25.8正多边形和圆 课件

合集下载

《正多边形和圆》课件

《正多边形和圆》课件

总结词
丰富多样的设计元素
详细描述
正多边形和圆的几何特性使得它们在视觉上具有独特的冲 击力。通过巧妙地运用正多边形和圆,可以创造出引人注 目的视觉效果,吸引人们的注意力。
详细描述
正多边形和圆作为基本的几何图形,在几何图形设计中有 着广泛的应用。它们可以单独使用或组合使用,创造出丰 富多样的设计元素,如标志设计、图案设计、图标设计等 。

圆的基本性质
01
02
03
圆心角与弧的关系
在同一个圆或等圆中,相 等的圆心角所对的弧相等 ,相等的弧所对的圆心角 相等。
弦与直径的关系
在同一个圆或等圆中,弦 的垂直平分线必经过圆心 ,经过圆心的弦是直径。
直径与半径的关系
在同一个圆或等圆中,直 径是半径的两倍,半径是 直径的一半。
圆的分类
按照半径的大小分类
BIG DATA EMPOWERS TO CREATE A NEW ERA
《正多边形和圆》ppt课件
• 正多边形的定义和性质 • 圆的定义和性质 • 正多边形和圆的关系 • 正多边形和圆的实际应用
目录
CONTENTS
01
正多边形的定义和性质
BIG DATA EMPOWERS TO CREATE A NEW
正多边形和圆在日常生活中的应用
总结词
日常用品的设计
详细描述
交通工具的设计中也会经常运用到正多边形和圆。例如, 汽车、火车、飞机等交通工具的外形、轮毂、仪表盘等部 位都会涉及到正多边形和圆的应用。
详细描述
正多边形和圆在日常生活中有着广泛的应用。例如,一些 日常用品的形状、图案或纹理中会运用到正多边形和圆, 如餐具、服饰、家居用品等。
详细描述

《正多边形和圆》-完整版课件

《正多边形和圆》-完整版课件

所以AD=2OD=10.
△ACD中,根据勾股定理,得
A C A D 2 C D 21 0 0 2 5 53 .
即 A D 、 A C 的 长 分 别 为 1 0 和 53 .
再见!
· 中心角 半径R O 边心距r
活动3
例 有一个亭子,它的地基半径为4m的正六边形,求地基
的周长和面所以它的中心角等于
360 6
60,
△OBC是等边三角形,从而正六边形的边长等于它的半径.
因此,亭子地基的周长 l =4×6=24(m). 在Rt△OPC中,OC=4, PC= BC 4 2,
22 利用勾股定理,可得边心距
r 42 22 2 3.
亭子地基的面积
A
S 1 lr 1 24 2 3 41.6(m2 ). 22
F
E
O D
rR
BP
C
练习如图,正六边形ABCDEF的边长为5,
求对角线AD、AC的长.
解:连接BE,交AD于点O.
由正六边形性质知:△DOE为等边
O
三角形,△ACD为直角三角形.
证明:∵⌒AB=B⌒C=C⌒D=D⌒E=E⌒A ∴A⌒B=BC⌒=CD=⌒DE=EA
∵BCE=CDA=3AB ∴∠1=∠2
A
1
B2
同理∠2=∠3=∠4=∠5
3
又∵顶点A、B、C、D、E都在⊙O上, C
∴五边形ABCDE是⊙O的内接五边形.
5E
4
D
我们把一个正多边形的外接圆的圆心叫做这个正多边 形的中心. 外接圆的半径叫做正多边形的半径. 正多边形每一边所对的圆心角叫做正多边形的中心角. 中心到正多边形的距离叫做正多边形的边心距.
活动1

正多边形和圆ppt课件

正多边形和圆ppt课件

2.(5分·推理直观、运算能力)如图,已知正五边形ABCDE内接于☉O,连结BD,
则∠CDB的度数是( C )
A.72°
B.54°
C.36°
D.30°
19
3.(5分·推理能力、运算能力)如图,正八边形ABCDEFGH内接于☉O,对角线AE
22.5°
为☉O的直径,连结HE,则∠AEH的度数为__________.
则∠BAE-∠COD=( D )
A.60°
B.54°
C.48°
D.36°
8
9
【举一反三】
(2024·济南模拟)如图,正六边形ABCDEF内接于☉O,若DE=2,则阴影部分的


面积为______.
10
重点2 正多边形的性质、判定及画法(运算能力、推理能力、应用意识)
【典例2】(教材再开发·P66例变式)如图1,正五边形ABCDE内接于☉O,阅读以下
12
【自主解答】(1)∵五边形ABCDE是正五边形,
(−)×°
∴∠ABC=
=108°,

即∠ABC=108°;
13
(2)△AMN是正三角形,
理由:连结ON,NF,如图,
由题意可得,FN=ON=OF,
∴△FON是等边三角形,
∴∠NFA=60°,
∴∠NMA=60°,
同理可得:∠ANM=60°,






∴=====,
∴∠BAF=∠ABC=∠BCD=∠CDE=∠DEF=∠EFA,
∴六边形ABCDEF是正六边形.
素养 当堂测评
18
1.(5分·运算能力)一个圆的内接正多边形中,一条边所对的圆心角为72°,则该

正多边形和圆ppt课件

正多边形和圆ppt课件
解:(1)如图所示,正八边形ABCDEFGH即为所求.
图24-3-4





(2)求出地基的中心角和面积.(结果保留根号)
(2)如图,连接OA,OB,过点A作AM⊥OB于点M.
∵八边形ABCDEFGH是正八边形,
360°
∴地基的中心角∠O=
=45°,
8
∴△OAM是等腰直角三角形.
∵OA=OB=4 m,∴AM=OM=2 2 m,
解:如图.
(1)画半径为1 cm的☉O;
(2)用量角器把☉O九等分(依次画40°的圆心角);
(3)依次连接各分点,即得☉O的内接正九边形ABCDEFGHI.
谢 谢 观 看!
1
1
∴S△OAB= OB·AM= ×4×2
2
2
2=4 2(m2),
∴地基的面积=8S△OAB=8×4 2=32 2(m2).





学 方法
等分圆周画正多边形的工具和方法
①只用量角器:用量角器把360°的圆心角n等分,相应的圆周
也被n等分,顺次连接各分点得到正n边形.
1
②用量角器和圆规:先用量角器画出360°的圆心角的 ,相应

1
得到圆周的 ;再用圆规顺次截取,便得到圆周的n等分点,顺

次连接各分点得到正n边形.
③用圆规和直尺:用尺规等分圆周,可以作正六边形、正方
形等特殊正多边形.







[检测]
1.如果一个正多边形的中心角为72°,那么这个正多边形的边
数是
( B )
A.4
B.5
C.6

正多边形和圆-ppt课件

正多边形和圆-ppt课件

“各边相等,各内角相等”是正多边形的两
个基本特征,当边数n>3时,二者必须同时具备,
缺一不可,否则多边形就不是正多边形.
感悟新知
3. 正多边形的有关概念
知1-讲
(1)正多边形的中心: 一个正多边形的外接圆的圆心叫作正
多边形的中心 .
(2)正多边形的半径: 正多边形的外接圆的半径叫作正多边形
的半径 .
心,OA 为半径作⊙ O,直径 FC ∥ AB, AO, BO
的延长线交⊙ O 于点 D, E.
求证:六边形 ABCDEF 为圆内接
正六边形 .
感悟新知
知1-练
思路导引:
感悟新知
知1-练
证明: ∵三角形 AOB 是正三角形,
∴∠ AOB= ∠ OAB= ∠ OBA=60°, OB=OA.
∴点 B 在⊙ O 上 .
(1)作半径为 0.9 cm 的⊙ O;
(2)用量角器画∠ AOB = ∠ BOC=120°,其中 A, B,C
均为圆上的点;
(3)连接 AB, BC, CA,则△ ABC 为
所求作的正三角形 ,如图 24. 3-4所示.
感悟新知
作法二
(1)作半径为 0.9 cm 的⊙ O;
知3-练
(2)作⊙ O 的任一直径 AB;




︵ ︵
∴BDE-CDE=CDA-CDE,即BC=AE.∴BC=AE.
同理可证其余各边都相等,
∴五边形 ABCDE 是正五边形.
感悟新知
知识点 2 正多边形的有关计算
1. 正 n 边形的每个内角都等于
(-)· °
.

2. 正 n 边形的每个中心角都等于

《正多边形和圆形》圆PPT优质课件(第1课时)

《正多边形和圆形》圆PPT优质课件(第1课时)

《正多边形和圆形》圆PPT优质课件(第1课时)人教版九年级数学上册《正多边形和圆形》圆PPT优质课件(第1课时),共26页。

素养目标1. 了解正多边形和圆的有关概念.2. 理解并掌握正多边形半径、中心角、边心距、边长之间的关系.3. 会应用正多边形和圆的有关知识解决实际问题.探究新知正多边形的对称性问题1 什么叫做正多边形?各边相等,各角也相等的多边形叫做正多边形.问题2 矩形是正多边形吗?为什么?菱形是正多边形吗?为什么?问题3 正三角形、正四边形、正五边形、正六边形都是轴对称图形吗?都是中心对称图形吗?问题4 正三角形、正四边形、正五边形、正六边形都是轴对称图形吗?都是中心对称图形吗?正n边形都是轴对称图形,都有n条对称轴,只有边数为偶数的正多边形既是轴对称图形又是中心对称图形.正多边形的有关概念问题1 以正四边形为例,根据对称轴的性质,你能得出什么结论?EF是边AB、CD的垂直平分线,∴OA=OB,OD=OC.GH是边AD、BC的垂直平分线,∴OA=OD,OB=OC.∴OA=OB=OC=OD.∴正方形ABCD有一个以点O为圆心的外接圆.AC是∠DAB及∠DCB的角平分线,BD是∠ABC及∠ADC的角平分线,∴OE=OH=OF=OG.∴正方形ABCD还有一个以点O为圆心的内切圆.想一想1.所有的正多边形是不是也都有一个外接圆和一个内切圆?任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆.2.一个正多边形的各个顶点在同一个圆上?一个正多边形的各个顶点在同一个圆上,则这个正多边形就是这个圆的一个内接正多边形,圆叫做这个正多边形的外接圆.3.所有的多边形是不是都有一个外接圆和内切圆?多边形不一定有外接圆和内切圆,只有是正多边形时才有,任意三角形都有外接圆和内切圆.正多边形的外接圆和内切圆的公共圆心,叫做正多边形的中心.外接圆的半径叫做正多边形的半径.内切圆的半径叫做正多边形的边心距.... ... ...关键词:正多边形和圆形PPT课件免费下载,圆PPT下载,.PPTX格式;。

《正多边形和圆》PPT课件

《正多边形和圆》PPT课件

·O
D
是 O (用图中线段表示)
G
正多边G形的边心距就是内切圆半径。 F
E
中心0既是外接圆的圆心也是内切圆的圆心。
回答:
1.正n边形的内角和是 (n 2) 1800 一个内角的度数是 (n 2)1800
n
3600
2.正n边形的一个中心角是 n
正多边形的
中心角与外角 度数相等
3600
3.正n边形的一个外角是 n
F
O C
A GB
学以致用:有一个亭子,它的地基半径为4m 的正六边形,求地基的周长和面积(精确到 0.1m2).
解: 如图由于ABCDEF是正六边形,所以它的中心角等 于360 60 ,△OBC是等边三角形,从而正六边形的边长
7、 ∠AOB叫做正五边形ABCDE的 中心 角, 它的度数是 72度
D
E
C
.O
A
FB
8、图中正六边形ABCDEF的中心角是∠(AOB) 它的度数是(60度)
9、你发现正六边形ABCDEF的半径与边长具有
什么数量关系?为什么?
E
D
解答:正六边形的半径与边
长数量关系是相等
因为:正六边形的中心角 F
是60度和半径组成的三角
F
.半径R
O
中心角
C
正多边形的半径:
边心距r
外接圆的半径
A
B
正多边形的中心角: 正多边形的每一条 边所对的圆心角.
正多边形的边心距: 中心到正多边形的 一边的距离.
新课讲解
A
B
O
E
CF D 正多边形中的有关概念:
中心 半径 中心角 边心距
既是外接圆的圆心,也是内切圆的圆心

正多边形和圆公开课课件ppt

正多边形和圆公开课课件ppt

例 有一个亭子它的地基是半径为4m的正六边形,求地基的周长和面 积(精确到0.1平方米).
F A
B
E
.. O
D
rR
PC
由 于A B CDE F是 正 六 边 形 , 所 以
它的中心角等于360 60,
6
F
OB C是 等 边 三 角 形 , 从 而 正
六边形的边长等于它的半径. A
∴亭子的周长 L=6×4=24(m)
.
4.已知圆内接正方形的边长为2,则该圆 的内接正六边形边长为
__________.
5. 圆内接正六边形的边长是8 cm用么该正六边形的半径为________;
边心距为________.
6.以下有四种说法:①顺次连结对角线相等的四边形各边中点, 则所得的四边形是菱形;②等边三角形是轴对称图形,但不是中 心对称图形;③顶点在圆周上的角是圆周角;④边数相同的正多 边形都相似,其中正确的有( )
三. 正多边形有关的计算
正多边形的内角:
内角(n2)180 n
正多边形的半径:外接圆的半径
E
D

半径R
F 中心角 O
.
边心距r
C
正多边形的中心角:
A
B
中心角 360 n
正多边形的边心距: r
R
2

a
2

正多边形的面积:S
n(1ar) 2
1Lr 2
2
练习
完成下表中正多边形的计算(把计算结果填入表中):
学习目标:
• 1.了解正多边形与圆的关系及正多边形的有关概念,会判定正多边形。 • 2.理解正多边形的中心、半径、边长、边心距、中心角之间的关系,并
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

P B
A
T E O S
Q
C R D
⌒⌒
又∵五边形PQRST的各边都与⊙O相切,
∴五边形PQRST的是O外切正五边形。
弧相等—弦切角相等—全等三角形

边相等 角相等
—多边形是正多边形
由于正多边形在生产、生活实际中有广泛 的应用性,所以会画正多边形
半径 3. OB叫正△ABC的________ ,它是正 △ABC的________圆的半径. 外接 边心距 4. OD叫作正△ABC的________ ,它是 A 正△ABC的________ 圆的半径。 内切
o
B D C
6. 正六边形ABCDEF外切于⊙O,⊙O 的半径为R,则该正六边形的周长和面积各是 解 : 如图, 设AB切 ⊙ O于M, 连结OA、 OB 多少?则OM AB于M , AM BM . OM ,
F
E O ·
A
D
B
C
说说作正多边形的方法有哪些?
归纳 (1)用量角器等分圆周作正n边形; (2)用尺规作正方形及由此扩展作正八 边形, 用尺规作正六边形及由此扩展作正 12边形、正三角形.
正多边形的性质
• 提出问题: • 我们学习了正多边形的定义,并且 知道只要n等分(n≥3)圆周就可以得到的 圆的内接正n边形和圆的外切正n边 形.反过来,是否每一个正多边形都有 一个外接圆和内切圆呢?
• 定理: • 任何正多边形都有一个 外接圆和一个内切圆, 这两个圆是同心圆.
正多边形及外接圆中的有关概念 中心: 一个正多边形的外接圆的圆心. 正多边形的半径: 外接圆的半径. 正多边形的中心角: 正多边形的每一条边 所对的圆心角.
E
中心角 半径R .边 . 心 距 r
D
F
中心O
C
过正五边形ABCDE的顶点A、B、C、作 ⊙O连结OA、OB、OC、OD
同理,点E在⊙O上. 所以正五边形ABCDE有一个外接圆⊙O.
• 因为正五边形ABCDE的各边是 ⊙O中相等的弦,所以弦心距相 等.因此,以点O为圆心,以弦 心距(OH)为半径的圆与正五边形 的各边都相切.可见正五边形 ABCDE还有一个 • 以O为圆心的 • 内切圆
①用量角器度量,使 ∠AOB=∠BOC=∠COA =120°. ②用量角器或30°角的 三角板度量,使 ∠BAO=∠CAO=30°.
120 ° O C B
你能用以上方法画出正四边形、正五边形、 正六边形吗?
A O ·
90°
D
B O
A
F E
E O ·
60°
·
72°
A
D
B
C
C
D
B
C
你能尺规作出正四边形、正八边形吗?
正多边形的边心距: 中心到正多边形的一边的距离.
中心角 360 n

E 中心角
D
边心距把△AOB分成 2个全等的直角三角形
180 AOG BOG n
F
R
.O .
a
C
G B 设正多边形的边长为a,半径为R,它的周长为L=na.
边心距r 面积S
A
a R ( ) , 2
A E
D
正多边形和圆关系定理1: (正多边形的判定定理)
把圆分成n(n≥3)等份:
⑴依次连结各分点所得的多边形是这个圆的
内接正多边形;
⑵经过各分点作圆的切线,以相邻切线的交
点为顶点的多边形是这个圆的外切正多边
形.
⌒ ⌒ ⌒ ⌒ ⌒ 证明:∵AB=BC=CD=DE=EA
∴AB=BC=CD=DE=EA ∵BCE=CDA=3AB
在RtAOM中, 1 AOM AOB 30, 2 AM OM R ,tan30 , OM 1 AM OM tan30 3R 3 P6 6 AB 12AM 4 3R
A M R F O E D C B
1 1 S 6 6 AB OM 4 3R R 2 3R 2 2 2
A
D
O ·
只要作出已知⊙O的互相 垂直的直径即得圆内接正 方形,再过圆心作各边的 垂线与⊙O相交,或作各 中心角的角平分线与⊙O 相交,即得圆接正八边形, 照此方法依次可作正十六 边形、正三十二边形、正 六十四边形……
B
C
你能尺规作出正六边形、正三角形、正十 二边形吗?
以半径长在圆 周上截取六段相 等的弧,依次连 结各等分点,则 作出正六边形. 先作出正六边 形,则可作正三 角形,正十二边 形,正二十四边 形………
2
2
1 1 L 边心距(r) na 边心距(r) 2 2
正多边形的性质
正五边形
正八边形
正三边形
轴对称图形, 什么叫中心? 一个正n边形共有n条对称轴, 每条对称轴都通过n边形的中心.
正多边形的性质
正八边形
正六边形
边数是偶数的正多边形 是中心对称图形, 它的中心就是对称中心.
随堂练习
下列命题是真命题吗?如果不是,举出 一个反例。 (1)正多边形的各边相等。 (2)各边相等的多边形是正多边形。 (3)正多边形的各角相等。 (4)各角相等的多边形是正多边形。
5. 求证:正五边形的对角线相等. 证明:连结BD、CE,则 在△BCD和△CDE中
∵BC=CD
∠BCD=∠CDE CD=DE ∴△BCD≌△CDE ∴BD=CE 同理可证对角线相等. C B
(n 2) 180 1. 正n边形的一个内角的度数是____________; n
中心角是___________;正多边形的中心角与外角的 360
n 大小关系是________. 相等
2. O是正△ABC的中心,它是△ABC的 外接 内切 ________圆与________圆的圆心.
A
1



∴∠1=∠2
同理∠2=∠3=∠4=∠5
B
2 3 4
5
E
又∵顶点A、B、C、D、E都在⊙O上, C ∴五边形ABCDE是⊙O的内接五边形。 证毕!
D
弦相等(边相等)
弧相等—
圆周角相等(角相等)
—正多边形
证明:连结OA、OB、OC,则: ∠OAB=∠OBA=∠OBC=∠OCB ∵TP、PQ、QR分别是以A、B、C 为切点的⊙O的切线 ∴∠OAP=∠OBP=∠OBQ=∠OCQ ∴∠PAB=∠PBA=∠QBC=∠QCB 又∵AB=BC ∴AB=BC ∴△PAB与△QBC是全等 的等腰三角形。 ∴∠P=∠Q PQ=2PA 同理∠Q=∠R=∠S=∠T QR=RS=ST=TP=2PA
1.我们已学过哪些正多边形?
2.这些正多边形的边与角有什么 特点?
日常生活中你还看 到哪些具有这两个 性质的多边形?
1、正多 边形与圆
回顾旧知
正多边形
各边相等,各角也相等的多边形.
正多边形的性质 各边都相等 各角都相等
60°
108°
135° 正n边形内角和: (n-2)180°
练一练
达标检测: 1、判断题 ×
①各边都相等的多边形是正多边形.
( ) × ②一个圆有且只有一个内接正多边形 ( ) 2、证明题。
求证:顺次连结正六边形 B R T A Q P F H E
各边中点所得的多
边形是正六边形.
C
S
D
谢谢大家,再会!
相关文档
最新文档