粤教版高中物理选修3-11.6示波器的奥秘每课一练
物理粤教版高一年级选修3-1第一章第6节示波器的奥秘教学课件课堂练习1

1、如图,在一个E =5N/C 的匀强电场中,静止放入一个电量为q =9
106.1-⨯-C 的粒子,质量为m =kg 10102-⨯,若不考虑其他力的作用,求:1)粒子的运动情况: ,
2)2s 后的动能,电势能变化量
E
E 0
3)若给其向下的初速度s m v /1000=,又将如何?
2、变式训练:若初速度为水平向右s m v /1000=,又将如何?
3、如图,质量为m ,带电量为q 的带电尘埃平行电容板的飞入电容器,若电容器两板间距离为d ,要使带正电粒子直线穿过平行板电容器,A 、B 两板间的电压
应为 。
( 能否忽略重力?)
变式训练:P187 第12题
4、变式训练:如图,一带质量为m 的电微粒的初速度为V 0,方向与水平方向成60°,若要使其保持直线运动,求:1)电场强度E 的大小和方向
2)粒子动能最小时,运动的距离,以及电势能的变化量
3)粒子从开始到速度最小时的时间
11、(07年广东高考17分)如图16所示,沿水平方向放置一条平直光滑槽,它垂直穿过开有小孔的两平行薄板,板相距3.5L 。
槽内有两个质量均为m 的小球A 和B ,球A 带电量为+2q ,球B 带电量为-3q ,两球由长为2L 的轻杆相连,组成一带电系统。
最初A 和B 分别静止于左板的两侧,离板的距离均为L 。
若视小球为质点,不计轻杆的质量,在两板间加上与槽平行向右的匀强电场E 后(设槽和轻杆由特殊绝缘材料制成,不影响电场的分布),求:
(1)球B 刚进入电场时,带电系统的速度大小;
(2)带电系统从开始运动到速度第一次为零所需的时间及球A 相
对右板的位置。
E
B A
E V。
高中物理 1.6 示波器的奥秘每课一练 粤教版选修3-1

1.6 示波器的奥秘每课一练(粤教版选修3-1)一、单项选择题1.如图1611所示,从F处释放一个无初速的电子向B板方向运动,指出下列对电子运动的描述中错误的是(设电源电动势为U)( )图1611A.电子到达B板时的动能是UeB.电子从B板到达C板动能变化量为零C.电子到达D板时动能是3UeD.电子在A板和D板之间做往复运动解析:电子在A、B之间加速,电场力做功W=Ue,在B、C间无电场,做匀速运动,到C、D间电场反向,电子克服电场力做功,至D点速度刚好减至零,然后反向加速,在D、A之间往复运动,所以C错.答案:C的加速电场中由静止开始运动,然后射入2.如图1612所示,电子在电势差为U1电势差为U的两块平行极板间的偏转匀强电场中.在满足电子能射出平行极板区的2条件下,下述四种情况中,一定能使电子的偏转角θ变大的是(图1612A .U 1变大、U 2变大B .U 1变小、U 2变大C .U 1变大、U 2变小D .U 1变小、U 2变小思路点拨:加速电场中被加速,偏转电场中被偏转做类平抛运动. 解析:设电子经加速电场后获得的速度为v 0,由动能定理得 qU 1=mv 202①设偏转电场的极板长为L ,则电子在偏转电场中运动时间 t =L v 0② 电子在偏转电场中受电场力作用获得的加速度 a =qU 2md③电子射出偏转电场时,平行于电场线的速度 v y =at ④由②③④得v y =qU 1Lmdv 0,所以,tanθ=v y v 0=qU 1l mdv 20,①式代入上式得tanθ=U 2L2U 1d ,所以B 正确.答案:B3.如图1613所示,有三个质量相等,分别带正电、负电和不带电的小球,从平行板电场中的P 点以相同的初速度垂直于E 进入电场,它们分别落在A 、B 、C 三点( )图1613A .落到A 点的小球带正电,落到B 点的小球不带电,落到C 点的小球带负电. B .三小球在电场中运动的时间相等C .三小球到达正极板时动能关系:E KA >E KB >E KCD .三小球在电场中运动的加速度关系:a A >a B >a C解析:由图知A 的射程最远,x =v 0t ,t A 最大,又由h =12at 2知a A 最小,a C 最大,所以A 正确.B 、D 错误,由动能定理知C 错. 答案:A4.如图1614所示,有一带电粒子贴A 板沿水平方向射入匀强电场,当偏转电压为U 1时,带电粒子沿轨迹①从两板正中间飞出;当偏转电压为U 2时,带电粒子沿轨迹②落到B 板中间;设两次射入电场的水平速度相同,则电压U 1、U 2之比为:( )图1614 A .1∶8 B .1∶4 C .1∶2D .1∶1解析:当偏转电压为U 1时,有12d =12qU 1dm ⎝ ⎛⎭⎪⎫l v 02,同理,当偏转电压为U 2时,有d =12qU 2dm ⎝ ⎛⎭⎪⎫l 2v 02,两式相比可得U 1∶U 2=1∶8. 答案:A 二、双项选择题5.如图1615所示,电子由静止开始从A 板向B 板运动,当到达B 板时速度为v ,保持两板电压不变,则( )图1615A.当增大两板间距离时,v增大B.当减小两板间距离时,v减小C.当改变两板间距离时,v不变D.当增大两板间距离时,电子在两板间运动的时间增大解析:由动能定理得eU=12mv2.当改变两极板间距离时,v不变,故C选项正确.粒子做初速度为零的匀加速直线运动v=dt,v2=dt,即t=2dv,当增大两板间距离时,电子在板间运动时间增大,故D选项正确.答案:CD6.竖直放置的平行金属板A、B连接一恒定电压,两个电荷M和N以相同的速率分别从极板A边缘和两板中间沿竖直方向进入板间电场,恰好从极板B边缘射出电场,如图1616所示,不考虑电荷的重力和它们之间的相互作用,下列说法正确的是( )图1616A.两电荷的电荷量可能相等B.两电荷在电场中运动的时间相等C.两电荷在电场中运动的加速度相等D.两电荷离开电场时的动能相等解析:带电粒子在电场中的类平抛运动可分解为沿电场方向的匀加速运动与垂直电场方向的匀速直线运动两个分运动,所以两电荷在电场中的运动时间相等,B对.又因为d=12at2,a=qEm,因为偏转量d不同,故a一定不同,C错.由a=qEm,因不知m的关系,q可能相等,也可能不相等,故A正确.当q相等时,电荷从进入到离开,电场力做的功不同,由动能定理可知,两电荷离开电场时的动能不同.D错.7.如图1617所示,三块平行金属板a、b、c接在电动势(即电压)分别为E1、和E 2的电源上,已知E1<E2,在紧贴A孔右侧有一带负电的质点(不计重力),由静止释放后向右运动,穿过B孔到达P点,再返回A孔,则( )图1617A.只将b板向右移一小段距离后,再由A孔释放该质点,质点仍运动到P点返回B.只将b板右移稍长距离后,再释放该质点,质点能穿过C孔C.只将b板右移一小段距离后,再释放该质点、质点将越过P点后返回D.若将质点放在紧贴C孔左侧由静止释放,质点将能穿过A孔解析:电场力对带电粒子做功只与电势差和带电粒子电荷量有关.b板移动时,a、b间的电势差没有变,由动能定理得,带电粒子被电场加速运动到b板时的速度不变.若将b板移到P点,但由于b、c间的电势差不变,且E1<E2,故不可能穿过C孔,只能在b、c板间的某一点速度减为零后再返回A孔.若将带电粒子在C点释放,无论a、b、c板是否平移一小段距离,只要各板不相互接触,则b、c板间电场对带粒子做的正功,一定大于a、b板间电场对带电粒子做的负功,带电粒子运动到A 孔时的动能不为零,一定会穿越A孔.答案:CD8.如图1618所示,M、N是竖直放置的两平行金属板,分别带等量异种电荷,两极间产生一个水平向右的匀强电场,场强为E,一质量为m、电量为+q的微粒,以初速度v竖直向上从两极正中间的A点射入匀强电场中,微粒垂直打到N极上的C 点.已知AB=BC.不计空气阻力,则可知( )A.微粒在电场中作抛物线运动B.微粒打到C点时的速率与射入电场时的速率相等C.MN板间的电势差为2mv2/qD.MN板间的电势差为E v2/2g解析:由题意可知,微粒受水平向右的电场力qE和竖直向下的重力mg作用,合力与v0不共线,所以微粒做抛物线运动,A正确;因AB=BC,即v2·t=vc2·t可见vC=v0.故B项正确;由qU2-mgh=0,h=v22y,得U=mv2q,故C项错误;又由mg=qE得q=mgE代入U=mv2q,得U=Ev2g,故D项错误.答案:AB9.图1619为一个示波器工作原理的示意图,电子经电压为U1的加速电场后以速度v垂直进入偏转电场,离开电场时的偏转量是h,两平行板间的距离为d,电势差U2,板长L,为了提高示波管的灵敏度(每单位电压引起的偏转量h/U2)可采取的方法是( )图1619A.增大两板间电势差U2B.尽可能使板长L长些C.尽可能使板间距离d小一些D.使加速电压U1升高一些解析:电子的运动过程可分为两个阶段,即加速和偏转.(1)加速:eU1=12mv2(2)偏转:L =v 0t ,h =12at 2=eU 22mdt 2综合得:h U 2=L 24U 1d ,因此要提高灵敏度则需要:增大L 或减小U 1或减小d ,故答案应选B 、C. 答案:BC 三、非选择题10.如图1620所示,在距地面一定高度的位置以初速度v 0向右水平抛出一个质量为m ,电荷量为q 的带负电小球,小球的落地点与抛出点之间有一段相应的水平距离(水平射程).若在空间加上一竖直方向的匀强电场,使小球的水平射程变为原来的12,求此电场的场强大小和方向.图1620解析:不加电场时小球在空间运动的时间为t ,水平射程为x x =v 0t下落高度h =12gt 2加电场后小球在空间的运动时间为t′,小球运动的加速度为a 12x =v 0t′,h =12at′2 由以上各式,得 a =4g则场强方向只能竖直向上,根据牛顿第二定律 mg +qE =ma 联立解得:所以E =3mgq方向竖直向上.答案:3mgq方向竖直向上.11.如图1621所示,边长为L 的正方形区域abcd 内存在着匀强电场.电荷量为q 、动能为E k 的带电粒子从a 点沿ab 方向进入电场,不计重力.图1621(1)若粒子从c 点离开电场,求电场强度的大小和粒子离开电场时的动能. (2)若粒子离开电场时动能为E k ′,则电场强度为多大?解析:(1)粒子在电场中做类平抛运动,在垂直于电场方向:L =v 0t 在平行于电场方向: L =12at 2=qEt 22m =qEL 22mv 20 所以E =4E kqLqEL =E kt -E k 则E kt =qEL +E k =5E k(2)若粒子由bc 边离开电场,则L =v 0t v y =qE m t =qEL mv 0由动能定理得: E k ′-E k =12mv 2y =q 2E 2L 24E kE =2E kE k ′-E k qL若粒子由cd 边离开电场,由动能定理得qEL=Ek ′-Ek所以E=Ek′-EkqL答案:(1)4EkqL5Ek(2)粒子由bc边离开电场时,E=2EkEk′-EkqL粒子由cd边离开电场时,E=Ek′-EkqL12.如图1622所示,水平放置的两平行金属板,板长为10 cm,两板相距2 cm.一束电子以v=4.0×107 m/s的初速度从两板中央水平射入板间,然后从板间飞出射到距板右端L为45 cm、宽D为20 cm的荧光屏上.(不计电子重力,荧光屏中点在两板间的中央线上,电子质量m=0.9×10-30 kg,电荷量e=1.6×10-19 C)求:图1622(1)电子飞入两板前所经历的加速电场的电压;(2)为了使点电荷能射中荧光屏所有位置,两板间所加电压的取值范围.解析:(1)设加速电场的电压为U1,由动能定理可得eU1=12mv2-0化简得U1=mv22e,代入数据得U1=4.50×103 V.(2)如下图所示,设电子飞出偏转电场时速度为v1,和水平方向的夹角为θ,偏转电压为U2,偏转位移为y,则y =12at 2=U 2e 2dm (l v 0)2 tanθ=v y v 0=U 2el dmv 20=y l/2 由此看出,电子从偏转电场射出时,不论偏转电压多大,电子都好像从偏转电场的两极板间的中线的中点沿直线射出,射出电场后电子做匀速直线运动恰好打在荧光屏的边缘上,结合图可得tanθ=D/2L +l 2=D 2L +l U 2=Ddmv 20el 2L +l代入所有数据得U 2=360 V 此时,电子从偏转电场射出,刚好打在荧光屏的边缘上,因此偏转电压在-360 V ~360 V 范围内时,电子可打在荧光屏上的任何位置. 答案:(1)4.50×103 V (2)-360 V ~360 V。
2019-2020学年物理高中粤教版选修3-1训练:课时训练6 示波器的奥秘 Word版含解析

第 - 1 - 页 共 7页课时训练6 示波器的奥秘基础夯实1.如图所示,空间中有一水平匀强电场,在竖直平面内有初速度为v 0的带电微粒,沿图中虚线由A 运动至B ,其能量变化情况是( )A.动能减小,重力势能增大,电势能减小B.动能减小,重力势能增大,电势能增大C.动能不变,重力势能增大,电势能减小D .动能增大,重力势能增大,电势能减小答案:B解析:带电微粒受重力、电场力的作用,做直线运动,说明电场力、重力的合力方向与运动方向相反或相同.根据力的平行四边形定则,只有电场力水平向左,才能使电场力和重力的合力与运动方向在一条直线上,故电场力和重力都做负功.因此,重力势能和电势能都增大,动能减小,即B 正确.2.如图所示,一个质子以速度v 垂直电场方向飞入平行板电容器的两极板间的匀强电场中,它飞离匀强电场时的侧移量为d 1,如果改换一个α粒子以速度2v 垂直电场方向飞入该电场,飞离电场时的侧移量为d 2,则d 2应为( )A.d 1B.C.D.d 14d 116d 18答案:D第 - 2 - 页 共 7 页解析:带电粒子在电场中偏转的侧位移为y=at 2=)2=,所以=8,D 项1212qU md (l v 0qUl 22mv 02dd 1d 2=q 1m 1v 12×m 2v 22q 2正确.3.下列粒子从初速度为零的状态经过电压为U 的电场加速后,粒子速度最大的是( )A.质子H) B.氘核H)(11(21C.氦核He) D.钠离子(Na +)(42答案:A解析:由qU=mv 2得v=,所以荷质比越大的带电粒子获得的速度越大,故A 正确.122qU m qm 4.右图为示波管中电子枪的原理示意图,示波管内被抽成真空,A 为发射热电子的阴极,K 为接在高电势点的加速阳极,A 、K 间电压为U.电子离开阴极时的速度可以忽略.电子经加速后从K 的小孔中射出的速度大小为v.下面的说法中正确的是( )A.如果A 、K 间距离减半而电压仍为U 不变,则电子离开K 时的速度变为2vB.如果A 、K 间距离减半而电压仍为U 不变,则电子离开K 时的速度为v2C.如果A 、K 间距离保持不变而电压减半,则电子离开K 时的速度变为v 2D.如果A 、K 间距离保持不变而电压减半,则电子离开K 时的速度为v 22答案:D解析:由动能定理qU=mv 2得v=,带电粒子的速度v 与成正比,与A 、K 间距离无关,故D122qUm U 正确.5.有一种电荷控制式喷墨打印机的打印头的结构简图如图所示.其中墨盒可以喷出极小的墨汁微粒,此微粒经过带电室后以一定的初速度垂直射入偏转电场,再经偏转电场后打到纸上,显示出字符.已知偏移量越小打在纸上的字迹越小,现要缩小字迹,下列措施可行的是( )第 - 3 - 页 共 7页A.增大墨汁微粒的比荷B.减小墨汁微粒进入偏转电场时的初动能C.减小偏转极板的长度D.增大偏转极板间的电压答案:C解析:微粒以一定的初速度垂直射入匀强电场做类平抛运动,水平方向:L=v 0t ,竖直方向:y=t 2,12qUmd 解得y=.要缩小字迹,应减小偏移距离y ,则应减小比荷、增大初动能、减小极板长qUL 22mdv 02=qUL 24dE k0度、减小极板间电压,故C 正确.6.两平行金属板间有匀强电场,不同的带电粒子都以垂直于电场线方向飞入该电场,要使这些粒子经过匀强电场后有相同大小的偏转角,则它们应具备的条件是(不计重力作用)( )A.有相同的初动能和相同的荷质比B.有相同的初动能和相同的质量C.有相同的初速度和相同的荷质比D .只要有相同的荷质比就可以答案:C解析:设金属板长为L ,两板间电压为U ,板间距为d ,粒子进入电场时速度为v ,在电场中运动时间为t=,在离开电场时沿电场线方向上的速度为v y ,则v y =at=.Lv qU md ·Lv 所以带电粒子离开电场时与原方向v 的夹角θ,即偏转角,如图所示.第 - 4 - 页 共 7 页tan θ=v yv =qULmdv 2显然A 、B 、D 项错误,C 正确.能力提升7.(多选)一带电粒子在电场中只受电场力作用时,它不可能出现的运动状态是( )A.匀速直线运动B.匀加速直线运动C.匀变速曲线运动D.静止答案:AD解析:只在电场力的作用下,带电粒子受到的合外力为电场力,不为零,所以A 、D 肯定不对;当带电粒子在匀强电场中由静止释放后,带电粒子做匀加速直线运动,B 对;当带电粒子垂直进入匀强电场后,带电粒子做类平抛运动,C 对.8.一个带正电的油滴从如图所示的匀强电场上方A 点自由下落,油滴落入匀强电场后,能较准确地描述油滴运动轨迹的是下图中的( )答案:B解析:油滴从A 点自由下落以一竖直速度进入电场,进入电场后受重力和电场力两恒力作用.如图,根据物体做曲线运动的条件,运动轨迹将向右弯曲,故选B.第 - 5 - 页 共 7页9.(多选)如图所示,有三个质量相等的小球,分别带正电、负电和不带电,以相同的水平速度由P 点射入水平放置的平行金属板间,它们分别落在下板的A 、B 、C 三处,已知两金属板的上板带负电荷,下板接地,下列判断正确的是( )A.落在A 、B 、C 三处的小球分别是带正电、不带电和带负电的B.三小球在该电场中的加速度大小关系是a A <a B <a CC.三小球从进入电场至落到下板所用的时间相等D.三小球到达下板时动能的大小关系是E k C <E k B <E k A 答案:AB解析:由受力方向可知,带负电的加速度大,运动时间短,水平方向位移小,故A 、B 正确.电场力对带负电的粒子做正功,其末动能最大,故D 错.10.如图所示,一束电子流在经U=5 000 V 的加速电压加速后,在距两极板等距离处垂直进入平行板间的匀强电场.若两板间距离d=1.0 cm,板长l=5.0 cm,那么,要使电子能从平行板间飞出,两个极板上最大能加多大电压?答案:400 V解析:在加速电压一定时,偏转电压U'越大,电子在极板间的偏转距离就越大,当偏转电压大到使电子刚好擦着极板的边缘飞出时,两板间的偏转电压即为题目要求的最大电压.加速过程中,由动能定理得eU=①12mv 02第 - 6 - 页 共 7 页进入偏转电场,电子在平行于板面的方向上做匀速运动l=v 0t ②在垂直于板面的方向做匀加速直线运动,加速度a=③Fm =eU 'dm 偏距y=at 2④12能飞出的条件y ≤⑤d2解①~⑤式得U'≤V=4.0×102 V 2Ud 2l 2=2×5 000×(1.0×10-2)2(5.0×10-2)2即要使电子能飞出,两极板间所加电压最大为400 V .11.下图为真空示波管的示意图.电子从灯丝K 发出(初速度不计),经灯丝与A 板间的加速电压U 1加速,从A 板中心孔沿中心线KO 射出,然后进入由两块平行金属板M 、N 形成的偏转电场中(偏转电场可视为匀强电场),电子进入偏转电场时的速度与电场方向垂直,电子经过偏转电场后打在荧光屏上的P 点.已知M 、N 两板间的电压为U 2,两板间的距离为d ,板长为L 1,板右端到荧光屏的距离为L 2,电子质量为m ,电荷量为e.求:(1)电子穿过A 板时的速度大小;(2)电子从偏转电场射出时的侧移量;(3)P 点到O 点的距离.答案:(1) (2) (3)(2L 2+L 1)2eU 1mU 2L 124U 1d U 2L 14U 1d 解析:(1)设电子经电压U 1加速后的速度为v 0,根据动能定理得eU 1=,解得v 0=.12mv 022eU 1m(2)电子以速度v 0进入偏转电场后,垂直于电场线方向做匀速直线运动,沿电场线方向做初速度为零的匀加速直线运动.设偏转电场的电场强度为E ,电子在偏转电场中运动的时间为t 1,电第 - 7 - 页 共 7 页子的加速度为a ,离开偏转电场时的侧移量为y 1,根据牛顿第二定律和运动学公式得F=eE ,E=U 2d ,F=ma ,a=,t 1=,y 1=,eU 2md L 1v 012at 12解得y 1=.U 2L 124U 1d (3)设电子离开偏转电场时沿电场方向的速度为v y ,根据运动学公式得v y =at 1,电子离开偏转电场后做匀速直线运动,设电子离开偏转电场后打在荧光屏上所用的时间为t 2,电子打到荧光屏上的侧移量为y 2,如图所示.由t 2=,y 2=v y t 2,L 2v 0解得y 2=U 2L 1L 22U 1dP 到O 点的距离为y=y 1+y 2=(2L 2+L 1).U 2L 14U 1d。
物理粤教版选修3-1自我检测:1-6-示波器的奥秘 含解析 精品

自我检测1.在练习使用示波器时,在调节好示波器后,将“扫描范围”旋钮置于最低挡.若缓慢地逆时针旋转“扫描微调”旋钮,则屏上亮斑的扫描速度将____________,扫描频率将____________;若缓慢逆时针旋转“X 增益”旋钮,则扫描的幅度将______________.答案:减小 减小 增大2.关于带电粒子在匀强电场中的运动情况,下列说法正确的是( )A.一定是匀变速运动B.不可能做匀减速运动C.一定做曲线运动D.可能沿电场线方向运动答案: AD3.让原来静止的氢核(H 11)、氘核(H 21)和氚核(H 31)的混合物通过同一电场后,各种核将具有 ( )A.相同的速度B.相同的动能C.相同的动量D.以上物理量都不相同答案: B4.离子发动机飞船,其原理是用电压U 加速一价惰性气体离子,将它高速喷出后,飞船得到加速.在氦、氖、氩、氪、氙中选氙的理由是用同样电压加速,它喷出时( )A.速度大B.动量大C.动能大D.质量大答案: B5.平行金属板间有一匀强电场,不同的带电粒子都可以垂直于电场线方向射入该匀强电场(不计重力),要使这些粒子经过匀强电场后有相同的偏转角,则它们应具有( )A.相同的动能和相同的比荷(q /m )B.相同的动量和相同的比荷(q /m )C.相同的速度和相同的比荷(q /m )D.相同的比荷(q /m )答案: C6.三个质量相同,分别带有正电、负电、不带电的粒子A 、B 、C ,从水平放置的平行带电金属板左侧P 点以相同速度v 0垂直电场线方向射入匀强电场,分别落在带正电极板上不同的三点,如图1-6-4 所示,下面判断正确的是( )图1-6-4A.三个粒子在电场中运动的加速度大小关系为:a b >a c >a aB.三个粒子在电场中运动的时间相等C.三个粒子到达下极板时的动能关系为:E k A>E k B>E k CD.三个粒子所受到电场力大小关系为:F a=F b>F c答案: A7.如图1-6-5所示,一个质子以速度v垂直电场方向射入有界匀强电场中,它飞离电场区域时侧向位移为d1,如果改换使 α 粒子从同一位置以2v速度垂直电场方向射入,则它飞离有界电场时的侧向位移应为()图1-6-5A.d2=d1B.d2=d1/4C.d2=d1/8D.d2=d1/16答案: C8.一质量为4.0×10-15kg、电荷量为2.0×10-9C的带正电质点,以4.0×104m/s的速度垂直于电场方向从a点进入匀强电场区域,并从b点离开电场区域.离开电场时的速度为5.0×104 m/s,由此可知,电场中ab两点间电势差U ab=V;带电质点离开电场时的速度在电场方向的分量为m/s.(不计重力作用)答案: 9.0×102 3.0×1049.几种不同的离子都由静止开始经同一电场加速后,垂直电场方向射入同一偏转电场,已知它们在电场中的运动轨迹完全相同,则可以肯定,这几种离子的()A.电性相同B.电荷量相同C.比荷相同D.射出偏转电场时速度相同答案:A10.一价氢离子和二价氦离子的混合体,经同一加速电场加速后,垂直射入同一偏转电场中,偏转后均打在荧光屏上,则它们()A.同时到达屏上同一点B.先后到达屏上同一点C.同时到达屏上不同点D.先后到达屏上不同点答案: B11.如图1-6-6所示,a、b、c三点是匀强电场中的三个彼此相邻的等势面,一带电粒子从A点进入并穿过电场,其轨迹与等势面的相交点依次为A、B、C.若不计重力的作用,则 ()图1-6-6A.带电粒子在A点所受电场力方向竖直 向上B.a、b、c三个等势面的电势是φa>φb>φcC.带电粒子在穿过电场过程中动能一定增加D.带电粒子在由A到B的过程中动能变化大于由B到C过程中动能的变化答案: C12.如图1-6-7所示为电子加速、偏转装置示意图,初速度为零的电子经电压U1加速后,垂直进入偏转电场,离开电场时的侧移量是y,偏转电场的两板间距离为d,偏转电压为U2,板长为L,为了提高偏转的灵敏度(每单位偏转电压引起的偏转量)可采用下面哪些办法()图1-6-7A.增大偏转电压U2B.增大加速电压U1C.尽可能使板长L长一些D.尽可能使极板间距d小一些答案: CD13.如图1-6-8所示,平行金属板的上下极板分别带等量异种电荷,板长为L,一束速度相同的电子束由正中央P点垂直电场线方向进入电场,飞出电场时速度(v t)方向如图,现作速度(v t)的反向延长线交初速度(v0)方向延长线PM于O点,试分析计算O点的位置.图1-6-8答案: O点在PM的中点处14.如图1-6-9所示,静电分选的原理示意图,将磷酸盐和石英的混合颗粒由传送带送至两个竖直带电平行金属板上方中部,经电场区域下落,电场强度为5.0×105V/m,磷酸 盐颗粒带正电,石英颗粒带负电,这些颗粒带电率(颗粒所带电荷量与颗粒质量之比)均为1.0×10-5C/kg,如果要求两种颗粒经电场区域后至少分离10 cm,粒子在电场中通过的竖直距离至少应多少?(g取10 m/s2)图1-6-9答案: 0.1 m。
2017粤教版高中物理选修16《示波器的奥秘》每课一练

1、6示波器的奥秘每课一练(粤教版选修3-1)知能综介训练热点集训知能提升一、单项选择题1。
如图1・6。
11所示,从尸处释放一个无初速的电子向万板方向运动,指岀下列对电子运动的描述中错误的是(设电源电动势为仍(.)A B C D图1-6. 11扎电子到达万板时的动能是%Be电子从万板到达C板动能变化量为零C.电子到达。
板时动能是36?D.电子在月板和Q板之间做往复运动解析:电子在月、万之间加速,电场力做功心血在万、Q间无电场,做匀速运动,到G D间电场反向,电子克服电场力做功,至。
点速度刚好减至零,然后反向加速,在从川之间往复运动,所以C错。
答案:C2。
如图1。
6。
12所示,电子在电势差为U的加速电场中由静I匕开始运动,然后射入电势差为G的两块平行极板间的偏转匀强电场中。
在满足电子能射出平行极板区的条件下,下述四种情况中,一定能使电子的偏转角()变大的是(1 D =n' ................. U,图1。
6. 12Ao E变大、乓变大Bo Q变小、保变大Co Q变大、氏变小 D. &变小、空变小思路点拨:加速电场中被加速,偏转电场中被偏转做类平抛运动。
解析:设电子经加速电场后获得的速度为Vo,由动能左理得也=错误!①设偏转电场的极板长为厶则电子在偏转电场中运动时间戸错谋!②电子在偏转电场中受电场力作用获得的加速度a=错误!③电子射岀偏转电场时,平行于电场线的速度由②③④得8=错误!,所以,tan"=错误!=错误!,①式代入上式得tan错误!,所以B 正确. 答案:B3。
如图1。
6。
13所示,有三个质量相等,分别带正电、负电和不带电的小球,从平行板电 场中的尸点以相同的初速度垂直于厅进入电场,它们分别落在小B 、C 三点( )图 1。
6. 13A. 落到川点的小球带正电,落到方点的小球不带电,落到C 点的小球带负电。
Be 三小球在电场中运动的时间相等C. 三小球到达正极板时动•能关系:E4艮D. 三小球在电场中运动的加速度关系:解析:由图知A 的射程最远,x=v°t,匕最大,又由Q 标知m 最小,a 撮尢所以A 正确。
高中物理1.6示波器的奥秘第1课时课时精练(含解析)粤教版选修3_1

1.6 示波器的奥秘 第1课时带电粒子的加速运动图1-8-61.(双选)如图1-8-6所示,电荷量和质量都相同的带正电粒子以不同的初速度通过A 、B 两板间的加速电场后飞出,不计重力的作用,则( ) A .它们通过加速电场所需的时间相等B .它们通过加速电场过程中动能的增量相等C .它们通过加速电场过程中速度的增量相等D .它们通过加速电场过程中电势能的减少量相等 答案 BD解析 由于电荷量和质量相等,因此产生的加速度相等,初速度越大的带电粒子经过电场所用时间越短,A 错误;加速时间越短,则速度的变化量越小,C 错误;由于电场力做功W =qU 与初速度及时间无关,因此电场力对各带电粒子做功相等,则它们通过加速电场的过程中电势能的减少量相等,动能增加量也相等,B 、D 正确. 带电粒子的偏转图1-8-72.如图1-8-7所示,有一带电粒子贴着A 板沿水平方向射入匀强电场,当偏转电压为U1时,带电粒子沿①轨迹从两板正中间飞出;当偏转电压为U2时,带电粒子沿②轨迹落到B 板中间;设粒子两次射入电场的水平速度相同,则两次偏转电压之比为( )A .U1∶U2=1∶8B .U1∶U2=1∶4C .U1∶U2=1∶2D .U1∶U2=1∶1 答案 A解析 由y =12at2=12Uq md ·l2v20得:U =2mv20dy ql2,所以U ∝yl2,可知A 项正确. 示波管的偏转原理图1-8-83.示波管是一种多功能电学仪器,它的工作原理可以等效成下列情况:如图1-8-8所示,真空室中电极K 发出电子(初速度不计),经过电压为U1的加速电场后,由小孔S 沿水平金属板A 、B 间的中心线射入板中.金属板长为L ,相距为d ,当A 、B 间电压为U2时电子偏离中心线飞出电场打到荧光屏上而显示亮点.已知电子的质量为m 、电荷量为e ,不计电子重力,下列情况中一定能使亮点偏离中心距离变大的是( )A .U1变大,U2变大B .U1变小,U2变大C .U1变大,U2变小D .U1变小,U2变小 答案 B解析 当电子离开偏转电场时速度的反向延长线一定经过偏转电场中水平位移的中点,所以电子离开偏转电场时偏转角度越大(偏转距离越大),亮点距离中心就越远.设电子经过U1加速后速度为v0,离开偏转电场时侧向速度为vy.根据题意得:eU1=12mv20.①电子在A 、B 间做类平抛运动,当其离开偏转电场时侧向速度为vy =at =eU2md ·L v0.② 结合①②式,速度的偏转角θ满足:tan θ=vy v0=U2L2dU1.显然,欲使θ变大,应该增大U2、L ,或者减小U1、d.正确选项是B.(时间:60分钟)题组一 带电粒子的直线运动1.下列带电粒子均从静止开始在电场力作用下做加速运动,经过相同的电势差U 后,哪个粒子获得的速度最大( )A .质子1HB .氘核21HC .α粒子42HeD .钠离子Na + 答案 A解析 所有四种带电粒子均从静止开始在电场力作用下做加速运动,经过相同的电势差U ,故根据动能定理, qU =12mv2-0得v =2qU m 由上式可知,比荷qm 越大,速度越大;显然A 选项中质子的比荷最大,故A 正确.图1-8-92.如图1-8-9所示,M 和N 是匀强电场中的两个等势面,相距为d ,电势差为U ,一质量为m(不计重力)、电荷量为-q 的粒子,以速度v0通过等势面M 射入两等势面之间,则该粒子穿过等势面N 的速度应是( ) A.2qU/m B .v0+2qU/m C.v20+2qU/m D.v20-2qU/m 答案 C解析 qU =12mv2-12mv20,v =v20+2qU/m ,选C.图1-8-103.(双选)如图1-8-10所示,电子由静止开始从A 板向B 板运动,当到达B 极板时速度为v ,保持两板间电压不变,则( ) A .当增大两板间距离时,v 增大 B .当减小两板间距离时,v 增大 C .当改变两板间距离时,v 不变D .当增大两板间距离时,电子在两板间运动的时间也增大 答案 CD解析 根据动能定理研究电子由静止开始从A 板向B 板运动列出等式: Uq =12mv2,得v =2qU m ,所以当改变两板间距离时,v 不变,故A 、B 错误,C 正确;由于两极板之间的电压不变,所以极板之间的场强为E =U d ,电子的加速度为a =qE m =qUmd ,电子在电场中一直做匀加速直线运动,由d =12at2=12qUmd t2, 所以电子加速的时间为t =d2m qU ,由此可见,当增大两板间距离时,电子在两板间的运动时间增大,故D 正确.故选C 、D. 题组二 带电粒子的偏转图1-8-114.如图1-8-11所示,a 、b 两个带正电的粒子,以相同的速度先后垂直于电场线从同一点进入平行板间的匀强电场后,a 粒子打在B 板的a′点,b 粒子打在B 板的b′点,若不计重力,则( )A .a 的电荷量一定大于b 的电荷量B .b 的质量一定大于a 的质量C .a 的比荷一定大于b 的比荷D .b 的比荷一定大于a 的比荷 答案 C解析 粒子在电场中做类平抛运动,h =12qE m (xv0)2得:x =v0 2mhqE .由v0 2hmaEqa <v02hmb Eqb 得qa ma >qb mb .图1-8-125.(双选)三个α粒子在同一地点沿同一方向垂直电场线飞入偏转电场,出现了如图1-8-12所示的运动轨迹,由此可判断( )A .在B 飞离电场的同时,A 还没有打在负极板上 B .B 和C 同时飞离电场C .进入电场时,C 的速度最大,A 的速度最小D .动能的增加值C 最小,A 和B 一样大 答案 CD解析 由题意知,三个α粒子在电场中的加速度相同,A 和B 有相同的偏转位移y ,由公式y =12at2得,A 和B 在电场中运动时间相同,由公式v0=xt ,得vB>vA ,同理,vC>vB ,故三个粒子进入电场时的初速度大小关系为vC>vB>vA ,故C 正确,A 、B 错误;由题图知,三个粒子的偏转位移大小关系为yA =yB>yC ,由动能定理可知,三个粒子的动能增加值C 最小,A 和B 一样大,D 正确. 题组三 示波管的原理6.如图1-8-13所示的示波管,当两偏转电极XX′、YY′电压为零时,电子枪发射的电子经加速电场加速后会打在荧光屏上的正中间(图示坐标系的O 点,其中x 轴与XX′电场的场强方向重合,x 轴正方向垂直于纸面向里,y 轴与YY′电场的场强方向重合,y 轴正方向竖直向上).若要电子打在图示坐标系的第Ⅲ象限,则( )图1-8-13A .X 、Y 极接电源的正极,X ′、Y′接电源的负极B .X 、Y′极接电源的正极,X ′、Y 接电源的负极C .X ′、Y 极接电源的正极,X 、Y′接电源的负极D .X ′、Y′极接电源的正极,X 、Y 接电源的负极 答案 D解析 若要使电子打在题图所示坐标系的第Ⅲ象限,电子在x 轴上向负方向偏转,则应使X′接正极,X 接负极;电子在y 轴上也向负方向偏转,则应使Y′接正极,Y 接负极,所以选项D 正确.7.如图1-8-14所示,是一个说明示波管工作原理的示意图,电子经电压U1加速后垂直进入偏转电场,离开电场时的偏转量是h ,两平行板间的距离为d ,电势差为U2,板长为L.为了提高示波管的灵敏度(每单位电压引起的偏转量hU2),可采用的方法是( )图1-8-14A .增大两板间的电势差U2B .尽可能使板长L 短些C .尽可能使板间距离d 小一些D .使加速电压U1升高一些 答案 C解析 电子的运动过程可分为两个阶段,即加速和偏转,分别根据两个阶段的运动规律,推导出灵敏度hU2的有关表达式,然后再判断选项是否正确,这是解决此题的基本思路. 电子经电压U1加速有:eU1=12mv20,① 电子经过偏转电场的过程有:L =v0t ,② h =12at2=eU22md t2=U2L24dU1,③由①②③可得h U2=L24dU1.因此要提高灵敏度,若只改变其中的一个量,可采取的办法为增大L 、减小d ,或减小U1,所以本题的正确选项为C. 题组四 综合应用8.一束正离子以相同的速率从同一位置,沿垂直于电场的方向飞入匀强电场中,所有离子的运动轨迹都是一样的,这说明所有粒子( ) A .都具有相同的质量 B .都具有相同的电荷量 C .具有相同的比荷 D .都是同一元素的同位素 答案 C解析 由偏转距离y =12qE m (l v0)2=qEl22mv20可知,若运动轨迹相同,则水平位移相同,偏转距离y 也应相同,已知E 、l 、v0是相同的,所以应有qm 相同.图1-8-159.(双选)如图1-8-15所示,一电子沿x 轴正方向射入电场,在电场中的运动轨迹为OCD ,已知OA =AB ,电子过C 、D 两点时竖直方向的分速度为vCy 和vDy ;电子在OC 段和OD 段动能的变化量分别为ΔEk1和ΔEk2,则( ) A .vCy ∶vDy =1∶2 B .vCy ∶vDy =1∶4C .ΔEk1∶ΔEk2=1∶3D .ΔEk1∶ΔEk2=1∶4图1-8-1610.真空中的某装置如图1-8-16所示,其中平行金属板A 、B 之间有加速电场,C 、D 之间有偏转电场,M 为荧光屏.今有质子、氘核和α粒子均由A 板从静止开始被加速电场加速后垂直于电场方向进入偏转电场,最后打在荧光屏上.已知质子、氘核和α粒子的质量之比为1∶2∶4,电荷量之比为1∶1∶2,则下列判断中正确的是( ) A .三种粒子从B 板运动到荧光屏经历的时间相同 B .三种粒子打到荧光屏上的位置相同C .偏转电场的电场力对三种粒子做功之比为1∶2∶2D .偏转电场的电场力对三种粒子做功之比为1∶2∶4 答案 B解析 粒子加速过程qU1=12mv2,从B 到M 用时t =BMv ,得t ∝mq ,所以t1∶t2∶t3=1∶2∶2,选项A 错误.偏转位移y =12qU2md (l v )2=U2l4dU1,所以三种粒子打到荧光屏上的位置相同,选项B 正确.因W =qEy ,得W1∶W2∶W3=q1∶q2∶q3=1∶1∶2,选项C 、D 错误.11.两个半径均为R 的圆形平板电极,平行正对放置,相距为d ,极板间的电势差为U ,板间电场可以认为是匀强电场.一个α粒子从正极板边缘以某一初速度垂直于电场方向射入两极板之间,到达负极板时恰好落在极板中心.已知质子电荷量为e ,质子和中子的质量均视为m ,忽略重力和空气阻力的影响,求: (1)极板间的电场强度E ;(2)α粒子在极板间运动的加速度a ;(3)α粒子的初速度v0. 答案 (1)U d (2)eU 2md (3)R2d eU m解析 (1)极板间场强E =Ud(2)α粒子电荷量为2e ,质量为4m ,所受电场力F =2eE =2eUd α粒子在极板间运动的加速度a =F 4m =eU2dm (3)由d =12at2,得t =2da =2dm eU ,v0=R t =R 2deUm12.一束电子从静止开始经加速电压U1加速后,以水平速度射入水平放置的两平行金属板中间,如图1-8-17所示,金属板长为l ,两板距离为d ,竖直放置的荧光屏距金属板右端为L.若在两金属板间加直流电压U2时,光点偏离中线打在荧光屏上的P 点,求OP . 答案 U2l 2U1d (l2+L)解析 电子经U1的电场加速后,由动能定理可得 eU1=mv202①电子以v0的速度进入U2的电场并偏转t =lv0② E =U2d ③ a =eE m ④ v ⊥=at ⑤由①②③④⑤得射出极板的偏转角θ的正切值tan θ=v ⊥v0=U2l2U1d . 所以OP =(l 2+L)tan θ=U2l 2U1d (l2+L).。
高中物理1.6示波器的奥秘第2课时课时精练(含解析)粤教版选修3_1

1.6 示波器的奥秘 第2课时带电粒子在电场中的直线运动图1-9-51.(双选)图1-9-5为示波管中电子枪的原理示意图,示波管内被抽成真空.A 为发射电子的阴极,K 为接在高电势点的加速阳极,A 、K 间电压为U ,电子离开阴极时的速度可以忽略,电子经加速后从K 的小孔中射出时的速度大小为v.下面的说法中正确的是( ) A .如果A 、K 间距离减半而电压仍为U ,则电子离开K 时的速度仍为v B .如果A 、K 间距离减半而电压仍为U ,则电子离开K 时的速度变为v2 C .如果A 、K 间距离不变而电压减半,则电子离开K 时的速度变为22v D .如果A 、K 间距离不变而电压减半,则电子离开K 时的速度变为v2 答案 AC解析 电子在两个电极间加速电场中进行加速,由动能定理得eU =12mv2-0得v =2eUm ,当电压不变,AK 间距离变化时,不影响电子的速度,故A 正确;电压减半,则电子离开K 时的速度为22v ,C 项正确. 带电粒子在电场中的类平抛运动图1-9-62.如图1-9-6所示,静止的电子在加速电压U1的作用下从O 经P 板的小孔射出,又垂直电场线进入平行金属板间的电场,在偏转电压U2的作用下偏转一段距离.现使U1加倍,要想使电子的运动轨迹不发生变化,应该( ) A .使U2加倍 B .使U2变为原来的4倍C .使U2变为原来的2倍D .使U2变为原来的12倍 答案 A解析 电子加速有qU1=12mv20 电子偏转有y =12qU2md ⎝⎛⎭⎫l v02联立解得y =U2l24U1d ,显然选A.带电粒子在交变电场中的运动3.在如图1-9-7甲所示平行板电容器A 、B 两板上加上如图乙所示的交变电压,开始B 板的电势比A 板高,这时两板中间原来的静止的电子在电场力作用下开始运动,设电子在运动中不与极板发生碰撞,则下述说法正确的是(不计电子重力)( )甲 乙 图1-9-7A .电子先向A 板运动,然后向B 板运动,再返回A 板做周期性往返运动 B .电子一直向A 板运动C .电子一直向B 板运动D .电子先向B 板运动,然后向A 板运动,再返回B 板做周期性往返运动 答案 C解析 由运动学和动力学规律画出电子的v-t 图象如图所示可知,电子一直向B 板运动,C 正确.带电微粒在电场中的圆周运动图1-9-84.如图1-9-8所示,一绝缘细圆环半径为r ,其环面固定在水平面上,电场强度为E 的匀强电场与圆环平面平行,环上穿有一电荷量为+q 、质量为m 的小球,可沿圆环做无摩擦的圆周运动,若小球经过A 点时速度vA 的方向恰与电场线垂直,且圆环与小球间沿水平方向无作用力,则速度vA =________.当小球运动到与A 点对称的B 点时,小球对圆环在水平方向的作用力FB =________. 答案qErm 6qE解析 在A 点时,电场力提供向心力qE =mv2Ar ① 解得vA =qEr m ,在B 点时,FB ′-qE =m v2Br ,FB =FB ′,② 小球由A 到B 的过程中,由动能定理得: qE ·2r =12mv2B -12mv2A ,③ 联立以上各式解得FB=6qE.(时间:60分钟)题组一 带电粒子在电场中的直线运动1.关于带电粒子(不计重力)在匀强电场中的运动情况,下列说法正确的是( ) A .一定是匀变速运动 B .不可能做匀减速运动 C .一定做曲线运动D .可能做匀变速直线运动,不可能做匀变速曲线运动 答案 A解析 带电粒子在匀强电场中受恒定电场力作用,一定做匀变速运动,初速度与合外力共线时,做直线运动,不共线时做曲线运动,A 对,B 、C 、D 错.图1-9-92.(双选)平行放置的金属板的两个极板与水平地面成一角度,两极板与一直流电源相连.若一带电微粒恰能沿图1-9-9所示水平直线通过,则在此过程中,该粒子( ) A .所受重力与电场力平衡 B .电势能逐渐增加 C .动能逐渐增加D .做匀变速直线运动 答案 BD解析 带电微粒在平行板电容器之间受到两个力的作用,一是竖直向下的重力mg ;二是垂直于极板向上的电场力F =Eq ,因二力均为恒力,已知带电微粒做直线运动,所以此二力的合力一定在微粒运动的直线轨迹上,根据牛顿第二定律可知,该微粒做匀减速直线运动,选项D 正确,选项A 、C 错误;从微粒运动的方向和电场力的方向可判断出,电场力对微粒做负功,微粒的电势能增加,选项B 正确. 题组二 带电粒子在电场中的类平抛运动图1-9-103.如图1-9-10所示,质量相同的两个带电粒子P 、Q 以相同的速度沿垂直于电场的方向射入两平行板间的匀强电场中,P 从两极板正中央射入,Q 从下极板边缘处射入,它们最后打在同一点(重力不计),则从开始射入到打到上极板的过程中( ) A .它们运动的时间tQ >tP B .它们运动的加速度aQ <aPC .它们所带的电荷量之比qP ∶qQ =1∶2D .它们的动能增加量之比ΔEkP ∶ΔEkQ =1∶2 答案 C解析 设两板距离为h ,P 、Q 两粒子的初速度为v0,加速度分别为aP 和aQ ,粒子P 到上极板的距离是h 2,它们做类平抛运动的水平距离为l.则对P ,由l =v0tP ,h 2=12aPt2P ,得到aP =hv20l2;同理对Q ,l =v0tQ ,h =12aQt2Q ,得到aQ =2hv20l2.由此可见tP =tQ ,aQ =2aP ,而aP =qPE m ,aQ =qQE m ,所以qP ∶qQ =1∶2.由动能定理得,它们的动能增加量之比ΔEkP ∶ΔEkQ =maP h2∶maQh =1∶4.综上所述,C 项正确.图1-9-114.(双选)如图1-9-11所示,氕、氘、氚的原子核自初速度为零经同一电场加速后,又经同一匀强电场偏转,最后打在荧光屏上,那么( ) A .经过加速电场的过程中,电场力对氚核做的功最多 B .经过偏转电场的过程中,电场力对三种核做的功一样多 C .三种原子核打在屏上的速度一样大 D .三种原子核都打在屏的同一位置上 答案 BD解析 同一加速电场、同一偏转电场,三种原子核带电荷量相同,故在同一加速电场中电场力对它们做的功都相同,在同一偏转电场中电场力对它们做的功也相同,A 错,B 对;由于质量不同,所以三种原子核打在屏上的速度不同,C 错;再根据偏转距离公式或偏转角公式y =l2U24dU1,tan θ=lU22dU1知,与带电粒子无关,D 对. 题组三 带电粒子在交变电场中的运动图1-9-125.(双选)如图1-9-12所示,两金属板(平行)分别加上如下图中的电压,能使原来静止在金属板中央的电子(不计重力)有可能做往返运动的电压图象应是(设两板距离足够大)( )答案 BC解析 由A 图象可知,电子先做匀加速运动,12T 时速度最大,从12T 到T 内做匀减速运动,T 时速度减为零;然后重复一直向一个方向运动不往返.由B 图象可知,电子先做匀加速运动,14T 时速度最大,从14T 到12T 内做匀减速运动,12T 时速度减为零;从12T 到34T 反向做匀加速运动,34T 时速度最大,从34T 到T 内做匀减速运动,T 时速度减为零.回到出发点,然后重复往返运动.由C 图象可知,电子先做加速度减小的加速运动,14T 时速度最大,从14T 到12T 内做加速度增大的减速运动,12T 时速度减为零;从12T 到34T 反向做加速度减小的加速运动,34T 时速度最大,从34T 到T 内做加速度减小的减速运动,T 时速度减为零.回到出发点,然后重复往返运动. 由D 图象可知,电子先做匀加速运动,12T 时速度最大,从12T 到T 内做匀速运动,然后重复加速运动和匀速运动一直向一个方向运动.故选B 、C.6.如图1-9-13甲所示,在平行板电容器A 、B 两极板间加上如图乙所示的交变电压.开始时A 板的电势比B 板高,此时两板中间原来静止的电子在电场力作用下开始运动.设电子在运动中不与极板发生碰撞,向A 板运动时为速度的正方向,则下列图象中能正确反映电子速度变化规律的是(其中C 、D 两项中的图线按正弦函数规律变化)( )图1-9-13答案 A解析 从0时刻开始,电子向A 板做匀加速直线运动,12T 后电场力反向,电子向A 板做匀减速直线运动,直到t =T 时刻速度变为零.之后重复上述运动,A 选项正确,B 选项错误.电子在交变电场中所受电场力大小恒定,加速度大小不变,C 、D 选项错误;故选A. 题组四 带电微粒在电场中的圆周运动图1-9-147.(双选)两个共轴的半圆柱形电极间的缝隙中,存在一沿半径方向的电场,如图1-9-14所示.带正电的粒子流由电场区域的一端M 射入电场,沿图中所示的半圆形轨道通过电场并从另一端N 射出,由此可知( )A .若入射粒子的电荷量相等,则出射粒子的质量一定相等B .若入射粒子的电荷量相等,则出射粒子的动能一定相等C .若入射粒子的电荷量与质量之比相等,则出射粒子的速率一定相等D .若入射粒子的电荷量与质量之比相等,则出射粒子的动能一定相等 答案 BC解析 由题图可知,粒子在电场中做匀速圆周运动,电场力提供向心力qE =m v2r 得r =mv2qE ,r 、E 为定值,若q 相等,则12mv2一定相等;若qm 相等,则速率v 一定相等,故B 、C 正确.图1-9-158.(双选)如图1-9-15所示,内壁光滑的绝缘材料制成的圆轨道固定在倾角为θ=37°的斜面上,与斜面的交点为A ,直径AB 垂直于斜面,直径CD 和MN 分别在水平和竖直方向上,它们处在水平向右的匀强电场中.质量为m 、电荷量为q 的小球(可视为点电荷)刚好能静止于圆轨道内的A 点.现对在A 点的该小球施加一沿圆轨道切线方向的瞬时速度,使其恰能绕圆轨道完成圆周运动.下列对该小球运动的分析中正确的是( ) A .小球一定带正电B .小球运动到B 点时动能最小C .小球运动到M 点时动能最小D .小球运动到D 点时机械能最小 答案 BD解析 小球能静止于A 点,说明小球在A 点所受的合力为零,电场力一定与场强方向相反,小球带负电,A 错误;小球所受的重力和电场力的合力F 是不变的,方向沿AB 直径指向A ,小球从A 运动到B 的过程中F 做负功,动能减小,所以小球运动到B 点时动能最小,B 正确,C 错误;在圆轨道上,D 点的电势最低,小球在D 点的电势能最大,由能量守恒定律可得,小球运动到D 点时机械能最小,D 正确. 题组五 综合应用图1-9-169.如图1-9-16所示,半径为R 的环形塑料管竖直放置,AB 为该环的水平直径,且管的内径远小于环的半径,环的AB 及以下部分处于水平向左的匀强电场中,管的内壁光滑.现将一质量为m ,带电荷量为+q 的小球从管中A 点由静止释放,已知qE =mg. 求:(1)小球释放后,第一次经过最低点D 时的速度和对管壁的压力; (2)小球释放后,第一次经过最高点C 时管壁对小球的作用力. 答案 (1)2gRL 5mg ,方向向下 (2)mg ,方向向下 解析 (1)A 至D 点,由动能定理得: mgR +qER =12mv21,v1=2gR由牛顿第二定律:FN -mg =m v21R ,FN =5mg 由牛顿第三定律:FN =FN ′ 对管壁的压力为5mg ,方向向下 (2)第一次经过C :-mgR +qE·2R =12mv22 设管壁对小球的作用力向下:mg +FC1=m v22RFC1=mg FC1的方向向下10.如图1-9-17所示为真空示波管的示意图,电子从灯丝K 发出(初速度不计),经灯丝与A 板间的加速电压U1加速,从A 板中心孔沿中心线 KO 射出,然后进入由两块平行金属板M 、N 形成的偏转电场中(偏转电场可视为匀强电场),电子进入偏转电场时的速度与电场方向垂直,电子经过偏转电场后打在荧光屏上的P 点,已知M 、N 两板间的电压为U2,两板间的距离为d ,板长为L1,板右端到荧光屏的距离为L2,电子质量为m 电荷量为e.求:图1-9-17(1)电子穿过A 板时的速度大小; (2)电子从偏转电场射出时的侧移量; (3)P 点到O 点的距离;(4)若要电子打在荧光屏上P 点的上方,可采取哪些措施?答案 (1)2eU1m (2)U2L214U1d (3)(2L2+L1)U2L14U1d(4)见解析. 解析 (1)设电子经电压U1加速后的速度为v0,根据动能定理得:eU1=12mv20,解得:v0=2eU1m .(2)电子以速度v0进入偏转电场后,垂直于电场方向做匀速直线运动,沿电场方向做初速度为零的匀加速直线运动.设偏转电场的电场强度为E ,电子在偏转电场中运动的时间为t1,电子的加速度为a ,离开偏转电场时的侧移量为y1,根据牛顿第二定律和运动学公式得:F =eE ,E =U2d ,F =ma ,a =eU2md ,t1=L1v0,y1=12at21,解得:y1=U2L214U1d .(3)设电子离开偏转电场时沿电场方向的速度为vy ,根据运动学公式得vy =at1电子离开偏转电场后做匀速直线运动,设电子离开偏转电场后打在荧光屏上所用的时间为t2,电子打到荧光屏上的侧移量为y2,如图所示.由t2=L2v0,y2=vyt2,解得:y2=U2L1L22dU1,P 到O 点的距离为 y =y1+y2=(2L2+L1)U2L14U1d(4)减小加速电压U1或增大偏转电压U2.11.如图1-9-18所示,两块竖直放置的平行金属板A 、B ,板间距d =0.04 m ,两板间的电压U =400 V ,板间可视为匀强电场.在A 、B 两板上端连线的中点Q 的正上方,距Q 为h =1.25 m 的P 点处有一带正电的小球,已知小球的质量m =5×10-6 kg ,电荷量q =5×10-8 C .设A 、图1-9-18B 板足够长,g 取10 m/s2.试求:(1)带正电的小球从P 点开始由静止下落,经多长时间和金属板相碰; (2)相碰时,离金属板上端的距离多大. 答案 (1)0.52 s (2)0.102 m解析 (1)设小球从P 到Q 需时间t1,由h =12gt21得t1=2hg = 2×1.2510 s =0.5 s ,小球进入电场后其飞行时间取决于电场力产生的加速度a ,由力的独立作用原理,可以求出小球在电场中的运动时间t2.应有qE =ma ,E =U d ,d 2=12at22,以上三式联立,得t2=d m qU =0.04×5×10-65×10-8×400s =0.02 s ,运动总时间t =t1+t2=0.5 s +0.02 s =0.52 s.(2)小球由P 点开始在竖直方向上始终做自由落体运动,在时间t 内的位移为y =12gt2=12×10×(0.52)2 m =1.352 m. 相碰时,与金属板上端的距离为s =y -h =1.352 m -1.25 m =0.102 m.。
2012高二物理1.6示波器的奥秘学案1(粤教版选修3-1)

1.6 示波器的奥秘 学案1(粤教版选修3-1)一、带电粒子的加速两平行金属板间的电压为U ,板间是一匀强电场,设有一带正电荷q 、质量为m 的带电粒子从正极板开始向负极板运动,由于电场力做____功,带电粒子被______速,根据动能定理,________等于电场力的功W ,即________=W =qU ,带电粒子到达负极板时的速度v =________.答案 正 加 动能的增量 12mv 2 2qUm二、带电粒子的偏转带电粒子的电荷量为q ,质量为m ,以初速度v 0垂直电场线射入两极板间的匀强电场.板长为l 、板间距为d ,两极板间的电势差为U.1.粒子在v 0的方向上做________直线运动,穿越两极板的时间t =________.2.粒子在垂直于v 0的方向上做初速度为________的____________运动,加速度为:a =Fm=________. 粒子离开电场时在电场方向上偏离原射入方向的距离y =12at 2=________.3.穿出电场时竖直方向上的分速度v y =at =______.合速度与水平方向的夹角θ=tan -1v y v 0=tan -1________.答案 1.匀速 l v 0 2.零 匀加速直线 qU dm ql 22dmv 20 U 3.ql dmv 0 U qldmv 20 U 三、示波器探秘示波器的核心部件是________,它是一种阴极射线管,玻璃管内抽成真空,它采用________的方式发射电子.答案 示波管 热电子发射一、带电粒子的加速[问题情境] 带电粒子在电场中受电场力作用,我们可以利用电场来控制粒子,使它加速或偏转.直线加速器就是在真空金属管中加上高频交变电场使带电粒子获得高能的装置(如图1所示),它能帮助人们更深入地认识微观世界.你知道它的加速原理吗?图11.带电粒子在电场中受哪些力作用?重力可以忽略吗? 2.带电粒子被加速的原理是什么?3.处理带电粒子加速问题的一般方法是什么?答案 1.电场力、重力 因重力远小于电场力所以可以忽略 2.电场力做正功,粒子动能增加 3.动能定理 [要点提炼]1.带电粒子:质量很小的带电体,如电子、质子、α粒子、离子等,处理问题时它们的重力通常忽略不计(因重力远小于电场力).2.带电微粒:质量较大的带电体,如液滴、油滴、尘埃、小球等,处理问题时重力不能忽略.3.粒子初速度为零且仅在电场力作用下运动,所以电场力做的正功等于__________,即W =qU =12mv 2得v =____________.答案 3.粒子动能的增加量 2qUm[问题延伸]若用来加速粒子的电场是非匀强电场,粒子获得的末速度仍然是v =2qUm吗?答案 仍然是.非匀强电场中电场力做的功仍然是W =qU ,所以仍然有qU =12mv 20,故v=2qU m(非匀强电场中,W =qE·d 不能用了)二、带电粒子的偏转 [问题情境]1.带电粒子以初速度为v 0垂直电场方向射入匀强电场,不计重力作用,它的受力有什么特点?2.它的运动规律与什么运动相似?3.推导粒子离开电场时沿垂直于极板方向的偏移量和偏转的角度. 答案 1.粒子仅受与v 0垂直的电场力作用.2.粒子的运动与平抛运动类似,轨迹为抛物线. 3.见课本推导过程. [要点提炼]1.处理方法:应用运动的合成与分解知识分析处理,一般将类平抛运动分解为:沿初速度方向的________运动和沿电场力方向做初速度为______运动.2.基本关系:⎩⎪⎨⎪⎧v x =v 0x =v 0t (初速度方向)v y=at y =12at 2(电场线方向) 3.导出关系:(1)粒子在电场中运动的时间t =________.(2)粒子的加速度为a =Fm=________.(3)穿出电场时在竖直方向上的位移y =12at 2=________.(4)穿出电场时竖直方向上的分速度v y =at =________________________________________________________________________.(5)粒子穿出电场时合速度与水平方向的夹角θ=tan -1v y v 0=tan -1________.答案 1.匀速直线 初速度为零的匀加速直线3.(1)l v 0 (2)Uq dm (3)ql 22dmv 20U (4)ql dmv 0 U (5)ql dmv 20 U 三、示波器探秘示波器的核心部件是示波管,观察示波管的结构,思考示波管中各个组件的作用? 答案 课本“示波管结构图”中序号1-6为加速系统,其作用是使从阴极出射的电子在电场中加速;7为竖直偏转系统,其作用是使粒子在竖直方向上偏转;8是水平偏转系统,其作用是使粒子在水平方向上偏转;9是荧光屏,其作用是显示粒子的位置(或图象).例1 如图2所示,在点电荷+Q 激发的电场中有A 、B 两点,将质子和α粒子分别从A 点由静止释放到达B 点时,它们的速度大小之比为多少?图2解析 质子和α粒子都是正离子,从A 点释放将受电场力作用加速运动到B 点,设A 、B两点间的电势差为U ,由动能定理有:对质子:12m H v 2H =q H U ,对α粒子:12m αv 2α=q αU. 所以v Hv α=q H m αq αm H=1×42×1=21. 答案 2∶1点拨 (1)要知道质子和α粒子是怎样的粒子,q H =e ,q α=2e ,m H =m ,m α=4m ;(2)该电场为非匀强电场,带电粒子在A 、B 间的运动为变加速运动,不可能通过力和加速度的途径解出该题,但注意到电场力做功W =qU 这一关系对匀强电场和非匀强电场都适用,因此从能量的角度入手,由动能定理来解该题很方便.变式训练1 如图3所示,电子由静止开始从A 板向B 板运动,到达B 板的速度为v ,保持两板间的电压不变,则( )图3A .当增大两板间的距离时,速度v 增大B .当减小两板间的距离时,速度v 减小C .当减小两板间的距离时,速度v 不变D .当减小两板间的距离时,电子在两板间运动的时间增大 答案 C解析 由动能定理得eU =12mv 2.当改变两板间的距离时,U 不变,v 就不变,故A 、B 项错误,C 项正确;粒子做初速度为零的匀加速直线运动,v =d t ,v 2=d t ,即t =2dv ,当d 减小时,电子在板间运动的时间变小,故D 选项不正确.例2 一束电子流在经U =5 000 V 的加速电场加速后,在距两极板等距处垂直进入平行板间的匀强电场,如图4所示.若两板间距d =1.0 cm ,板长l =5.0 cm ,那么,要使电子能从平行板间飞出,两个极板上最多能加多大电压?图4解析 设极板间电压为U ′时,电子能飞出平行板间的偏转电场.加速过程,由动能定理得:eU =12mv 20.①进入偏转电场,电子在平行于板面的方向上做匀速运动:l =v 0t.②在垂直于板面的方向做匀加速直线运动,加速度:a =F m =eU ′dm,③偏转距离:y =12at 2,④能飞出的条件为:y ≤d2.⑤解①②③④⑤式得:U ′≤2Ud 2l 2=2×5 000×(10-2)2(5×10-2)2V =400 V .答案 400 V变式训练2 试证明:粒子从偏转电场射出时,其速度v 的反向延长线过水平位移的中点.答案 作粒子速度的反向延长线,设交于O 点,O 点与电场边缘的距离为x ,则x =ytan θ=qUl 22dmv 20·dmv 20qUl =l 2,即粒子从偏转电场射出时,其速度v 的反向延长线过水平位移的中点,如图所示.【即学即练】1.下列粒子从静止状态经过电压为U 的电场加速后,速度最大的是( )A .质子(11H )B .氘核(21H )C .α粒子(42He ) D .钠离子(Na +) 答案 A解析 经加速电场加速后的速度为v = 2qUm,比荷大的粒子加速后的速度大.2.如图5所示,两平行金属板相距为d ,电势差为U ,一电子质量为m ,电荷量为e ,从O 点沿垂直于极板的方向射出,最远到达A 点,然后返回,如图所示,OA =h ,此电子具有的初动能是( )图5A .edh UB .edUhC .eU dhD .eUh d 答案 D解析 从功能关系方面考虑,电子从O 点到A 点,因电场力作用,速度逐渐减小,根据题意和图示判断,电子仅受电场力,不计重力,这样,我们可以用动能定理来研究问题12mv 20=eU OA .因为E =U d ,U OA =Eh =Uh d ,故12mv 20=eUhd,所以D 正确. 3.有一束正离子,以相同速率从同一位置进入带电平行板电容器的匀强电场中,所有离子的运动轨迹一样,说明所有离子( )A .具有相同的质量B .具有相同的电荷量C .具有相同的比荷D .属于同一元素的同位素 答案 C解析 轨迹相同说明偏转角相同,tan θ=v y v x =qUlmdv 20,因为速度相同,所以只要电荷的比荷相同,电荷的运动轨迹就相同,易错之处是只考虑其中一种因素的影响.4. 长为L 的平行金属板电容器,两板间形成匀强电场,一个带电荷量为+q ,质量为m 的带电粒子,以初速度v 0紧贴上极板沿垂直于电场线方向射入匀强电场中,刚好从下极板边缘射出,且射出时速度方向恰好与下板成30°角,如图6所示,求匀强电场的场强大小和两极板间的距离.图6答案 3mv 203qL 36L解析 由题意知tan θ= v ⊥v 0 ①v ⊥=at ② a =qEm ③t =Lv 0④ 由①②③④得E =mv 20tan θqL将θ=30°代入得:E =3mv 203qL由题意知两板间距离d 等于竖直方向的偏转量y ,则d =y =12at 2=12qE m (L v 0)2将E 代入得d =36L.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理学习材料(灿若寒星**整理制作)1.6 示波器的奥秘每课一练(粤教版选修3-1)一、单项选择题1.如图1-6-11所示,从F处释放一个无初速的电子向B板方向运动,指出下列对电子运动的描述中错误的是(设电源电动势为U)()图1-6-11A.电子到达B板时的动能是UeB.电子从B板到达C板动能变化量为零C.电子到达D板时动能是3UeD.电子在A板和D板之间做往复运动解析:电子在A、B之间加速,电场力做功W=Ue,在B、C间无电场,做匀速运动,到C、D间电场反向,电子克服电场力做功,至D点速度刚好减至零,然后反向加速,在D、A之间往复运动,所以C错.答案:C2.如图1-6-12所示,电子在电势差为U1的加速电场中由静止开始运动,然后射入电势差为U2的两块平行极板间的偏转匀强电场中.在满足电子能射出平行极板区的条件下,下述四种情况中,一定能使电子的偏转角θ变大的是()图1-6-12A .U 1变大、U 2变大B .U 1变小、U 2变大C .U 1变大、U 2变小D .U 1变小、U 2变小思路点拨:加速电场中被加速,偏转电场中被偏转做类平抛运动. 解析:设电子经加速电场后获得的速度为v 0,由动能定理得 qU 1=m v 202①设偏转电场的极板长为L ,则电子在偏转电场中运动时间 t =L v 0②电子在偏转电场中受电场力作用获得的加速度 a =qU 2md ③电子射出偏转电场时,平行于电场线的速度 v y =at ④由②③④得v y =qU 1Lmd v 0,所以,tan θ=v y v 0=qU 1l md v 20,①式代入上式得tan θ=U 2L2U 1d ,所以B 正确.答案:B3.如图1-6-13所示,有三个质量相等,分别带正电、负电和不带电的小球,从平行板电场中的P 点以相同的初速度垂直于E 进入电场,它们分别落在A 、B 、C 三点( )图1-6-13A .落到A 点的小球带正电,落到B 点的小球不带电,落到C 点的小球带负电. B .三小球在电场中运动的时间相等C .三小球到达正极板时动能关系:E K A >E K B >E K CD .三小球在电场中运动的加速度关系:a A >a B >a C解析:由图知A 的射程最远,x =v 0t ,t A 最大,又由h =12at 2知a A 最小,a C 最大,所以A 正确.B 、D 错误,由动能定理知C 错. 答案:A4.如图1-6-14所示,有一带电粒子贴A 板沿水平方向射入匀强电场,当偏转电压为U 1时,带电粒子沿轨迹①从两板正中间飞出;当偏转电压为U 2时,带电粒子沿轨迹②落到B 板中间;设两次射入电场的水平速度相同,则电压U 1、U 2之比为:( )图1-6-14A .1∶8B .1∶4C .1∶2D .1∶1解析:当偏转电压为U 1时,有12d =12qU 1dm ⎝ ⎛⎭⎪⎫l v 02,同理,当偏转电压为U 2时,有d=12qU 2dm ⎝ ⎛⎭⎪⎫l 2v 02,两式相比可得U 1∶U 2=1∶8.答案:A 二、双项选择题5.如图1-6-15所示,电子由静止开始从A 板向B 板运动,当到达B 板时速度为v ,保持两板电压不变,则( )图1-6-15A .当增大两板间距离时,v 增大B .当减小两板间距离时,v 减小C .当改变两板间距离时,v 不变D .当增大两板间距离时,电子在两板间运动的时间增大解析:由动能定理得eU =12m v 2.当改变两极板间距离时,v 不变,故C 选项正确.粒子做初速度为零的匀加速直线运动v =d t ,v 2=d t ,即t =2dv ,当增大两板间距离时,电子在板间运动时间增大,故D 选项正确. 答案:CD6.竖直放置的平行金属板A 、B 连接一恒定电压,两个电荷M 和N 以相同的速率分别从极板A 边缘和两板中间沿竖直方向进入板间电场,恰好从极板B 边缘射出电场,如图1-6-16所示,不考虑电荷的重力和它们之间的相互作用,下列说法正确的是( )图1-6-16A .两电荷的电荷量可能相等B .两电荷在电场中运动的时间相等C .两电荷在电场中运动的加速度相等D .两电荷离开电场时的动能相等解析:带电粒子在电场中的类平抛运动可分解为沿电场方向的匀加速运动与垂直电场方向的匀速直线运动两个分运动,所以两电荷在电场中的运动时间相等,B 对.又因为d =12at 2,a =qEm ,因为偏转量d 不同,故a 一定不同,C 错.由a =qEm ,因不知m 的关系,q 可能相等,也可能不相等,故A 正确.当q 相等时,电荷从进入到离开,电场力做的功不同,由动能定理可知,两电荷离开电场时的动能不同.D 错. 答案:AB7.如图1-6-17所示,三块平行金属板a 、b 、c 接在电动势(即电压)分别为E 1、和E 2的电源上,已知E 1<E 2,在紧贴A 孔右侧有一带负电的质点(不计重力),由静止释放后向右运动,穿过B 孔到达P 点,再返回A 孔,则( )图1-6-17A.只将b板向右移一小段距离后,再由A孔释放该质点,质点仍运动到P点返回B.只将b板右移稍长距离后,再释放该质点,质点能穿过C孔C.只将b板右移一小段距离后,再释放该质点、质点将越过P点后返回D.若将质点放在紧贴C孔左侧由静止释放,质点将能穿过A孔解析:电场力对带电粒子做功只与电势差和带电粒子电荷量有关.b板移动时,a、b间的电势差没有变,由动能定理得,带电粒子被电场加速运动到b板时的速度不变.若将b板移到P点,但由于b、c间的电势差不变,且E1<E2,故不可能穿过C孔,只能在b、c板间的某一点速度减为零后再返回A孔.若将带电粒子在C点释放,无论a、b、c板是否平移一小段距离,只要各板不相互接触,则b、c板间电场对带粒子做的正功,一定大于a、b板间电场对带电粒子做的负功,带电粒子运动到A孔时的动能不为零,一定会穿越A孔.答案:CD8.如图1-6-18所示,M、N是竖直放置的两平行金属板,分别带等量异种电荷,两极间产生一个水平向右的匀强电场,场强为E,一质量为m、电量为+q的微粒,以初速度v0竖直向上从两极正中间的A点射入匀强电场中,微粒垂直打到N极上的C点.已知AB=BC.不计空气阻力,则可知()图1-6-18A.微粒在电场中作抛物线运动B.微粒打到C点时的速率与射入电场时的速率相等C.MN板间的电势差为2m v20/qD.MN板间的电势差为E v20/2g解析:由题意可知,微粒受水平向右的电场力qE 和竖直向下的重力mg 作用,合力与v 0不共线,所以微粒做抛物线运动,A 正确;因AB =BC ,即v 02·t =v c2·t 可见v C =v 0.故B 项正确;由q U 2-mgh =0,h =v 202y ,得U =m v 20q ,故C 项错误;又由mg =qE 得q =mg E 代入U =m v 20q ,得U =E v 20g ,故D 项错误. 答案:AB9.图1-6-19为一个示波器工作原理的示意图,电子经电压为U 1的加速电场后以速度v 0垂直进入偏转电场,离开电场时的偏转量是h ,两平行板间的距离为d ,电势差U 2,板长L ,为了提高示波管的灵敏度(每单位电压引起的偏转量h /U 2)可采取的方法是( )图1-6-19A .增大两板间电势差U 2B .尽可能使板长L 长些C .尽可能使板间距离d 小一些D .使加速电压U 1升高一些解析:电子的运动过程可分为两个阶段,即加速和偏转. (1)加速:eU 1=12m v 20(2)偏转:L =v 0t ,h =12at 2=eU 22md t 2综合得:h U 2=L 24U 1d ,因此要提高灵敏度则需要:增大L 或减小U 1或减小d ,故答案应选B 、C. 答案:BC 三、非选择题10.如图1-6-20所示,在距地面一定高度的位置以初速度v 0向右水平抛出一个质量为m ,电荷量为q 的带负电小球,小球的落地点与抛出点之间有一段相应的水平距离(水平射程).若在空间加上一竖直方向的匀强电场,使小球的水平射程变为原来的12,求此电场的场强大小和方向.图1-6-20解析:不加电场时小球在空间运动的时间为t ,水平射程为x x =v 0t下落高度h =12gt 2加电场后小球在空间的运动时间为t ′,小球运动的加速度为a 12x =v 0t ′,h =12at ′2 由以上各式,得 a =4g则场强方向只能竖直向上,根据牛顿第二定律 mg +qE =ma联立解得:所以E =3mg q 方向竖直向上.答案:3mgq 方向竖直向上.11.如图1-6-21所示,边长为L 的正方形区域abcd 内存在着匀强电场.电荷量为q 、动能为E k 的带电粒子从a 点沿ab 方向进入电场,不计重力.图1-6-21(1)若粒子从c 点离开电场,求电场强度的大小和粒子离开电场时的动能. (2)若粒子离开电场时动能为E k ′,则电场强度为多大?解析:(1)粒子在电场中做类平抛运动,在垂直于电场方向:L =v 0t在平行于电场方向: L =12at 2=qEt 22m =qEL 22m v 20所以E =4E kqL qEL =E k t -E k 则E kt =qEL +E k =5E k(2)若粒子由bc 边离开电场,则L =v 0t v y =qE m t =qEL m v 0由动能定理得: E k ′-E k =12m v 2y =q 2E 2L 24E kE =2E k (E k ′-E k )qL若粒子由cd 边离开电场,由动能定理得 qEL =E k ′-E k 所以E =E k ′-E kqL答案:(1)4E kqL 5E k(2)粒子由bc 边离开电场时,E =2E k (E k ′-E k )qL粒子由cd 边离开电场时,E =E k ′-E kqL12.如图1-6-22所示,水平放置的两平行金属板,板长为10 cm ,两板相距2 cm.一束电子以v 0=4.0×107 m/s 的初速度从两板中央水平射入板间,然后从板间飞出射到距板右端L 为45 cm 、宽D 为20 cm 的荧光屏上.(不计电子重力,荧光屏中点在两板间的中央线上,电子质量m =0.9×10-30 kg ,电荷量e =1.6×10-19 C)求:图1-6-22(1)电子飞入两板前所经历的加速电场的电压;(2)为了使点电荷能射中荧光屏所有位置,两板间所加电压的取值范围. 解析:(1)设加速电场的电压为U 1,由动能定理可得eU 1=12m v 20-0 化简得U 1=m v 202e ,代入数据得U 1=4.50×103 V .(2)如下图所示,设电子飞出偏转电场时速度为v 1,和水平方向的夹角为θ,偏转电压为U 2,偏转位移为y ,则y =12at 2=U 2e 2dm (lv 0)2 tan θ=v y v 0=U 2el dm v 20=y l /2由此看出,电子从偏转电场射出时,不论偏转电压多大,电子都好像从偏转电场的两极板间的中线的中点沿直线射出,射出电场后电子做匀速直线运动恰好打在荧光屏的边缘上,结合图可得 tan θ=D /2L +l 2=D 2L +l U 2=Ddm v 20el (2L +l )代入所有数据得U 2=360 V 此时,电子从偏转电场射出,刚好打在荧光屏的边缘上,因此偏转电压在-360 V ~360 V 范围内时,电子可打在荧光屏上的任何位置.答案:(1)4.50×103 V (2)-360 V ~360 V。