选项错误.B、该方程中含有2个未知数,不是一元二次方程,故本选项错误;C、该方程符合一元二次方程的定义,故本选项正确;D、该方程属于分式方程,故本选项错误;故选:C.本题根据一元二次方程的定义求解.一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.本题考查了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.3.答案:A解析:根据直角三角形的判定方法:判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可;若已知角,只要求得一个角为90°即可,对选项进行逐一分析,排除错误答案.解:A、三条边的比为1:2:3,12+22≠32,故错误;B、三条边满足关系a2=b2−c2,故正确;C、三个角的比为1:2:3,设最小的角为x,则x+2x+3x=180°,x=30°,3x=90°,故正确;D、三个角满足关系∠B+∠C=∠A,则∠A为90°,故正确.故选:A.4.答案:B解析:解:√3−√3(1+√3)=√3−√3−3=−3.故选:B.先进行二次根式的乘法运算,然后合并即可.本题考查了二次根式的混合运算:在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.5.答案:C解析:解:当x=3时,x2=9,所以x=3不是方程x2=3的解;当x=3时,x2−4x−3=9−12−3=−6,所以x=3不是方程x2−4x−3=0的解;当x=3时,x2−4x=9−12=−3,所以x=3是方程x2−4x=−3的解;当x=3时,x(x−1)=6,x−3,0,所以x=3是方程x(x−1)=x−3的解.故选:C.利用一元二次方程解的定义对各选项分别进行判断.本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.6.答案:A解析:解:A、√5−2是一个无理数,故符合题意;B、√5−2比0大,故不符合题意;C、√5−2能用数轴上的点表示出来,故不符合题意;D、√5−2它的相反数为−√5+2,故不符合题意.故选:A.根据无理数的意义、数的大小比较,数轴的性质,相反数的定义进行判断即可.本题考查的是实数的概念和分类,掌握无理数的概念和意义是解题的关键.7.答案:B解析:解:由题意CD=√m2+n2=2,∵E为CD中点,CD=1,∴OE=12∴点E在O为圆心,1为半径的圆上,作点A关于直线y=2的对称点A′,连接OA′交直线y=2于B,交⊙O于E.此时BA+BE=BA′+BE的值最小.在Rt△OAA′中,OA′=√32+42=5,∴EA′=5−1=4,∴BA+BE的最小值为4,故选:B.首先证明点E在O为圆心,1为半径的圆上,作点A关于直线y=2的对称点A′,连接OA′交直线y=2于B,交⊙O于E.此时BA+BE=BA′+BE的值最小.本题考查轴对称−最短问题,坐标与图形的性质,勾股定理等知识,解题的关键是灵活运用所学知识,学会利用轴对称解决最短问题.8.答案:C解析:解:根据判断无理数的3类方法,可以直接得知:√2是开方开不尽的数是无理数,π属于π类是无理数,5因此无理数有2个.故选:C.要确定题目中的无理数,在明确无理数的定义的前提下,知道无理数分为3大类:π类,开方开不尽的数,无限不循环的小数,根据这3类就可以确定无理数的个数.从而得到答案.本题考查了无理数的定义,判断无理数的方法,要求学生对无理数的概念的理解要透彻.9.答案:B解析:解:根据题意得x 1+x 2=2,x 1x 2=−7,所以x 1+x 2−x 1x 2=2−(−7)=9.故选B .根据根与系数的关系得到x 1+x 2=2,x 1x 2=−7,然后利用整体代入的方法计算.本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx +c =0(a ≠0)的两根时,x 1+x 2=−b a ,x 1x 2=c a . 10.答案:C解析:解:根据题意列得:(a +3)2−a 2=a 2+6a +9−a 2=(6a +9)平方厘米, 则新正方形的面积增加了(6a +9)平方厘米.故选C .11.答案:10102019解析:解:原式=(1+12)×(1−12)×(1+13)×(1−13)×(1+14)×(1−14)×…×(1+12019)×(1−12019)=32×12×43×23×54×34×…×20202019×20182019 =12×20202019=10102019,故答案为:10102019,.先根据平方差公式进行计算,再根据有理数的乘法法则求出答案即可.本题考查了有理数的乘法和平方差公式,能灵活运用平方差公式进行计算是解此题的关键. 12.答案:1解析:解:∵√x −2一定有意义,∴x −2≥0,解得:x≥2,∴原式=x−1−(x−2)=1.故答案为:1.直接利用二次根式有意义的条件得出x的取值范围,进而化简得出答案.此题主要考查了二次根式的乘除以及二次根式的性质与化简,正确得出x的取值范围是解题关键.13.答案:x1=−3,x2=2解析:解:(x+3)2=5(x+3),(x+3)2−5(x+3)=0,(x+3)(x+3−5)=0,x+3=0,x+3−5=0,x1=−3,x2=2,故答案为:x1=−3,x2=2.分解因式,即可得出两个一元一次方程,求出方程的解即可.本题考查了解一元二次方程,能选择适当的方法解一元二次方程是解此题的关键,注意:解一元二次方程的方法有:直接开平方法,公式法,配方法,因式分解法等.14.答案:3解析:解:由题意得:AB=ACsin∠ACB=3√6−3√2,BC=3√6+3√2,S△ADC=12AD⋅DC=12AC⋅DE=9,∴DE=3.故答案为:3.先利用三角函数的值分别求出AB及BC,然后利用三角形ADC面积的两种表示形式可求出DE的长.此题考查的是矩形的性质,解答本题的关键是根据∠ACB的度数求出AB及AC的长,这要求我们熟练掌握三角函数值的求解方法,必要的时候要借助计算器.15.答案:解:(1)原式=√5+√3−√3=√5;(2)原式=(2−4)√3=−2√3.解析:(1)直接去括号,进而合并同类二次根式得出答案;(2)直接合并同类二次根式得出答案.此题主要考查了二次根式的加减运算,正确掌握运算法则是解题关键.16.答案:解:(1)x2+2x−1=0,b2−4ac=22−4×1×(−1)=8,x=−2±√82,x1=−1+√2,x2=−1−√2;(2)移项得:(3x−7)2−2(3x−7)=0,(3x−7)(3x−7−2)=0,3x−7=0,3x−7−2=0,x1=73,x2=3.解析:(1)先求出b2−4ac的值,再代入公式求出即可;(2)移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.本题考查了解一元二次方程,能选择适当的方法解方程是解此题的关键.17.答案:991001011002008200920102009解析:解:(1)1−11002=99100×101100,1−120092=20082009×20102009,故答案为:99100,101100,20082009,20102009;(2)原式=12×32×23×43×…×20172018×20192018×20182019×20202019(1)观察已知等式确定出所求即可;(2)原式根据题中的规律化简,计算即可得到结果.此题考查了有理数的混合运算,弄清题中的规律是解本题的关键. 18.答案:解:过C 作CD ⊥AB 交AB 延长线于点D ,∵∠ABC =120°,∴∠CBD =60°,在Rt △BCD 中,∠BCD =90°−∠CBD =30°,∴BD =12BC =12×20=10(米),∴CD =√202−102=10√3(米),∴AD =AB +BD =80+10=90米,在Rt △ACD 中,AC =√AD 2+CD 2≈92(米),答:A 、C 两点之间的距离约为92米.解析:过C 作CD ⊥AB 交AB 延长线于点D ,首先计算出∠BCD 的度数,再根据直角三角形的性质可得BD 长,进而可得CD 长,然后得到AD 长,再利用勾股定理计算出AC 长即可.此题主要考查了勾股定理的应用,关键是掌握直角三角形两直角边的平方和等于斜边的平方. 19.答案:解:(1)∵△=[2(2−m)]2−4×1×(−3)=4(2−m)2+12,4(2−m)2≥0,∴△>0.∴方程有两个不相等的实数根.(2)设方程的另一个根为x ,则−x =−3,解得:x =3.解析:(1)要证明方程有两个不相等的实数根,即证明△>0即可.△=4(2−m)2+12,根据4(2−m)2≥0,可以得到△>0;(2)利用根与系数的关系得出−x=−3,求出x的值即可.本题考查了根的判别式和根与系数的关系,一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2−4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.20.答案:解:(1)∵CD是AB边上的高,∴CD⊥AB,∴∠CDB=∠CDA=90°,在Rt△BCD中,BC=15,DB=9,根据勾股定理得:CD=√BC2−BD2=√152−92=12,(2)△ABC为直角三角形,理由为:在Rt△ACD中,AC=20,CD=12,根据勾股定理得:AD=√AC2−CD2=√202−122=16;∵AB=BD+AD=9+16=25,∴AC2+BC2=AB2,∴△ABC为直角三角形.解析:(1)由CD是AB边上的高,得到△BCD与△ACD都为直角三角形,由BC与DB,利用勾股定理求出CD的长;(2)△ABC为直角三角形,理由为:由BD+AD求出AB的长,利用勾股定理的逆定理得到△ABC为直角三角形.此题考查了勾股定理,以及逆定理,熟练掌握勾股定理及逆定理是解本题的关键.21.答案:解:∵x=√3−1√3+1=√3−1)(√3−1)(√3+1)(√3−1)=4−2√32=2−√3,y=√3+1√3−1=√3+1)(√3+1)(√3−1)(√3+1)=4+2√32=2+√3,∴原式=(x+y)2+xy=(2−√3+2+√3)2+(2−√3)(2+√3)=42+4−3=17.解析:本题主要考查二次根式的化简求值,解题的关键是掌握二次根式的混合运算顺序和运算法则及分母有理化的能力.先将x、y的值分母有理化,再将化简后的x的值代入原式=(x+y)2+xy计算可得.22.答案:解:设条纹的宽度为x米.依题意得2x×5+2x×4−4x2=1780×5×4,解得:x1=174(不符合,舍去),x2=14答:配色条纹宽度为14米.解析:此题考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.注意判断所求的解是否符合题意,舍去不合题意的解,设条纹的宽度为x米.根据所占面积是整个地毯面积的1780构建方程即可解决问题;23.答案:解:如图所:△A2B22是所求的三.解析:首出A、、C的对应,然顺次连接即可求得;把ABC的个顶点别右平移3个位长度,向平1个单位长度即可应点,然后顺次连接即可.本查了图形的对称和图形的平理解(a,b)的对点′(a+3,b+1即把已知的点向右平移个位长度,再向上移1个单长度即得对应点是关.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020学年广东省中山市八年级(下)期中数学试卷一、选择题(共10小题;共30分)1.下列式子没有意义的是().DC .. B . A2.下列命题中,假命题是()A.对角线互相平分的四边形是平行四边形B.对角线互相平分且相等的四边形是矩形C.对角线互相垂直平分的四边形是菱形D.对角线互相垂直且相等的四边形是正方形3.以下列各组数为边长首尾相连,能构成直角三角形的一组是(), C.5,12,17D.,4B.1,26,8,12.A2,34.下列计算正确的是()=.﹣ +== C.A.32×3=36 BD.ABD(1,0)、20,0)、)为平行四边形的三个顶点,则(45.如图,在平面直角坐标系中,,(C的坐标是(第四个顶点)A.(2,5) B.(4,2) C.(5,2) D.(6,2)BCmAC是106=米,如果在楼梯上铺上地毯,那么需,斜边6.如图所示:某商场有一段楼梯,高要地毯的长度是()mmmm 24DC .14.8A.. B10ABCDACBDOABACABCD的面积是(,,对角线如图,7.在菱形中,,相交于点,=5=6则菱形)148D.C.30 A.24 B.26DAPBC﹣3,则表示数32、的点.如图,已知数轴上的点应落在线81、、、2、、分别表示数﹣)段(CDBCAOOB..上上 A.B上.D上 C DAEFDCFEBADABCD)100?°,则∠的周长相等,且∠的度数为(=60°,∠.如图,9?=与35° D..25°C.30°.A20° B DDBCABCDABAC′处,则重叠部分,折叠,点=12,将矩形沿10.如图,在矩形落在点中,=24AFC)的面积为(△90.100 D.80 C.60 A.B 24分)二、填空题(共6小题;共..化简:=11 EDCEDEACBABCDADAC,则∠中,°.=,∠°,=65=⊥于.如图,在平行四边形12SSABCACBABCABC、、9013.如图,已知△中,∠=°,以△的各边为边在△外作三个正方形,21 2 SSSS=,则.分别表示这三个正方形的面积.若81=,=2253213a在数轴上的位置如图所示,则=.14.实数15.在我国古代数学著作《九章算术》中记载了一道有趣的数学问题:“今有池方一丈,葭生其中央,出水一尺.引葭赴岸,适与岸齐.问水深、葭长各几何?”这个数学问题的意思是说:“有一个水池,水面是一个边长为1丈(1丈=10尺)的正方形,在水池正中央长有一根芦苇,芦苇露出水面 1 尺.如果把这根芦苇拉向岸边,它的顶端恰好到达岸边的水面.请问这个水池的深x尺,根据题意,可列方程为.度和这根芦苇的长度各是多少?”设这个水池的深度是aaa[]=14,.现对16.任何实数72,可用[进行如下操作:]表示不超过=的最大整数,如[4]]= [1,这样对72只需进行372] [=次操作后变为81 []=2,类似的,①对81只需进行次操作后变为1;②只需进行3次操作后变为1的所有正整数中,最大的是.三、解答题(共9小题;共66分)17.(8分)计算:﹣;+(1) 4﹣)((2)()22 +CDABBDABCADBC=4=⊥,,=5,18..(6分)如图,在△中,AD的长.(1)求ABC的周长. 2)求△(yx=﹣28分)已知,求下列各式的值:=+2,.(1922yxxy;1()+2+ 322yx.﹣(2)BFCEABCDABCD,连接、在同一条直线上,且20.(6分)如图,四边形、是平行四边形,点=、AEDFAEDF.、=.求证:ABBEA沿墙0.7斜靠在墙上,米.如果梯子的顶端长21.(6分)如图,将长为2.5米长的梯子ACBBD长)多少米?将外移(即0.4米),则梯脚0.4下滑米(即=ABCBEFDBCFABEAD=都是等边三角形,点在在边上,且∠分)如图,△22.(6边上,点和△EDCF.、°,连接60ABEACD;≌△(1)求证:△EFCD是平行四边形.)求证:四边形2 (23.(8分)台风是一种自然灾害,它以台风中心为圆心在周围上千米的范围内形成极端气候,有ABABC为一海港,且由点,已知点极强的破坏力.如图,有一台风中心沿东西方向行驶向点CABABkmkmABkm,以台风中心为圆心400=点,又与直线上两点500,的距离分别为300和km 以内为受影响区域.周围250C受台风影响吗?为什么?)海港1 (kmh,台风影响该海港持续的时间有多长?/ )若台风的速度为(2204aABCDEFGH分割成四个小分)如图,边长为被两条与正方形的边平行的线段的正方形,24.(8EFGHPAFAH.交于点,,连接矩形,与BFDHAFAH.==,求证:(1)若FHFAHFCHa的代数式表示).的周长(用含45(2)连接°,求△,若∠=ABCBACcmADCCA方从点=△60中,∠°,=90°,点=60出发沿,∠分)如图,在25.(10Rt cmsAEAABcmsB匀速2匀速运动,同时点从点/出发沿的速度向点向以4方向以/的速度向点DEtst<0运动,当其中一个点到达终点时,另一个点也随之停止运动.设点(,运动的时间是DDFBCFDEEF.,连接15≤).过点作⊥,于点AEFD是平行四边形;)求证:四边形 1(tDEF为直角三角形?请说明理由.为何值时,△ 2()当52019-2020学年广东省中山市八年级(下)期中数学试卷参考答案与试题解析一、选择题(共10小题;共30分)1.下列式子没有意义的是()... CAD. B【分析】根据二次根式中的被开方数是非负数进行分析即可.A、有意义,故此选项不合题意;【解答】解:B、没有意义,故此选项符合题意;C有意义,故此选项不合题意;、D有意义,故此选项不合题意;、B.故选:【点评】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.2.下列命题中,假命题是()A.对角线互相平分的四边形是平行四边形B.对角线互相平分且相等的四边形是矩形C.对角线互相垂直平分的四边形是菱形D.对角线互相垂直且相等的四边形是正方形AB是真命题,根据是真命题,根据矩形的判定方法可知【分析】根据平行四边形的判定方法可知CD是真命题,根据对角线互相垂直平分且相等的四边形是正方形,可知菱形的判定方法可知是假命题.AB.对角线互相平分且相等的.对角线互相平分的四边形是平行四边形,是真命题;【解答】解:四边形是矩形,是真命题;C.对角线互相垂直平分的四边形是菱形,是真命题;D.对角线互相垂直且相等的四边形是正方形,是假命题;D.故选:【点评】本题主要考查了命题与定理,解题时注意:对角线互相垂直平分且相等的四边形是正方形,对角线互相垂直且相等的四边形可能是等腰梯形或筝形.3.以下列各组数为边长首尾相连,能构成直角三角形的一组是(), C.5,12,17D.6,8,42A.,3,B.12,12222cbabca,那么这个三角形就是直角三角形.【分析】如果三角形的三边长,+,满足=222,可知其不能构成直角三角形;≠【解答】解:根据24+3222,可知其能构成直角三角形;)根据1+(=2 6222,可知其不能构成直角三角形;17+12 ≠根据5222,可知其不能构成直角三角形;12+8 6根据≠B.故选:【点评】本题主要考查了勾股定理的逆定理的运用,解题时注意:要判断一个角是不是直角,先要构造出三角形,然后知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.4.下列计算正确的是()=D 3.6 B﹣.= +3= A.C2×3=.【分析】根据二次根式的运算即可求出答案.AA错误; 12,故6)原式=×2=【解答】解:(BB错误;(与)不是同类二次根式,故CC2(,故)原式=错误;D.故选:【点评】本题考查二次根式的运算,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.ABD(1,0)、20,0)、)为平行四边形的三个顶点,则(45.如图,在平面直角坐标系中,,(C 的坐标是(第四个顶点)A.(2,5) B.(4,2) C.(5,2) D.(6,2)【分析】利用平行四边形的性质即可解决问题.ABCD是平行四边形,【解答】解:∵四边形CDABCDAB,=∥,∴DB(4,0),,(12),∵AB=4,∴C坐标(5,∴点2).C.故选:【点评】本题考查平行四边形的性质、周边游图形的性质的部分知识,解题的关键是灵活运用所学知识解决问题,属于中考基础题.BCmAC是106,斜边米,如果在楼梯上铺上地毯,那么需.如图所示:某商场有一段楼梯,高6=要地毯的长度是()7mmmm24 D C.14.A.8 B.10mBCAB,楼梯的宽的和即为的高=【分析】先根据直角三角形的性质求出6的长,再根据楼梯高为BCABAB、的长相加即可.的长,再把mACABCBCm==610【解答】解:∵△,是直角三角形,mAB(=),==∴8BCAB(米).=+14=8+6∴如果在楼梯上铺地毯,那么至少需要地毯为C故选:.【点评】本题考查的是勾股定理的应用,解答此题的关键是找出楼梯的高和宽与直角三角形两直角边的等量关系ABCDABACACABCDBDO)的面积是(5,=7.如图,在菱形对角线中,6,,相交于点则菱形,=48..C30 DA.24 B.26OB再根据菱形的对角线互相平分求根据菱形的对角线互相垂直,利用勾股定理列式求出,【分析】BDAC、,然后利用菱形的面积等于对角线乘积的一半列式进行计算即可得解.出ABCD【解答】解:∵四边形是菱形,BDACOBODOAOC=,∴,==3,⊥AOBAOB90中,∠°,=在Rt△OB根据勾股定理,得:,=,=,=4OBBD 8∴,=2=BDSAC 2486=∴××=××=.ABCD菱形A故选:.8【点评】本题考查了菱形的周长公式,菱形的对角线互相垂直平分线的性质,勾股定理的应用,比较简单,熟记性质是解题的关键.PDABC应落在线3的点﹣,则表示数2、1.如图,已知数轴上的点8、、2、、、3分别表示数﹣)段(CDOBBCAO.上上 DA.B上..上 C,进而得出答案.﹣<【分析】根据估计无理数的方法得出0<31<<23,【解答】解:∵,∴0<3﹣<1OBP﹣上.故表示数的点3应落在线段B故选:.的取值范围是解题关键.【点评】此题主要考查了估算无理数的大小,得出DAEFDCFEBADABCD)100?°,则∠的周长相等,且∠的度数为(=60°,∠ 9.如图,?=与35° D.°.25 C.30°A.20° B BADADEDCFEABCDADDE°,再由且∠=60即△=【分析】由?与?是等腰三角形,的周长相等,可得到DAEF°,即可求出∠∠的度数.=100CDCDABCDDCFE?,的周长相等,且【解答】解:∵?=与DEAD∴,=DEADAE∵∠,=∠FBAD°,=∵∠100=60°,∠FCDEADC 100°,∠═∠°,=∴∠=120ADE°,°=140°﹣∴∠=360°﹣120100DAE°,=°)÷°﹣∴∠=(180140220 9A.故选:【点评】本题考查了平行四边形的性质:平行四边形的对边相等、平行四边形的对角相等以及邻角互补和等腰三角形的判定和性质、三角形的内角和定理.ABCDABBCACDD′处,则重叠部分,将矩形沿落在点=24,折叠,点=1210.如图,在矩形中,AFC的面积为(△)A.60 B.80 C.100 D.90BCAFAFCAFAFDCFBBF,得边上的高,要求△即可,求证△为的面积,求得【分析】因为′≌△DFDFxAFDxAFABBF,即可得到△′′中,根据勾股定理求,设=′,于是得到=﹣,则在Rt=结果.AFDCFB,′≌△【解答】解:易证△DFBF,∴=′DFxAFx,﹣,则设=′824=222xAFDx,=△+12′中,(24﹣)在Rt x=9,解之得:AFABFB=24﹣9==﹣15,∴AFBCS=90.=? ?∴AFC△D.故选:DFx,根据直角三=【点评】本题考查了翻折变换﹣折叠问题,勾股定理的正确运用,本题中设′AFDx是解题的关键.′中运用勾股定理求角形二、填空题(共6小题;共24分)=.11 .化简:【分析】题目所给的代数式中,分母含有二次根式,所以要通过分母有理化来化简原式.=.【解答】解:【点评】此题主要考查了二次根式的分母有理化.ABCDADACBDEACEEDC= 25 °.6512.如图,在平行四边形中,=,∠=°,⊥于,则∠10DCEDEC中,想办法求出∠即可解决问题.【分析】在Rt△ABCD【解答】解:∵四边形是平行四边形,ADCB°,=∴∠65=∠ACAD=,∵CADC°,=∴∠65=∠ACDE⊥∵,DEC°,=∴∠90CEDC°,==90°﹣∠∴∠25 .故答案为25【点评】本题考查平行四边形的判定、等腰三角形的性质、直角三角形的性质等知识,解题的关键DCE,属于中考常考题型.是利用平行四边形的性质以及等腰三角形的性质求出∠SABCSABCACBABC、.如图,已知△外作三个正方形,中,∠的各边为边在△=90°,以△、1321SSSS.= 81,=225,则分别表示这三个正方形的面积.若144 =3213222ACABBC,即可得出结果.﹣=【分析】根据勾股定理求出144=22ACAB,22581【解答】解:根据题意得:,==ACB90∵∠°,=222ACBCAB,=﹣144﹣∴==225812BCS=144.=则3.故答案为:144BC【点评】考查了勾股定理、正方形的性质、正方形的面积;熟练掌握勾股定理,由勾股定理求出的平方是解决问题的关键.aa.﹣ 14.实数在数轴上的位置如图所示,则=311a的正负,原式利用二次根式性质及绝对值的代数意义化﹣【分析】根据数轴上点的位置判断出3 简,计算即可得到结果.a0,﹣3【解答】解:根据数轴上点的位置得:<aa3﹣,则原式=|3|﹣=a故答案为:3﹣熟练掌握运算法则是解本题的关键.【点评】此题考查了二次根式的性质与化简,以及实数与数轴,.在我国古代数学著作《九章算术》中记载了一道有趣的数学问题:“今有池方一丈,葭生其中15央,出水一尺.引葭赴岸,适与岸齐.问水深、葭长各几何?”这个数学问题的意思是说:“有尺)的正方形,在水池正中央长有一根芦苇,芦苇10丈(1丈=一个水池,水面是一个边长为1尺.如果把这根芦苇拉向岸边,它的顶端恰好到达岸边的水面.请问这个水池的深 1 露出水面22xx=度和这根芦苇的长度各是多少?”设这个水池的深度是尺,根据题意,可列方程为 +52x.( +1)22xxx+5+1尺,则这根芦苇的长度为(【分析】首先设水池的深度为)尺,根据勾股定理可得方程2x,再解即可.=()+1x尺,由题意得:【解答】解:设水池的深度为222xx=(,+1+5)x12解得:,=x 13,+1=则尺,12尺,芦苇长13答:水深222xx +1+5)=(.故答案为:【点评】此题主要考查了勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合领画出准确的示意图.是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,会数形结合的思想的应用.aaa进行如下操作:721.现对]表示不超过]=的最大整数,如[4]=4,16.任何实数,可用[[,次操作后变为=21 [,这样对72只需进行3=]1]]72 [=8 [的所有正整数中,131;②只需进行次操作后变为次操作后变为3 只需进行①对类似的,81.255 最大的是12【分析】①根据规律依次求出即可;②要想确定只需进行3次操作后变为1的所有正整数,关键是确定二次操作后数的大小不能大于4,二次操作时根号内的数必须小于16,而一次操作时正整数255却好满足这一条件,即最大的正整数为255.[]=13]=,,]=【解答】解:①9[, [ ;故答案为:3255,②最大的是,],=3=[]=1,而[]=16,=[]4,,[]=21[=[]15,[]即只需进行3次操作后变为1的所有正整数中,最大的正整数是255,故答案为:255.【点评】本题考查了估算无理数的大小的应用,主要考查学生的阅读能力和猜想能力.三、解答题(共9小题;共66分)17.(8分)计算:﹣;4 +(1)﹣2+2))((2)(【分析】(1)先把各二次根式化简为最简二次根式,然后去合并即可;(2)利用平方差公式计算.2 +3【解答】解:(1)原式=﹣4 5=;(2)原式=12﹣6=6.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.CDABBDABCADBC=,.,=5,418.(6分)如图,在△中,=⊥AD)求的长.(1ABC的周长.(2)求△AD;)根据勾股定理求出【分析】(1AC,计算即可.(2)根据勾股定理求出ADABD ==3Rt1【解答】解:()在△中,;13 ACACD2,=(2)在Rt△=中,BCABACABC9+35+4+.则△=的周长= +=++2abc,那么【点评】本题考查的是勾股定理,掌握直角三角形的两条直角边长分别是,斜边长为,222cab是解题的关键.=+yx=﹣2分)已知,求下列各式的值:+2=, 19.(822yxxy;(1)+ +222yx.﹣(2)【分析】(1)根据完全平方公式计算即可;(2)根据平方差公式计算即可.2yx +【解答】解:(1)原式=()2)﹣=(2+2+=12;xyxy)+﹣)((2)原式=(﹣+2))(+2=(+2+﹣24 ×2==.【点评】本题考查二次根式的分母有理化;主要根据二次根式的乘除法法则进行二次根式有理化.BFCEABCDABCD,连接、在同一条直线上,且、=20.(6分)如图,四边形、是平行四边形,点AEDFAEDF.、=.求证:BFCEBECFBECFEBC=∠,,根据平行线的性质得到∠【分析】根据四边形是平行四边形,得到∥=FCBABEDCF,根据全等三角形的性质即可得到结论.=∠,根据邻补角的定义得到∠BFCE是平行四边形,【解答】解:∵四边形BECFBECF,∴=∥,EBCFCB,=∠∴∠ABCD在同一条直线上,、∵点、、ABEDCF,=∠∴∠DCFABE中,,在△与△14ABEDCF,≌△∴△AEDF.∴=【点评】此题主要考查了平行四边形的性质、全等三角形的判定与性质;熟练掌握平行四边形的判定与性质,证明三角形全等是解决问题的关键.ABBEA沿墙米.如果梯子的顶端长6分)如图,将长为2.5米长的梯子0.7斜靠在墙上,21.(ACBBD长)多少米?米),则梯脚 0.4米(即将外移(即=0.4下滑AEDEBDDEBE求出答案.,的长,再利用﹣【分析】直接利用勾股定理得出=ABBE=0.7米,=2.5米,【解答】解:由题意得:222BEAEBABEAEAB,△中∠=90°,=﹣∵在RtmAE);(==∴2.4EC=2.4﹣0.4=2由题意得:(米),CDECED=90中∠°,∵在Rt△222CEDECD,﹣=DE==1.5∴(米),BDDEBE=1.5﹣0.7=0.8∴=(米),﹣BBD长)0.8米.将外移(即答:梯脚【点评】此题主要考查了勾股定理的应用,正确应用勾股定理是解题关键.ABCBEFDBCFABEAD=边上,点边上,且∠22.(6分)如图,△和△在都是等边三角形,点在EDCF.°,连接、60ABEACD;(1)求证:△≌△EFCD是平行四边形. 2()求证:四边形15ACDEBACADABACABEACDEAB,=∠【分析】(1)欲证明△≌△=只要证明∠即可.=∠,∠CDEFEFCDEFCD∥=,(2)欲证明四边形即可.是平行四边形,只要证明BEFABC和△【解答】证明:(1)∵△都是等边三角形,BACACBACEBFAB60=∠∴°,==∠,∠=EAD60∵∠°,=BACEAD∴∠,=∠CADEAB∴∠,=∠ACDABE在△中,和△,ACDABE≌△.∴△ACDABE≌△,(2)由(1)得△CDBE=∴,ABCBEF、△∵△是等边三角形,EFBE=∴,ABCEFB 60=∠°,=∴∠CDEF∴,∥CDEFBE=∴,=CDEFEFCD=∥,且,∴EFCD是平行四边形.∴四边形全等三角形的判定和性质等知识,等边三角形的性质、【点评】本题考查平行四边形的判定和性质、属于中考常灵活应用平行四边形的判定方法,解题的关键是熟练掌握全等三角形的判定和性质,考题型.分)台风是一种自然灾害,它以台风中心为圆心在周围上千米的范围内形成极端气候,有.(823CAABB为一海港,且极强的破坏力.如图,有一台风中心沿东西方向由点行驶向点,已知点16CABABkmkmABkm,以台风中心为圆心,又500的距离分别为300点和与直线 400上两点=,km 以内为受影响区域.周围250C受台风影响吗?为什么?(1)海港kmh,台风影响该海港持续的时间有多长?20 /(2)若台风的速度为ABCCD的长,)利用勾股定理的逆定理得出△是直角三角形,进而利用三角形面积得出(【分析】1C是否受台风影响;进而得出海港EDEF的长,进而得出台风影响该海港持续的时间.以及(2)利用勾股定理得出C受台风影响. 1)海港【解答】解:(CCDABD,作于⊥理由:如图,过点ACkmBCkmABkm,500,=300 ,==400∵222ABACBC.∴=+ABC是直角三角形.∴△ACBCCDAB=∴××CD×400=500∴300×kmCD)∴240(==km以内为受影响区域,250∵以台风中心为圆心周围C受到台风影响.∴海港ECkmFCkmC港口,250)当=250,时,正好影响=(2kmED),(∵ 70==kmEF∴140=hkm /20∵台风的速度为, 7(小时)=÷∴14020 即台风影响该海港持续的时间为7小时.【点评】本题考查的是勾股定理在实际生活中的运用,解答此类题目的关键是构造出直角三角形,17再利用勾股定理解答.aABCDEFGH分割成四个小的正方形,24.(8分)如图,边长为被两条与正方形的边平行的线段EFGHPAFAH.矩形,,连接与,交于点BFDHAFAH.,求证:(1)若==FHFAHFCHa的代数式表示).°,求△,若∠的周长(用含=45(2)连接ABF与△)根据题意和矩形的性质、正方形的性质,利用全等三角形的判定可以得到△(1【分析】ADH全等,从而可以证明结论成立;ADHAABMAMAHDHBM,再根,可以得到,(2)利用旋转的性质,将△=绕点顺时针旋转90°到△=FCH的周长.据全等三角形的判定与性质即可求得△ABCD是正方形,)∵四边形【解答】证明:(1ADABDB=90,∠°,∴=∠=ABFADH中,和△在△,ABFADHSAS),≌△(∴△AFAH;∴=ADHAABM的位置,如图所示, 902)将△°到△绕点顺时针旋转(AMAHDAHBAM,则==∠,∠FAHDAB=90°,=45°,∠∵∠DAHBAF=45°,+∠∴∠BAMBAF=45∠°,∴∠ +FAM=45°,即∠FAMFAH,=∠∴∠FAMFAH中,在△和△,FAMFAHSAS),∴△≌△(MFHF,∴=18MFBFBMBFDH,++∵==FCHCFCHFHCFCHBFDHBCCDa,2++∴△+的周长为: +=+==+FCHa.2即△的周长为【点评】本题考查全等三角形的判定与性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.ABCBACcmADCCA方从点,∠出发沿Rt10分)如图,在△=中,∠60=90°,°,点=6025.(cmsAEAABcmsB匀速出发沿向以4//方向以的速度向点2匀速运动,同时点从点的速度向点DEtst<运动,当其中一个点到达终点时,另一个点也随之停止运动.设点0,(运动的时间是DDFBCFDEEF.,于点≤15).过点,连接作⊥AEFD是平行四边形;)求证:四边形(1tDEF为直角三角形?请说明理由.为何值时,△(2)当CDFDF=,得到=30【分析】(1)根据三角形内角和定理得到∠°,根据直角三角形的性质求出AE,根据平行四边形的判定定理证明;EDFDEF=90°、∠°两种情况,根据直角三角形的性质列出算式,计算即可.(2)分∠=90BA =60°,)证明:∵∠=90°,∠【解答】(1C=30°,∴∠ACAB=30,=∴CDtAEt,=由题意得,2=4,DFBCC=30°,∵⊥,∠CDDFt,2=∴=DFAE,∴=DFAEDFAE,,=∵∥AEFD是平行四边形;∴四边形19EDF=90°时,如图①,2)当∠(DEBC,∥∵ADEC=30=∠°,∴∠ADAEtt×2, 60﹣4=∴=22,即t=,解得,DEF=90°时,如图②,当∠ADEF,∥∵DEAC,⊥∴AEADtt),﹣42=2×(∴60=2,即t=12,解得,DEFt为直角三角形.或12综上所述,当时,△=【点评】本题考查的是平行四边形的判定、直角三角形的性质,掌握平行四边形的判定定理、含30°的直角三角形的性质是解题的关键.20。

相关文档
最新文档