汽车底盘讲座——悬架系统-完整版

合集下载

汽车底盘机械维修 项目五 悬架系统的检修

汽车底盘机械维修 项目五 悬架系统的检修
图 5-1-13 轮胎磨损标志
20
汽车底盘机械维修
(4)如图5-1-14所示,检查并记录轮胎气压。
图 5-1-14 检查轮胎气压
21
汽车底盘机械维修
(5)如图5-1-15所示,检查气嘴气密性。
图5-1-15 检查气嘴气密性 (6)检查轮辋损坏或腐蚀。 (7)检查备用轮胎。
22
汽车底盘机械维修
查看维修手册,按照车轮换位方法进行车轮换位,同时注意是否有 备胎。
9
图5-1-4 铝合金车轮
汽车底盘机械维修
2)轮辋 轮辋用于安装和固定轮胎。按其结构不同,轮辋的常见结构形式有:深 槽轮辋、平底轮辋和对开式轮辋,如图5-1-5所示。此外,还有半深槽轮辋、 深槽宽轮辋、平底宽轮辋、全斜底轮辋等。
图5-1-5 轮辋的常见结构形式
10
汽车底盘机械维修
2. 车轮的换位方法 车轮换位方法如图 5-1-6所示。方法A将后轮交叉换至前轮,前轮单边 换至后轮,对于无方向要求的车轮可使用该方法;方法B进行前后轮单边 换位。具体选择方法参看各种车型的维修手册确定。
图 5-1-6 车轮换位方法
11
汽车底盘机械维修
车轮换位时注意事项。 (1)前、后轮胎所起的作用不同,因而磨损情况也不同,轮胎磨损的 程度取决于路面状况、驾驶习惯、车轮定位、车轮平衡和轮胎气压等各种 因素。 (2)定期将车轮换位,以平衡车轮的磨损。除了定期的车轮换位,每 当发现轮胎已磨损不均匀,也应将车轮换位。 (3)子午线轮胎车轮换位顺序如图5-1-7所示。有备用胎时的车轮换位 顺序如图5-1-8所示。
图 5-1-11 检查轮胎是否损坏
18
汽车底盘机械维修
(2)检查并清除轮胎花纹中堆积的杂物等。 (3)如图 5-1-12 所示,测量轮胎花纹深度,检查花纹深度是否低于 1.6mm。

浅析汽车底盘主动悬架控制方法

浅析汽车底盘主动悬架控制方法

浅析汽车底盘主动悬架控制方法汽车底盘主动悬架控制方法是指通过车辆悬架系统中的传感器、执行器和控制单元等设备,实现对悬架系统的主动调节和控制,以提高车辆操控性能、乘坐舒适性和安全性。

随着汽车科技的不断发展,底盘主动悬架控制技术已经成为了现代汽车的标配之一。

本文将从工作原理、控制方式和应用范围等方面逐一进行深入分析,以便读者更好地理解和掌握这一重要的汽车技术。

一、工作原理底盘主动悬架控制系统的工作原理主要通过悬架系统中的传感器实时感知车辆行驶状况和路况,将这些信息传输到控制单元,然后由控制单元根据预设的控制策略来调节悬架系统的工作状态,从而实现对车辆悬架系统的主动控制。

具体来说,底盘主动悬架控制系统通常包括以下几个基本组成部分:1.传感器:一般包括车辆姿态传感器、悬架行程传感器、车速传感器、路面传感器等,用于感知车辆行驶状况和路况。

2.执行器:一般包括气压悬架、电磁悬架、液压悬架等,用于根据控制单元的指令对车辆悬架系统进行动态调节。

3.控制单元:一般包括主控制器和执行控制器等,用于接收传感器的信号、根据预设的控制策略生成控制指令,并将控制指令发送给执行器。

通过这些组成部分的协同工作,底盘主动悬架控制系统可以实现对车辆姿态、悬架刚度、悬架高度等参数的主动调节,从而实现对车辆悬架系统的主动控制。

这样一来,车辆可以根据不同的行驶状况和路况,自动调整悬架系统的工作状态,以提高车辆的操控性能、乘坐舒适性和安全性。

二、控制方式底盘主动悬架控制系统的控制方式主要包括主动悬架控制、半主动悬架控制和预测悬架控制等几种基本方式。

2.半主动悬架控制:半主动悬架控制是指控制单元根据传感器感知到的车辆行驶状况和路况,通过执行器对悬架系统进行动态调节,但是在这种方式下,悬架系统的动态调节范围和速度相对较小,不能完全实现对车辆悬架系统的主动控制。

3.预测悬架控制:预测悬架控制是指控制单元通过对路况和行驶状况进行预测,提前生成控制指令,并将控制指令发送给执行器,以预测性地对悬架系统进行动态调节,从而提高车辆的操控性能和乘坐舒适性。

汽车悬架系统设计要点

汽车悬架系统设计要点
9减小转为了提高车辆的灵活性减小转弯半径而改变转向梯型弯半径而改变转向梯型阿克曼偏差ttttttttttttppttttttttttttppq1122修改以达到不同的方向盘转角修改以达到不同的方向盘转角轿车转向系统角传动比一般为轿车转向系统角传动比一般为1517在作加长车时要考虑这个值阿克曼偏差o方向盘转角oab某些参考车型前轴的阿克曼角实例某些参考车型前轴的阿克曼角实例05101520254003002001000100200300400方向盘转角和转向角的关系方向盘转角和转向角的关系方向盘转角方向盘转角o
汽车悬架系统设计
——徐东升
汽车悬架的主要功用
汽车悬架是将车架(或车身)与车轴(或直接与车 轮)弹性联接的部件。其主要功用如下: (1)缓和,抑制由于不平路面所引起的振动或冲击以保 证汽车具有良好的平顺性。 (2)迅速衰减车身和车桥(或车轮)的振动。 (3)传递作用在车轮和车架(车身)之间的各种力(垂 直力,纵向力,横向力)和力矩(制动力矩和反作用力 矩)。 (4)保证汽车行驶所必要的稳定性。
阿克曼偏差
o
修改以达到不同的方向盘转角
t
q
t
轿车转向系统角传动比一般为15-17
2
1
在作加长车时 要考虑这个值
p
某些参考车型前轴的阿克曼角实例
阿克曼偏差 (o)
A B
方向盘转角 (o)
方向盘转角和转向角的关系
25
20
车轮转角 (o)
15
10
5
0 -400 -300 -200 -100 0 100 200 300 400
定义车轮中心处的主销偏置距
Braccio trasversale a centro ruota (mm)

汽车底盘系统及零部件介绍ppt课件

汽车底盘系统及零部件介绍ppt课件

2024年7月30日星期二
100
汽车转向系的功用及类型
转向系的功用: 改变汽车行驶方向,使其按驾驶员规定
的方向行驶;克服由于路面侧向干扰力使车 轮自行产生的转向,恢复汽车原来的行驶方 向。 转向系的类型:
机械转向系、动力转向系
2024年7月30日星期二
101
机械转向系示意图
2024年7月30日星期二
78
悬架的组成及分类
组成: -弹性元件 -导向装置 -减振器 -横向稳定器
分类: -非独立悬架 -独立悬架
2024年7月30日星期二
79
独立悬架与非独立悬架示意图
2024年7月30日星期二
观看动画:
观看动画:
80
钢板弹簧式非独立悬架
2024年7月30日星期二
81
独立悬架的类型
横臂式独立悬架 纵臂式独立悬架 滑柱连杆式独立悬架(烛式和麦弗逊式) 斜臂式独立悬架
自锁与互锁
2024年7月30日星期二
40
自锁原理
观看动画:
2024年7月30日星期二
41
互锁原理
观看动画:
2024年7月30日星期二
42
倒档锁原理
观看动画:
2024年7月30日星期二
43
自动变速器AT
2024年7月30日星期二
液力变矩器 行星齿轮装置 液压控制系统 电子控制系统
44
自动变速器工作原理
2024年7月30日星期二
88
多连杆式独立悬架
2024年7月30日星期二
89
弹性元件的类型
钢板弹簧 螺旋弹簧 扭杆弹簧 空气弹簧 油气弹簧
2024年7月30日星期二
90

底盘与悬挂参数

底盘与悬挂参数

●驱动方式驱动方式指车辆驱动轮的数量和位置。

一般的车辆都有前、后两排轮子,其中直接由发动机驱动转动,从而推动(或拉动)汽车前进的轮子就是驱动轮。

由于汽车驱动轮的数量以及所处位置的不同,从而使汽车拥有多种驱动的方式。

根据驱动轮的位置和数量车辆的驱动方式可以分为以下几种形式:两轮驱动:其中包括前轮驱动和后轮驱动全轮驱动:其中包括全时全轮驱动和接通式全轮驱动前轮驱动前轮驱动是指发动机的动力直接传递给前轮从而带动车辆前进的驱动方式。

形象地说,就是前进时前轮“拖动”后轮,带动车辆行进。

前轮驱动的优点是:更容易布置车内成员空间,并且机械结构简单,造价便宜,从而节省成本。

如今60%以上的轿车都采用了这种驱动形式,95%的中级车以下的车型都使用前轮驱动。

前轮驱动的缺点是:由于前轮驱动前轮既负责驱动车辆又负责车辆转向,前轴负荷过重,这使得前轮驱动的车辆在过弯时前部重心会因惯性而前移,容易突破前轮的地面附着力,而后轮又没有动力,则会发生转向不足,即我们俗称的“推头”。

『前轮驱动车型示意图』后轮驱动后轮驱动是指发动机的动力通过传动轴传递给后轮,从而推动车辆前进的驱动形式,后轮驱动是一种比较传统的驱动形式,最早的汽车基本上都是后轮驱动。

在后轮驱动中,后轮为驱动轮负责驱动整个车辆,而前轮为导向轮负责转向,形象地说,就是前进时后轮“推动”前轮,带动车辆行进。

后轮驱动的优点:1.操控性好:后轮负责驱动,令前轮可专注于转向工作,因此转向时的车辆反应更加敏捷。

2.起步加速表现好,舒适度高:车辆起步、加速或爬坡时重心后移,后轮作为驱动轮抓地力增强,有利于车辆起步、加速或爬坡,提供更好的行驶稳定性和舒适度。

后轮驱动的缺点:1.制造成本较高、空间利用不便。

2.在转弯的时候,如果后轮转速高于前轮,便会出现转向过度的情况,即我们所说的“甩尾”。

平时我们所看到的漂移其实就是充分利用车辆的转向过度来驾驶,这需要较高的驾驶技术,而对于普通驾驶者来说,转向过度并不是什么好事。

汽车悬置系统设计指南(一)2024

汽车悬置系统设计指南(一)2024

汽车悬置系统设计指南(一)引言概述:汽车悬置系统是汽车底盘系统的重要组成部分,对于汽车的驾驶稳定性和乘坐舒适性至关重要。

本文旨在提供汽车悬置系统设计的指南,帮助读者了解悬置系统的基本原理和设计要点,从而优化汽车悬置系统的性能与驾驶舒适。

正文内容:一、悬置系统基本原理1. 悬置系统的定义和作用2. 悬置系统的基本组成部分3. 悬置系统的工作原理4. 悬置系统与驾驶稳定性的关系5. 悬置系统与乘坐舒适性的关系二、悬置系统设计要点1. 悬置系统弹簧的选取和设计2. 悬置系统减震器的选择和调整3. 悬置系统阻尼的调节和优化4. 悬置系统材料的选择与优化5. 悬置系统与车体结构的匹配设计三、悬置系统振动控制1. 悬置系统振动类型与特性2. 悬置系统振动控制的方法3. 悬置系统调频器的设计与优化4. 悬置系统振动控制与驾驶稳定性的关系5. 悬置系统振动控制与乘坐舒适性的关系四、悬置系统磨损与维护1. 悬置系统磨损的原因与表现2. 悬置系统磨损程度的检测方法3. 悬置系统磨损的预防与延长寿命的方法4. 悬置系统维护的注意事项5. 悬置系统维护对驾驶稳定性和乘坐舒适性的影响五、悬置系统创新与发展趋势1. 悬置系统新材料的应用2. 悬置系统主动控制技术的发展3. 悬置系统电子化的趋势4. 悬置系统智能化的发展5. 悬置系统可持续发展的方向结论:通过本文的介绍,读者可以更好地理解汽车悬置系统的设计原理和要点,并在实际应用中引导悬置系统的优化与改进。

汽车悬置系统的设计不仅影响驾驶稳定性和乘坐舒适性,也与汽车的安全性和性能密切相关。

因此,合理设计和维护汽车悬置系统对于提高整车的操控性和乘坐舒适性至关重要。

未来,随着汽车技术的飞速发展,悬置系统将面临更多的创新与发展机遇,我们期待悬置系统能够更好地满足人们对于汽车驾驶体验和乘坐舒适性的需求。

汽车悬架

汽车悬架

汽车悬架的检测悬架装置是汽车底盘的一个重要装置,通常由弹性元件、导向装置和减振器三部分组成。

汽车悬架系统的故障将直接影响汽车的行驶平顺性、操纵稳定性和行驶安全性。

因此,悬架装置的技术状况和工作性能,对汽车整体性能有着重要影响。

所以,检测悬架装置的工作性能是十分重要的。

汽车悬架装置工作性能的检测方法有经验法、按压车体法和试验台检测法三种类型。

经验法是通过人工外观检视的方法,主要从外部检查悬架装置的弹簧是否有裂纹,弹簧和导向装置的连接螺栓是否松动,减振器是否漏油、缺油和损坏等项目。

按压车体法既可以人工按压车体,也可以用试验台的动力按压车体。

按压使车体上下运动,观察悬架装置减振器和各部件的工作情况,凭经验判断是否需要更换或修理减振器和其他部件。

检测台能快速检测、诊断悬架装置工作性能,并能进行定量分析。

根据激振方式不同,悬架装置检测台可分为跌落式和共振式两种类型。

其中,共振式悬架装置检测台根据检测参数的不同,又可分为测力式和测位移式两种类型。

(一)悬架检测台的结构与检测方法1.悬架装置检测台的工作原理(1)跌落式悬架装置检测台测试中,先通过举升装置将汽车升起一定高度,然后突然松开支撑机构,车辆落下产生自由振动。

用测量装置测量车体振幅或者用压力传感器测量车轮对台面的冲击压力,对振幅或压力分析处理后,评价汽车悬架装置的工作性能。

(2)共振式悬架装置检测台通过试验台的电动机、偏心轮、蓄能飞轮和弹簧组成的激振器,迫使试验台台面及其上被检汽车悬架装置产生振动。

在开机数秒后断开电机电源,从而由蓄能飞轮产生扫频激振。

由于电机的频率比车轮固有频率高,因此蓄能飞轮逐渐降速的扫频激振过程总可以扫到车轮固有振动频率处,从而使台面-汽车系统产生共振。

通过检测激振后振动衰减过程中力或位移的振动曲线,求出频率和衰减特性,便可判断悬架装置减振器的工作性能。

共振式悬架检测台1-蓄能飞轮;2-电动机;3-偏心轮;4-激振弹簧;5-台面;6-测量装置测力式悬架装置检测台和测位移式悬架装置检测台,一个是测振动衰减过程中的力,另一个是测振动衰减过程中的位移量,它们的结构如图4-15所示。

汽车底盘悬架系统的动力学建模与优化设计

汽车底盘悬架系统的动力学建模与优化设计

汽车底盘悬架系统的动力学建模与优化设计作为汽车底盘中重要的一部分,悬架系统承担着车身支撑以及减震的重要功能。

一个优秀的悬架系统可以提供良好的操控性和驾驶舒适性,对汽车的性能和安全性有着至关重要的影响。

本文将探讨汽车底盘悬架系统的动力学建模与优化设计,旨在提升汽车悬架系统的性能。

一、悬架系统动力学建模悬架系统的动力学建模是优化设计的基础。

动力学建模的目的是描述悬架系统在不同工况下的运动规律和力学特性。

常用的悬架系统动力学模型包括质点模型、弹簧-阻尼-质量模型以及多体动力学模型等。

质点模型是最简单的悬架系统动力学模型,它基于质点运动学和动力学原理来描述悬架系统的运动规律。

质点模型可以用来分析悬架系统的振动特性和悬架与车身的相对运动。

弹簧-阻尼-质量模型是一种常用的悬架系统动力学模型,它把悬架系统看作是由弹簧、减震器和质量单元组成的动力学系统。

这种模型能够更加准确地描述悬架系统的力学特性,包括悬架系统的减震性能和下垂量等。

多体动力学模型是最复杂的悬架系统动力学模型,它考虑了悬架系统的多个部件之间的相互作用。

多体动力学模型可以有效地预测悬架系统在复杂路况下的运动规律和力学响应。

二、悬架系统优化设计基于悬架系统的动力学模型,可以进行悬架系统的优化设计。

悬架系统的优化设计旨在提升汽车的操控性、驾驶舒适性和安全性。

1. 悬架系统刚度与减震器调校悬架系统刚度对汽车的操控性和驾驶舒适性有着重要的影响。

较高的悬架系统刚度可以提高车辆的操控性能,但对驾驶舒适性会产生不利影响。

因此,在悬架系统的优化设计中,需要根据车辆的使用环境和性能要求来选择合适的悬架系统刚度。

减震器是悬架系统中起到减震功能的重要部件。

通过对减震器的调校,可以改善车辆在不同路况下的驾驶舒适性和操控性能。

减震器调校需要考虑悬架系统的刚度、减震器特性以及车辆的动力学特性等因素。

2. 悬架系统动态特性与操控性优化悬架系统的动态特性对车辆的操控性能有着重要的影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档