超精密加工现状综述

合集下载

模具行业发展现状及趋势分析

模具行业发展现状及趋势分析

模具行业发展现状及趋势分析一、模具综述模具是工业生产的基础工艺装备,是用以注塑、吹塑、挤出、压铸或锻压成型、冶炼、冲压等方法得到所需产品的各种模子和工具。

模具制造,指金属铸造用模具、矿物材料用模具、橡胶或塑料用模具及其他用途的模具的制造。

随着现代化工业的发展,模具已广泛应用于建筑、电子、汽车、电机、电器、仪表、家电和通讯等领域。

在产品中,60%~80%的零部件都依靠模具成形,模具质量的高低决定着产品质量的高低,因此,模具被称之为“百业之母”。

根据模具成型加工工艺,模具主要分为冲压模具、注塑模具、铸造模具、锻造模具、橡胶模具等。

具体如下:二、模具行业产业链从产业链来看,模具行业的上游主要为模具钢厂商及其代理商、数控机床厂商塑料橡胶加工厂等,其下游主要汽车整车厂商、家电制造厂商、医疗器械厂商等。

目前,我国模具市场份额分布情况主要为:塑料模具市场占比45%、冲压模具市场占比37%、铸造模具市场占比9%、锻压机及橡胶模具市场共计占比9%。

冲压模具在模具制造行业地位不容小觑,特别是冲压模具与汽车行业紧密相关,据相关数据,汽车生产中95%以上的零部件都需要依靠模具成型,一般生产一款普通的轿车大约需要1000至1500套冲压模具。

三、模具行业现状分析2022年,我国工业增长值达401644.3亿元,同比增长7.24%。

2017-2022年,国内工业增加值不断增长,工业市场发展繁茂,持续拉动市场模具产品需求增加。

据统计数据显示,目前,我国模具产品主要应用领域集中于汽车、电子、IT、家电行业。

2022年,国内汽车销售量达2686万辆,同比增长2.25%。

随着模具产品最大应用市场汽车产业逐步恢复、新能源汽车产销情况大幅增长,持续拉动我国模具行业规模扩容。

2021年,我国模具产量为2450.92万套,同比增长5%;行业市场规模为3266.09亿元,同比增长5.73%。

受下游应用领域拓展影响,我国模具行业市场不断发展。

超高性能混凝土(UHPC)基本性能研究综述共3篇

超高性能混凝土(UHPC)基本性能研究综述共3篇

超高性能混凝土(UHPC)基本性能研究综述共3篇超高性能混凝土(UHPC)基本性能研究综述1近年来,超高性能混凝土(UHPC)在建筑工程领域中得到了广泛的应用。

相比于普通混凝土,UHPC具有更高的抗压强度、抗拉强度、抗渗透性、抗冻融性以及耐久性。

本文将对UHPC的基本性能进行综述。

1. 抗压强度UHPC的抗压强度一般在150 MPa到250 MPa之间,而普通混凝土的抗压强度通常在20 MPa到40 MPa之间。

这是因为UHPC采用了多种添加剂和超细粉料,使得其微观结构更加精密,可以有效地抵抗压力。

2. 抗拉强度UHPC的抗拉强度通常在10 MPa到15 MPa之间,而普通混凝土的抗拉强度只有1 MPa到2 MPa。

这也是由于UHPC的微观结构更加紧密,能够有效地抵抗拉力。

3. 抗渗透性UHPC的抗渗透性比普通混凝土更好,主要是由于UHPC中使用了高品质的细石颗粒,能够有效地填充混凝土中的微小孔隙,减少渗透的可能性。

4. 抗冻融性UHPC的抗冻融性也比普通混凝土更好,这是由于UHPC中采用了特殊的添加剂来延缓水的渗透和凝结,使得混凝土孔隙中的水不会在冷冻过程中膨胀。

5. 耐久性UHPC的耐久性比普通混凝土更好,这是由于UHPC中添加了特殊的化学成分,可以在一定程度上延缓混凝土的老化过程,从而改善混凝土的耐久性。

综上所述,超高性能混凝土在工程建设中具有重要的应用价值。

随着科学技术的不断进步,UHPC的性能将会得到进一步的提升和改进,为建筑工程的发展做出更大的贡献。

超高性能混凝土(UHPC)基本性能研究综述2超高性能混凝土(UHPC)是一种新型高强低碳建筑材料,它雷同名字,具有出色的力学性能、耐久性和抗冲击性能,是目前替换传统混凝土的一种趋势。

本文将对UHPC的基本性能进行综述。

一、力学性能UHPC的力学性能高于传统混凝土。

表现在以下方面:1. 抗压强度: UHPC的抗压强度通常为150-250 MPa之间,是普通混凝土的10倍以上,并且在高应变下表现出极佳的稳定性。

加工中心文献综述

加工中心文献综述

加工中心的特点及现状1.提要本文对加工中心线轨进给系统进行了简单的介绍,列出了加工中心线轨进给系统的一些较为明显的特点,并对加工中心线轨进给系统的现状做出了一些分析,同时对滚动丝杆的原理和结构进行了一定的解释。

通过在维普期刊网、中国知网、万方数据库的检索文献,加深了对加工中心线轨进给系统的理解和认知。

2加工中心的概念与特点2.1加工中心的概念与类型加工中心是由数控系统和机械设备组合的可以用来高效率的加工形状复杂的零件的自动化机床。

加工中心也叫电脑锣。

因为其自备刀库,因此具有自动换刀的功能,且对工件一次装夹后能够进行多次工序加工,由于加工中心是高度机电一体化的产品,在一次工件装夹后,数控系统能够按照预先的编程进行自动选择、更换刀具、自动对刀、自动改变主轴转速、进给量等,因此极大的减少了工件装夹、测量、机床调整的时间,对复制零件的价格具有较好的经济效果,对根据不同的分类规则,有较多种不同的类型。

2.1.1按加工工序(1)镗铣(2)车铣2.1.2按控制轴数(1)三轴加工中心(2)四轴加工中心(3)五轴加工中心2.1.3以主轴与工作台的相对位置分类(1)卧式加工中心:是指主轴轴线与工作台平行设置的加工中心,主要适用于加工箱体类零件。

(2)立式加工中心:是指主轴轴线与工作台垂直设置的加工中心,主要适用于加工板类、盘类、模具及小型壳体类复杂零件。

(3)万能加工中心:是指通过加工主轴轴线与工作台回转轴线的角度可控制联动变化,完成复杂空间曲面加工的加工中心。

适用于具有复杂空间曲面的叶轮转子、模具、刃具等工件的加工。

2.2加工中心的技术特点加工中心是典型的集高新技术于一体的机械加工设备,它的发展代表了一个国家制造业的水平,在国内外都受到高度重视。

与普通数控机床相比,它具有以下几个突出特点:(1)、全封闭防护所有的加工中心都有防护门,加工时,将防护门关上,能有效防止人身伤害事故。

(2)、工序集中,加工连续进行加工中心通常具有多个进给轴(三轴以上),甚至多个主轴,联动的轴数也较多,如三轴联动、五轴联动、七轴联动等,因此能够自动完成多个平面和多个角度位置的加工,实现复杂零件的高精度加工。

超声钻削研究综述

超声钻削研究综述

内燃机与配件———————————————————————作者简介:柏广才(1971-),男,江苏淮安人,大专,普斐特油气工程(江苏)股份有限公司副总经理,主要从事石油机械产品加工工艺和工程技术的研发。

0引言传统钻削过程受钻削空间的限制,导致排屑和冷却困难,是钻削轴向力较大,同时过大的轴向力在钻头钻穿工件时使工件变形增大,造成钻削过程的飞边和毛刺;而切屑在顺着排屑槽排出时会与已加工表面划擦,造成钻削温度较高和孔表面质量变差[1]。

同时普通钻削过程,特别是小孔钻削过程,钻头的刚度较差,若工件表面不平经常出现钻头偏置,导致孔的位置精度较低。

针对传统钻削中存在的上述问题,学者通过研究提出了超声辅助钻削技术,即在传统钻削的过程中施加一个高频的振动,辅助钻削过程。

超声振动的引入是原有的钻削运动过程中引入另一个运动,形成新的刀具运动轨迹和形成新的切削动力学过程,通过合理的匹配振动的频率和振幅,优化传统的钻削过程。

高频振动的引入使钻削过程中刀具不断的与工件接触和分离,使原来的连续钻削过程转变为断续切削过程,促使切屑断裂和冷却液进入,降低切削刃的温度,减小磨损;同时高频振动不断的摩擦孔壁,降低孔的表面粗糙度,提升孔的加工质量。

1超声钻削技术分类与特点超声辅助钻削技术按不同振动的来源、形式和作用位置的不同可以划分成不同的类别。

①超声辅助钻削中依据振动来源的不同可分为自激振动和受迫振动辅助钻削。

自激振动中的振动来源于系统自身,如机床收到敲击后引起的自身的振动,通过将振动传递到工件,迫使工件振动,自激振动受系统阻尼的影响无法持续,同时振动的频率受系统结构的限制,无法调节,致使整个振动过程无法控制,因此一般不在实际钻削过程中使用。

强迫振动通过外部的驱动电路和结构产生有规律的振动并将振动传递到工件或者钻头,实现振动辅助加工,强迫振动的频率和振幅均有电路控制,可调节性强,因此被广泛使用。

目前采用的超声辅助钻削技术多为强迫辅助钻削。

文献综述小豆芽 (2)

文献综述小豆芽 (2)

文献综述题目我国机械制造业的发展趋势姓名小豆芽班级学号我国机械制造业的发展趋势摘要制造业是一个国家或地区经济发展的重要支柱,其发展水平标志着该国家或地区的经济实力、科技水平、生活水平和国防实力。

国际市场的竞争归根到底是各国制造生产能力的竞争。

中国的制造业在国际中的起步都很晚,和国外的发达国家还有一段差距,随着我国改革开放的进程,也在逐渐的缩小差距。

本文综合了这几年的国内外的机械制造业的发展,并现了我国现代的机械制造业的一些发展趋势,关键词:计算机集成制造系统;敏捷制造;虚拟制造;精益生产;绿色制造。

一:国内外机械制造业的现状当今世界,工业发达国家对机床工业高度重视,竞相发展机电一体化、高质量、高精、高效、自动化先进机床,以加速工业和国民经济的发展。

长期以来,欧、美、亚在国际市场上相互展开激烈竞争,已形成一条无形战线,特别是随微电子、计算机技术的进步,数控机床在1952年最先由美国研制出来的,80年代以後加速发展,各方用户提出更多需求,早已成为四大国际机床展上各国机床制造商竞相展示先进技术、争夺用户、扩大市场的焦点。

数控机床出现至今的60年,随科技、特别是微电子、计算机技术的进步而不断发展。

美、德、日三国是当今世上在数控机床科研、设计、制造和使用上,技术最先进、经验最多的国家。

在制造业自动化发展方面, 发达国家机械制造技术已经达到相当水平, 实现了机械制造系统自动化。

产品设计普遍采用计算机辅助设计(CAD) 、计算机辅助产品工程(CAE) 和计算机仿真等手段, 企业管理采用了科学的规范化的管理方法和手段, 在加工技术方面也已实现了底层的自动化, 包括广泛地采用加工中心(或数控技术) 、自动引导小车(AGV) 等。

在这个基础上再提高制造系统的自动化水平, 对于改善企业的TQCS ( T —尽量缩短产品的交货时间或提早新产品上市时间、Q —提高产品质量、C —降低产品成本、S —提高服务水平) 已无明显的作用。

现代制造业先进制造技术综述

现代制造业先进制造技术综述

数控机床将计算机技术与机械加工过程联系起来 ,机床的 运 动 由机 械传 动 的控 制 方 式开 始 转 变 为数 字 控 制 方式 ,采 用 交 流或直流变速 和伺服驱动替代齿轮变速 。并利用数控技术 ,将
数学 信 息送 入 数 控 装 置 ,经 过 译码 、运 算 ,发 出各 种 指 令控 制 机床 伺 服 系统 及 执 行 元件 按 事 先 编制 好 的工 艺 流程 和 规 定 动作 进行 自动 加工 。适 用 于形 状 复 杂 难 加工 的零 件 ,其 加 工 精 度 、 生产 效 率 不受 人 为 因 素 的影 响 。数 控 机 床 加 工零 件 的 过 程 图如
1 数控技 术 .
快 速 原 型不 同于 传 统 的用 刀 具 切 除 大 于工 件 的毛 坯上 的多 余材 料 而得 到所 需零 件 形状 的加 工 方法 , 是采 用新 的 “ 料增 而 材 长 ”加工 方法 ,即用 一 层层 的 “ 薄片 毛坯 ”逐步 叠加 成 复杂 形状 的零 件 。 四、微 型机 械 和微 型 制造技 术
纳 米 机 器人 是 纳 米 生 物 学 中最 具 诱 惑力 的 内容 。纳 米 机 器 人 是 生 物 系统 和机 械 系 统 的有 机 结 合 体 ,这 种 纳米 机 器 人 只有 人 的 头 发那 样 粗 细 ,可 以在 人 体 血 管 中 穿行 ,消 除癌 变 或 修复 损 伤 的 组 织 。还 可 以用来 进 行 人 体 器 官 的修 复 工 作 、做 整 容手 术 、美 化 人体 。纳 米 科 技 的 出现 标 志 着 人类 科 学 技术 已进 入一 个 崭 新 的 时代 。 除了 以上介 绍 的几 种 先进 制 造技 术之 外 , 有柔性 制造 系统 还 技术、计算机集成制造系统技术 、特种加工技术等等。制造技术 的发展 显示 出了它 所 带来 的 巨大 经济 、 会 效益 ,已成 为直接 创 社 造社 会 财 富的 重要 基础 。 国也应 该 优先 发展 和 推广 这些 先进 的 我 制造 技术 , 利用 先 进制 造技 术并 以全新 的思 维理念 打造 我 国 的现 代化 工业 。

特种加工

特种加工

特种加工第一节特种加工综述一、特种加工产生背景随着工业生产及科学技术的发展,工业产品向高精度、高速度、高温、高压等方向发展,使用的材料越来越难于加工,零件形状更加复杂,零件尺寸精度要求愈来愈高,粗糙度值要求愈来愈小。

因此,仅仅依靠传统的切削加工方法,就很难满足要求。

为了解决各种难加工材料的加工问题,如对硬质合金、钛合金、不锈钢的加工;为了解决特殊、复杂表面和精密细小零件的加工,如汽轮机叶片、立体成型表面的锻模、细小孔的喷丝头等的加工;为了解决对表面质量、精度等有特殊要求的零件加工问题,特种加工新工艺逐步发展起来。

二、特种加工的特点特种加工是指切削加工以外的一些新的加工方法。

它与传统的机械加工方法相比,有以下特点:(一)特种加工不是依靠机械能,而是利用电能、声能、光能或化学能来除去工件上多余材料。

(二)机械加工用的工具硬度是不能低于加工材料的,但特种加工用的工具硬度却可以低于被加工材料的硬度,实现了“以柔克刚”。

(三)特种加工中工具与工件间不存在显著的机械切削力,不产生宏观切屑,不产生强烈的弹、塑性变形,故可获得很低的表面粗糙度Ra值。

三、各种特种加工方法的比较表7-1就各种特种加工方法的工艺能力和经济性、适用的工件形状和材料进行了综合比较。

本章就电火花加工、电解加工、激光加工的工作原理、特点及应用场合作简单介绍。

注:○最适合△适合×不适合第二节电火花加工一、电火花加工的基本原理电火花加工是基于在工具与工件之间形成脉冲火花放电时产生的电腐蚀来除去多余金属,以达到加工目的。

图7-1为电火花加工装置原理图,脉冲发生器1的两极分别接在工具电极2与工件3上,当两极在工作液4中靠近时,极间电压击穿间隙而产生火花放电,在放电通道中瞬时产生大量的热,达到很高的温度(10000℃),使表面局部金属熔化甚至气化而被蚀除,形成一个微小的凹坑。

多次放电的结果,电极和工件的表面由无数极小凹坑所组成,如图7-2所示。

液体动静压电主轴关键技术综述

液体动静压电主轴关键技术综述

液体动静压电主轴关键技术综述一、本文概述本文旨在对液体动静压电主轴的关键技术进行全面的综述。

液体动静压电主轴,作为一种高精度、高稳定性的主轴系统,广泛应用于数控机床、精密加工设备以及超精密制造领域。

本文将从液体动静压电主轴的基本原理、关键技术、应用领域以及发展趋势等方面进行深入探讨,以期为读者提供全面而深入的理解。

本文将介绍液体动静压电主轴的基本原理,包括其结构特点、工作原理以及与传统主轴的区别。

将重点分析液体动静压电主轴的关键技术,如液体动静压技术、电主轴驱动技术、高精度轴承技术等,并对这些技术的现状和发展趋势进行详细阐述。

本文还将对液体动静压电主轴在各个领域的应用进行概述,以展示其在现代制造业中的重要地位。

本文将展望液体动静压电主轴的未来发展趋势,探讨其在新材料、新工艺以及智能制造等领域的潜在应用,以期为我国制造业的转型升级提供有益的参考。

通过本文的综述,读者可以对液体动静压电主轴的关键技术有更加清晰的认识,为相关研究和应用提供有益的借鉴。

二、液体动静压电主轴的基本原理液体动静压电主轴是一种集成了液体动静压技术和电主轴技术的高精度、高刚度、高转速主轴装置。

其基本原理主要包括液体动静压原理和电主轴原理两部分。

液体动静压原理是基于帕斯卡定律和流体力学原理,通过特定的供油系统和油腔设计,使主轴在高速旋转时,主轴与轴承之间形成一层均匀、稳定的油膜,从而实现主轴的液体动压支撑。

这种支撑方式不仅可以显著降低主轴与轴承之间的摩擦,提高主轴的旋转精度和稳定性,还能有效吸收振动和冲击,延长主轴的使用寿命。

电主轴原理则是通过内置电机直接驱动主轴旋转,省去了传统的传动机构,从而实现了主轴的高速化、高精度化和高刚度化。

电主轴具有结构紧凑、重量轻、动态响应快等优点,能够满足现代高精度加工设备对主轴的高性能要求。

在液体动静压电主轴中,液体动静压技术和电主轴技术相互融合,形成了独特的工作原理。

一方面,液体动静压技术为电主轴提供了稳定、可靠的支撑,保证了电主轴的高速旋转精度和稳定性;另一方面,电主轴的高速旋转又促进了油膜的均匀分布和稳定形成,进一步提高了液体动静压技术的效果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

超精密加工现状综述
摘要:超精密加工是获得高形状精度、表面精度和表面完整性的必要手段。

精密光学、机械、电子系统中所用的先进陶瓷或光学玻璃元件通常需要非常高的形状精度和表面精度及较小的加工变质层。

掌握超精密加工过程中材料去除规律和损伤层特性对提高加工的稳定性与经济性十分重要。

对超精密加工中的超精密切削、超精密磨削和超精密研磨抛光技术进行综述,重点介绍各种典型加工方法及其材料去除机理。

从加工精度和加工效率角度对上述几类超精密加工方法进行比较,介绍以实现高效精密加工为目的的半固着磨粒加工技术。

对超精密加工的发展趋势进行预测
前言
超精密加工技术是现代高技术战争的重要支撑技术,是现代高科技产业和科学技术的发展基础,是现代制造科学的发展方向。

以超精密加工技术为支撑的高性能武器,对第一次海湾战争(1992年)、科索沃战争(1996年)、阿富汗战争(1999年)及第二次海湾战争(2003年)的进程及结果发挥了决定性的作用。

以超精密加工技术为支撑的三代半导体器件,为电子、信息产业的发展奠定了基础。

现代科学技术的发展以试验为基础,所需试验仪器和设备几乎无一不需要超精密加工技术的支撑。

由宏观制造进入微观制造是未来制造业发展趋势之一,当前超精密加工已进入纳米尺度,纳米制造是超精密加工前沿的课题。

世界发达国家均予以高度重视。

近启动的研究计划包括,2001年美国的NNI(National nanotechnology initiative)计划、英国的多学科纳米研究合作计划IRC(Interdisciplinary research collaboration in nanote- chnology),2002年日本的纳米技术支撑计划。

目前的超精密加工,以不改变工件材料物理特性为前提,以获得极限的形状精度、尺寸精度、表面粗糙度、表面完整性(无或极少的表面损伤,包括微裂纹等缺陷、残余应力、组织变化)为目标。

超精密加工的研究内容,即影响超精密加工精度的各种因素包括:超精密加工机理、被加工材料、超精密加工设备、超精密加工工具、超精密加工夹具、超精密加工的检测与误差补偿、超精密加工环境(包括恒温、隔振、洁净控制等)和超精密加工工艺等。

一直以来,国内外学者围绕这些内容展开了系统的研究。

1983年在国际生产工程年会上,TANIGUCHI对当时的超精密加工状况进行了描述,并对超精密加工的发展趋势进行了预测。

此后的20余年内,超精密加工技术蓬勃发展。

1.超精密加工的发展
超精密加工的发展经历了如下三个阶段。

(1) 20世纪50年代至80年代为技术开创期。

20世纪50年代末,出于航天、国防等尖端技术发展的需要,美国率先发展了超精密加工技术,开发了金刚石
刀具超精密切削——单点金刚石切削(Single point diamond turning,SPDT)技术,又称为“微英寸技术”,用于加工激光核聚变反射镜、战术导弹及载人飞船用球面、非球面大型零件等。

从 1966年起,美国的UnionCarbide公司、荷兰Philips公司和美国Lawrence Livermore Laboratories陆续推出各自的超精密金刚石车床,但其应用限于少数大公司与研究单位的试验研究,并以国防用途或科学研究用途的产品加工为主。

这一时期,金刚石车床主要用于铜、铝等软金属的加工,也可以加工形状较复杂的工件,但只限于轴对称形状的工件例如非球面镜等。

(2)20世纪80年代至90年代为民间工业应用初期。

在20世纪80年代,美国政府推动数家民间公司如Moore Special Tool和Pneumo Precision公司开始超精密加工设备的商品化,而日本数家公司如Toshiba和Hitachi与欧洲的Cranfield大学等也陆续推出产品,这些设备开始面向一般民间工业光学组件商品的制造。

但此时的超精密加工设备依然高贵而稀少,主要以专用机的形式订作。

在这一时期,除了加工软质金属的金刚石车床外,可加工硬质金属和硬脆性材料的超精密金刚石磨削也被开发出来。

该技术特点是使用高刚性机构,以极小切深对脆性材料进行延性研磨,可使硬质金属和脆性材料获得纳米级表面粗糙度。

当然,其加工效率和机构的复杂性无法和金刚石车床相比。

20世纪80年代后期,美国通过能源部“激光核聚变项目”和陆、海、空三军“先进制造技术开发计划”对超精密金刚石切削机床的开发研究,投入了巨额资金和大量人力,实现了大型零件的微英寸超精密加工。

美国LLL国家实验室研制出的大型光学金刚石车床(Large optics diamondturningmachine,LODTM)成为超精密加工史上的经典之作。

这是一台大加工直径为1.625m的立式车床,定位精度可达28nm,借助在线误差补偿能力,可实现长度超过1m、而直线度误差只有±25nm的加工。

(3)20世纪90年代至今为民间工业应用成熟期。

从1990年起,由于汽车、能源、医疗器材、信息、光电和通信等产业的蓬勃发展,超精密加工机的需求急剧增加,在工业界的应用包括非球面光学镜片、Fresnel镜片、超精密模具、磁盘驱动器磁头、磁盘基板加工、半导体晶片切割等。

在这一时期,超精密加工设备的相关技术,例如控制器、激光干涉仪、空气轴承精密主轴、空气轴承导轨、油压轴承导轨、摩擦驱动进给轴也逐渐成熟,超精密加工设备变为工业界常见的生产机器设备,许多公司,甚至是小公司也纷纷推出量产型设备。

此外,设备精度也逐渐接近纳米级水平,加工行程变得更大,加工应用也逐渐增广,除了金刚石车床和超精密研磨外,超精密五轴铣削和飞切技术也被开发出来,并且可以加工非轴对称非球面的光学镜片。

目前世界上的超精密加工强国以欧美和日本为先,但两者的研究重点并不一样。

欧美出于对能源或空间开发的重视,特别是美国,几十年来不断投入巨额经
费,对大型紫外线、X射线探测望远镜的大口径反射镜的加工进行研究。

如美国太空署(NASA)推动的太空开发计划,以制作1m以上反射镜为目标,目的是探测X射线等短波(0.1~30nm)。

由于X射线能量密度高,必须使反射镜表面粗糙度达到埃级来提高反射率。

目前此类反射镜的材料为质量轻且热传导性良好的碳化硅,但碳化硅硬度很高,须使用超精密研磨加工等方法。

日本对超精密加工技术的研究相对美、英来说起步较晚,却是当今世界上超精密加工技术发展快的国家。

日本超精密加工的应用对象大部分是民用产品,包括办公自动化设备、视像设备、精密测量仪器、医疗器械和人造器官等。

日本在声、光、图像、办公设备中的小型、超小型电子和光学零件的超精密加工技术方面,具有优势,甚至超过了美国。

日本超精密加工初从铝、铜轮毂的金刚石切削开始,而后集中于计算机硬盘磁片的大批量生产,随后是用于激光打印机等设备的多面镜的快速金刚石切削,之后是非球面透镜等光学元件的超精密切削。

1982年上市的EastmanKodak数码相机使用的一枚非球面透镜引起了日本产业界的广泛关注,因为1枚非球面透镜至少可替代3枚球面透镜,光学成像系统因而小型化、轻质化,可广泛应用于照相机、录像机、工业电视、机器人视觉、CD、VCD、DVD、投影仪等光电产品。

因而,非球面透镜的精密成形加工成为日本光学产业界的研究热点。

尽管随时代的变化,超精密加工技术不断更新,加工精度不断提高,各国之间的研究侧重点有所不同,但促进超精密加工发展的因素在本质上是相同的。

这些因素可归结如下
(1)对产品高质量的追求。

为使磁片存储密度更高或镜片光学性能更好,就必须获得粗糙度更低的表面。

为使电子元件的功能正常发挥,就要求加工后的表面不能残留加工变质层。

按美国微电子技术协会(SIA)提出的技术要求,下一代计算机硬盘的磁头要求表面粗糙度Ra≤0.2nm,磁盘要求表面划痕深度h≤1nm,表面粗糙度Ra≤0.1nm。

1983年TANIGUCHI对各时期的加工精度进行了总结并对其发展趋势进行了预测,以此为基础,BYRNE等描绘了20世纪40年代后加工精度的发展。

显示了2003年时各种加工方法可获得的加工精度。

其中微细加工可实现特征尺寸为1µm、表面粗糙度趋于5nm的加工
(2)对产品小型化的追求。

伴随着加工精度提高的是工程零部件尺寸的减小。

图3描述了各时期汽车上ABS系统的质量变化。

从1989~2001年,从6.2kg降低到1.8kg。

电子电路高集成化要求降低硅晶片表面粗糙度、提高电路曝光用镜片的精度、半导体制造设备的运动精度。

零部件的小型化意味着表面积与体积的比值不断增加,工件的表面质量及其完整性越来越重要。

(3对产品高可靠性的追求,对轴承等一边承受载荷一边做相对运动的零件,降低表面粗糙度可改善零件的耐磨损性,提高其工作稳定性、延长使用寿命。

目前,高速高精密轴承中使用的Si3N4陶瓷球的表面粗糙度要求达到数纳米。

加工。

相关文档
最新文档