热交换器设计计算
1 热交换器的热基本计算

Q-热负荷,W; M1,M2- 分别为热流体与冷流体的质量流量,kg/s; h1,h2-分别为冷热流体的焓,J/kg; 1代表热流体,2代表冷流体;
代表流体的进口状态, 代表流体的出口状态。
热计算基本方程式
热平衡方程式
Q M1 h1 h1 M 2 h2 h2
当流体无相变时,热负荷也可用下式表示:
为修正系数
其它流动方式时的平均温差
tm tlm,c
若令
t2 t2 冷流体的加热度 P t2 两流体的进口温差 t1 t1 热流体的冷却度 t1 R t2 冷流体的加热度 t2
P的数值代表了冷流体的实际吸热量与最大可能的 吸热量的比率,称为温度效率,恒小于1。 R是冷流体的热容量与热流体的热容量之比, 可以大于1、等于1或小于1。
t t e
μkA
t x t e
-μ kAx
t ln μ kA t
t t t t tm ( 1) t t t ln ln t t
由于式中出现了对数,故常把tm称为对数平均温差。
d dt1 qm1c1 d dt2 qm 2c2
由于qm1c1和qm2c2 不变,则d↓ , dt1、dt2↓
故沿着流体流动方向,冷热流体温度变化渐趋平缓,温 度分布曲线形状的凹向不可能反向。
逆流情况下的平均温差
逆流换热器中冷、热流体温度的沿程变化如下图。
d k[t1 ( x) t2 ( x)]dA kt ( x)dA
d[t ( x)] k t ( x)dAx
顺流情况下的平均温差
1 1 d[t ( x)] dt1 ( x) dt2 ( x) qm1c1 qm2c2 d d
全热交换效率计算公式

全热交换效率计算公式全热交换器是一种常用于加热、冷却或回收能量的设备,它通过将两个流体之间的热量传递来实现能量的转移。
为了评估全热交换器的性能,我们需要计算其热交换效率。
热交换效率是评估全热交换器传热性能的重要指标之一。
它表示热量在全热交换器中实际传递的比例。
换句话说,热交换效率是热量转化的利用率。
计算全热交换器的热交换效率需要考虑两个关键因素:热量传递量和热量传递的理想情况。
首先,我们需要计算热量传递量。
热量传递量是指通过全热交换器传递的热量。
它可以通过以下公式计算:传热量 = 传热系数× 温度差× 有效传热面积其中,传热系数是指热量在单位时间内通过单位面积传递的能力,它受到全热交换器的设计和工况条件的影响。
温度差是指流体之间的温度差异,有效传热面积是指热量传递的表面积。
其次,我们需要确定热量传递的理想情况。
理想情况下,热量传递过程中没有任何能量损失。
这意味着热量在全热交换器中的传递是高效的,没有任何能量浪费。
我们可以通过以下公式计算理想传热量:理想传热量 = 较高温度流体部分传热量最后,我们可以通过将传热量除以理想传热量,并乘以100来计算全热交换器的热交换效率。
热交换效率 = (传热量 / 理想传热量) × 100%这个计算公式可以帮助我们评估全热交换器的性能,并确定其传热效率。
更高的热交换效率意味着更高的能量利用率和更好的能源效益。
然而,需要注意的是,热交换效率的计算是建立在一定的假设条件下的。
实际情况中,由于各种因素的不确定性,热交换器的热交换效率可能会有所降低。
综上所述,全热交换器热交换效率的计算公式为传热量除以理想传热量,并乘以100。
我们可以通过这个公式来评估全热交换器的性能。
通过提高热交换效率,我们可以实现更高效的能量转移,为工业生产和能源利用做出贡献。
管壳式换热器的设计及计算

管壳式换热器的设计及计算管壳式换热器是常见的一种热交换设备,用于在流体之间进行热量传递。
它由一个外壳和多个热交换管组成。
在设计和计算管壳式换热器时,需要考虑以下几个方面:选择换热器类型、确定换热器尺寸、确定流体特性、计算热量传递量和压降等。
下面将详细介绍管壳式换热器的设计及计算过程。
首先,选择适合的换热器类型。
根据具体的应用和流体特性,可以选择不同类型的管壳式换热器,如定压式、定温式、冷凝器和蒸发器等。
每种类型的换热器都有特定的性能和适用范围,需根据实际需求确定。
接下来,确定换热器的尺寸。
首先要确定传热面积,这取决于所需的传热量和两种流体间的温度差。
一般来说,换热器的传热面积越大,传热效果越好。
然后确定换热器的外壳直径和长度,这取决于流体的流速、流量和压降要求。
根据流体速度和流量计算出流道的横截面积,再确定壳程内的流道数量,最后通过换热器的设计公式计算出外壳直径和长度。
确定流体特性是设计换热器的关键一步。
需要收集并分析流体的物性数据,如温度、压力、流速、密度、热容等。
这些参数将用于计算热量传递量和压降。
此外,还需要考虑流体的腐蚀性、粘度和污染物含量等因素,在选择材料时要注意其耐腐蚀性能和抗堵塞能力。
计算热量传递量是设计换热器的核心任务。
可以使用传热计算公式,如奥兹逊公式、Nusselt数公式等,根据流体的特性参数计算出传热系数。
传热系数与换热器的结构、流体速度和物性参数有关。
通过计算热传导、对流和辐射等传热机制,可以得到热量传递量的准确数值。
最后,要计算管壳式换热器的压降。
压降是流体通过换热器时产生的能量损失。
为了保证流体的正常流动和换热效果,需要控制良好的压降。
可以通过实验或计算公式,如达西公式和克尔文公式,预测换热器内的压降情况。
根据流体的流速、流量和物性参数,计算出壳程和管程内的压降,并进行整体的能量平衡计算。
综上所述,管壳式换热器的设计和计算包括选择换热器类型、确定尺寸、确定流体特性、计算热量传递量和压降等步骤。
管壳式热交换器-设计3讲解

式中:
AS′——为壳程流通截面积,m2; Ms——壳程流体的质量流量,Kg/s;
ρs——壳程流体的密度,Kg/m3
ws——壳程流体的流速,m/s;
9
纵向隔板长度确定的基本原则: 流体在纵向隔板转弯时的流速
各流程中顺管束流动时速度。
壳程流通截面积 流程数
As
4Z s
Ds 2 nt d0 2
二、壳体直径的确定
内径 方法
作图(可靠,准确)
估算 Ds b 1s 2b
7
式中:
b′——管束中心线上最外层管中心至壳体内壁距离, b′=(1~1.5)d0(d0为管外径)。
b ——沿六边形对角线上的管数。
估算 当管子按照等边三角形排列时,b 1.1 n t ;
当管子接正方形排列时 b 1.19 nt
As Ab Ac
As——为保证流速所需要的流通截面积
Ab——流体在缺口处的流通截面积
AC—两折流板间错流的流通截面积
15
(3)盘环形折流板
环板圆孔处的流通面积a1
盘板的流通面积a2
a1 a2 a3
环板的流通面积a3
a2
Dmh1
d0 sn
As a2a3
a3——盘周至圆筒内壁截面减去该处管子所占面积
一般情况下,管子的计算直径取换热系数小的 那一侧的,只有在两侧的换热系数相近时才取平均 直径作为计算直径。
4
换热管长度取值: 换热管的长度与壳体直径的比值在4-25之间; 一般为6-10,对于立式热交换器而言比值为4-6。 若算得的管长过长,则应该做成多程的热交换器。
管程数Zt为: Zt L / l
正方形斜转或直列排列时
气热交换器设计计算

通 过对烘房及加热物品的热量 � 衡算 , 从而确定单位时 的计算方法是 � � 间内需热量 引入传热方程 � � � � � ( � Q ). � � � � � � � � � = ( (11- 22 )/(12 - 21 ) 11 - 22 ) - ( 12 - 21 ) / 进 , 出换热器烟气温度 ( � � � � A=Q / K � � ( 1) �) 11 12 式中 Q 单 位时间内烘 房及加 热物品需 热量 , 进 , 出换热器被加热空气温度 ( � � � � � �) 21 22 � � � J/ K A 热交换器的传热系数 , J/ 换热 面积 ,
因此热交换器内烟气流速的确定应主要决定于燃烧机的工况阻力目前市场上所能提供的油气燃烧机都是在微正压状态下达到最佳工作状态其发出功率与燃烧室内压力的关系为研究与成都市农林科学院四川成都邮编摘要介绍一类型燃油气热交换器从换热计算及结构设计方面进行了阐述关键词热交换器计算结构从上图中可以看出当燃烧室内压力小于50燃烧机才能发出最大功率因此从管道阻力同烟气速率关系分析热交换器内烟气流速不能过快其阻力计系数单行程a1两行程a13实践中烟气流速一般取116对被加热空气的要求在此类换热器中被加热空气的流动方向是从下至上正负压方式均可空气速度一般要求为烟道布置从生产实践和工艺设计要求上烟道布置采用回流两行程式此方式有效解决了传热的不均匀性并提高了传热效率而烟道阻力能满足燃烧机的工况要求热变形在烟道结构设计中充分考虑了热变形1上图中主要受热件换热管2燃烧室5均可沿长度方向伸缩2上图中支架4与换热器主体采用柔性连接而支架4与换热系统之间采用了限位连接安全机构为了预防燃烧机出现点火滞后故障而产生爆燃引起燃烧室内压力剧增而出现安全事故特设置了卸压观察口当产生爆燃时卸压观察口上的重力盖板自动打开达到及时卸压的目的设计实例一条货车车身喷涂线中的固化炉炉体内尺寸循环风量23000型单段火天然气燃烧机输出功率169对固化炉及加热车身进行热量衡算确定单位时间内需热量22800021热交换器的传热系数k为44引入传热方程1则22800044211614结论51以上计算的结果同实际运用的效果接近原因是在运用经典公式计算中重新定义了综合传热系数的范围从而简化了工况中传热系数的计算并在实践中有效扩大了换热范围从而提高了换热效率52此换热器在工作中对换热空气的流动方向要求较高在换热器外形及风道设计上力求降低阻力和有效分风当要求换热空气的温度较高时可对换热器外形添加翅片以引导换热空气的流动方向和增加换热面积但要控制由此增加的换热器热惯性53在实际设计中可适当加大换热器的换热面积更重要是要尽量符合市场提供的板材尺寸从而降低制造成本54在节约能源方面可充分利用排放烟气余热因地制宜地进行如预热空气预热被加热物生产热水等收稿日期参考文献1
热管换热器设计计算及设计说明

热管换热器设计计算及设计说明设计说明书目录1.引言2.设计目标3.设计计算3.1传热需求计算3.2材料选择3.3热管尺寸计算3.4换热面积计算4.设计结果4.1热管尺寸4.2换热面积5.结论1.引言2.设计目标本设计的目标是设计一个能够满足热量传递需求的热管换热器。
具体设计目标如下:-传热效率高,热量损失小;-体积小,重量轻,便于安装和维护;-耐腐蚀,使用寿命长。
3.设计计算3.1传热需求计算根据所需传热功率和热传导方程,可以计算出所需的换热面积。
传热功率的计算公式如下:Q=U*A*ΔT其中,Q为传热功率,U为传热系数,A为换热面积,ΔT为温度差。
根据具体的应用条件和需求,可以确定传热系数和温度差。
3.2材料选择根据工作温度和压力,选择合适的材料用于热管换热器的制造。
常见的材料有不锈钢、铜、铝等。
需要考虑的因素包括材料的导热性能、耐腐蚀性能和成本等。
3.3热管尺寸计算热管的尺寸设计主要包括直径、长度和分段数等。
热管的直径与流体的流量有关,需要根据实际流量计算得出。
热管的长度与传热效果有关,需要根据传热需求和热管材料的导热性能计算得出。
分段数的选择主要考虑热管结构的复杂度和制造成本。
3.4换热面积计算根据传热功率和传热系数,可以计算出所需的换热面积。
换热面积的计算公式如下:A=Q/(U*ΔT)其中,A为换热面积,Q为传热功率,U为传热系数,ΔT为温度差。
根据具体的应用条件和需求,可以确定传热系数和温度差。
4.设计结果4.1热管尺寸根据具体的传热需求和热管材料的导热性能,计算得出热管的直径为XX mm,长度为XX mm,分段数为XX。
4.2换热面积根据传热功率和传热系数,计算得出所需的换热面积为XXm²。
5.结论本设计通过计算得出了一台满足特定条件下的热管换热器的尺寸和换热面积。
这个设计可以满足传热需求,并具有高传热效率、小体积和耐腐蚀等特点。
换热器热力设计方案计算
换热器热力设计方案计算
热力设计方案计算是确定换热器的尺寸和参数的重要步骤,这些参数
包括换热面积、换热系数、热传导方程等。
以下是一个换热器热力设计方
案计算的示例,详细说明了计算的步骤和方法。
首先,需要确定换热器所需的换热面积。
常用的计算方法是根据传热
方程来确定,传热方程为:
Q=U*A*ΔT
其中,Q是换热器的传热量,U是换热器的总传热系数,A是换热面积,ΔT是换热器的温度差。
通常情况下,需要根据实际工艺条件和热传
导方程来确定ΔT的值。
接下来,需要计算换热器的总传热系数U。
总传热系数是由换热器的
导热系数和对流传热系数组成的。
导热系数是指换热器材料的导热性能,
可以根据材料的热导率和厚度来计算。
对流传热系数是指流体在管内和管
外的传热性能,可以根据换热器的流体流速、壁面温度和换热器的材料来
计算。
在计算总传热系数U时,需要注意传热系数的单位。
通常情况下,传
热系数的单位是一次性热量的传递能力,单位为W/(m²·K)。
传热系数越大,传热效果越好,换热器的尺寸就越小。
在计算换热面积A时,需要考虑多个参数,包括介质流量、介质温度、介质性质和管束的布置方式等。
需要根据实际工艺条件和设计要求来确定。
最后,需要根据计算结果来确定换热器的尺寸和参数。
根据计算的结果,可以选择合适的换热器型号和规格,满足工艺生产的需求。
总之,换热器热力设计方案计算是一个复杂的工程项目,需要考虑众多的参数和条件。
通过准确计算和合理选择,可以设计出满足工艺要求和性能要求的换热器。
换热器的计算举例
换热器的计算举例换热器是一种常见的热交换设备,用于在流体之间传递热量。
它在许多工业过程中发挥着重要的作用,例如化工、石油、食品加工、制药等。
以下是一个计算换热器的例子,以说明如何确定换热器的工作参数和尺寸。
假设我们需要设计一个换热器来将热水从80°C降低到60°C,并且需要将冷水从20°C加热到40°C。
我们已经知道热水的流量为1,000升/小时,冷水流量为800升/小时。
步骤1:确定热水和冷水的进出口温度差首先,我们需要确定热水和冷水的温度差。
在本例中,热水的进口温度为80°C,出口温度为60°C,所以温度差为20°C。
同样,冷水的温度差为20°C。
步骤2:计算热水和冷水的热量热水的热量可以通过以下公式计算:Q=m×c×ΔT其中,Q代表热量,m代表质量,c代表比热容,ΔT代表温度差。
在本例中,热水的质量可以通过以下公式计算:m=流量×密度已知热水的流量为1,000升/小时,那么质量可以通过将流量转换为千克/小时来计算:m=1,000千克/立方米×1立方米/1,000升×1,000升/小时=1千克/小时热水的密度可以通过查找热水的性质表来获取,假设为1千克/立方米。
热水的比热容可以通过查找热水的性质表或使用常见物质的比热容来估计,假设为4.18千焦尔/千克•摄氏度。
因此,热水的热量可以计算为:Q热水=1千克/小时×4.18千焦尔/千克•摄氏度×20°C=83.6千焦尔/小时同样地,可以使用相同的方法计算冷水的热量。
冷水的流量为800升/小时,质量为0.8千克/小时(假设冷水的密度为1千克/立方米),比热容为4.18千焦尔/千克•摄氏度。
因此,冷水的热量为:Q冷水=0.8千克/小时×4.18千焦尔/千克•摄氏度×20°C=66.88千焦尔/小时步骤3:计算换热器的传热面积传热面积是换热器设计中的关键参数,它决定了换热器的尺寸。
热交换的计算
热效率
01
表示热交换设备的有效能量转换比例,即设备输出的有用能量
与输入的总能量之比。
热效率的数值范围
02
通常在0到1之间,表示设备能量转换效率的高低。
影响因素
03
设备的设计、制造质量、运行工况以及操作条件等都会影响热
效率。
热效率的计算公式
公式
热效率 = (有效能量/总能量)× 100%
应用场景
用于评估热交换设备的性能,指导设备选型、优化和节能改造。
热交换器的设计原则
高效换热
选择合适的换热器类型和材料,优化换热面 积和流道设计,提高换热效率。
经济合理
在满足换热要求的前提下,尽量降低制造成 本和维护成本。
稳定可靠
保证换热器的稳定性和可靠性,确保长期运 行无故障。
环保节能
采用环保材料和节能技术,减少能源消耗和 排放。
热交换器的优化设计
数值模拟
利用数值模拟软件对换热器进行模拟 分析,优化流道和换热元件的设计。
实验研究
通过实验研究验证换热器的性能,并 根据实验结果对设计进行优化。
强化传热
采用强化传热技术,如振动、超声波 、电场等,提高换热效率。
多目标优化
综合考虑多个目标函数,如换热效率 、成本、体积等,进行多目标优化设 计。
05
CATALOGUE
热交换的实验研究
实验目的
01
02
03
验证热交换理论
通过实验研究,验证热交 换理论的正确性和实用性 。
02
03
04
空调系统
通过冷热交换实现室内温度的 调节。
工业制程
在化工、制药、食品加工等领 域,利用热交换进行物料加热
多流程板式热交换器的选型计算设计
可拆卸板式换热器是由许多冲压有波纹薄板按一定间隔,四周通过垫片密封,并用框架和压紧螺旋重叠压紧而成,板片和垫片的四个角孔形成了流体的分配管和汇集管,同时又合理地将冷热流体分开,使其分别在每块板片两侧的流道中流动,通过板片进行热交换。
板式换热器由于板片波纹表面的特殊作用,使流体沿着狭窄弯曲的通道流动其速度的大小方向不断的改变,致使流体在不大的流速下,激起了强烈端动,因而加快了流体边界层的破坏,强化了传热过程,有效地提高了传热能力。
并使其具有结构紧凑、金属耗量低、操作灵活性大、热损失小、安装、检查拆洗方便、耐腐性强、使用寿命长等突出优点。
流程指板式换热器内一种介质同一流动方向的一组并联流道,而流道指板式换热器内,相邻两板片组成的介质流动通道。
一般情况下,将若干个流道按并联或串联的费那个是连接起来,以形成冷、热介质通道的不同组合。
板式换热器的流程是由许多板片按一定工艺及需方技术工作要求组装而成的。
板片间形成网状通道四个角孔形成分配管和汇合管,密封垫把冷热介质密封在换热器里,同时又合理的将冷热介质分开而不致混合。
在通道里面冷热流体间隔流动,可以逆流也可以顺流,在流动过程中冷热流体通过板壁进行热交换。
板式换热器的流程组合形式很多,都是采用不同的换向板片和不同组装来实现的,流程组合形式可分为单流程,多流程和汽液交换流程,混合流程形式。
流程组合形式应根据换热和流体阻力计算,在满足工艺条件要求下确定。
尽量使冷、热水流道内的对流换热系数相等或接近,从而得到最佳的传热效果。
因为在传热表面两侧对流换热系数相等或接近时传热系数获得较大值。
虽然板式换热器各板间流速不等,但在换热和流体阻力计算时,仍以平均流速进行计算。
由于“U”形单流程的接管都固定在压紧板上,拆装方便。
ARD艾瑞德板式换热器(江阴)有限公司拥有世界上最先进的设计和生产技术以及最全面的换热器专业知识,一直以来ARD艾瑞德板式换热器(江阴)有限公司致力于为全球50多个国家和地区的石油、化工、工业、食品饮料、电力、冶金、造船业、暖通空调等行业的客户提供高品质的板式换热器,目前已有超过50,000台的板式换热器良好地运行于各行业,ARD艾瑞德板式换热器(江阴)有限公司已发展成为可拆式板式换热器领域的全球领导者。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
热交换器设计计算
一、基本参数
管板与管箱法兰、壳程圆筒纸之间的连接方式为e型
热交换器公称直径DN600,即Di=600mm
换热管规格φ382,L0=3000mm
换热管根数n=92
管箱法兰采用整体非标法兰
管箱法兰/壳体法兰外直径Df=760mm
螺柱孔中心圆直径Db=715mm
壳体法兰密封面尺寸D4=653mm
二、受压元件材料及数据
以下数据查自GB —2011;
管板、法兰材料:16Mn锻件 NB/T 47008—2010
管板设计温度取 10℃
查表9,在设计温度100℃下管板材料的许用应力:
t
r
σ][
178Mpa(δ≤100mm)
查表,在设计温度100℃壳体/管箱法兰/管板材料的弹性模量:
Mpa197000EEEpff
’’’
壳程圆筒材料:Q345R GB 713
壳程圆筒的设计温度为壳程设计温度
查表2,在设计温度100℃下壳程圆筒材料的许用应力:
t
c
σ][
189Mpa(3mm<δ≤16mm)
查表,在设计温度10℃下壳程圆筒材料的弹性模量Mpa197000Es
查表在金属温度20℃~80℃范围内,壳程圆筒材料平均线膨胀系数:
℃)(α•mm/mm10137.1
5-
s
管程圆筒材料:Q345R GB 713
管程圆筒的设计温度为壳程设计温度
按GB/T 151—2014 中规定,管箱圆筒材料弹性模量,当管箱法兰采用长颈对焊法兰时,取
管箱法兰的材料弹性模量,即Mpa197000Eh
换热管材料:20号碳素钢管 GB 9948
换热管设计温度取100℃
查表6,在设计温度100℃下换热管材料的许用应力Mpa147σ][tt(δ≤16mm)
查表,设计温度100℃下换热管材料的屈服强度Mpa220RteL(δ≤16mm)
查表,设计温度100℃下换热管材料的弹性模量Mpa197000Et
查表,换热管材料在沿长度平均的金属温度50℃下弹性模量:
Mpa199500Etm
查表,在金属温度20℃~50℃范围内,换热管材料平均线膨胀系数:
℃)(α•mm/mm10112.1
5-
t
螺柱材料:35CrMoA
查表12,室温下螺柱材料的许用应力Mpa228σ][b
查表12,设计温度100℃下螺柱材料的许用应力Mpa206σ][tb
三、管板计算
a. 确定管板布管方式及各元件结构尺寸
换热管为转角正三角形排列
换热管中心距S=48mm
壳程圆筒计算厚度δ=mm207.4632.211892600632.2p]2[Dpstcisφσ
壳程圆筒设计厚度mm2.512.4C2δ
按GB713—2014 钢板负偏差:C1=
按照GB/T 151 表7-1,对于不可抽管束的固定管板式热交换器,其壳程圆筒最小厚度(包
含1mm腐蚀裕量)为10mm,取δs=16mm
b. 计算α、A、A1、As、Kt、λ、Q、β、∑s、∑t、tcrσ][、At、Dt、ρt
一根换热管管壁金属的横截面积α=2t08.226)238(214.3)(mmdt
壳程圆筒内径横截面积25221083.2460014.34mmDAi
管板开孔后的面积2525211079.143814.3921083.24mmdnAA
圆筒壳壁金属横截面积241009.3166001614.3mmDAsiss
设管板名义厚度mmn56,换热管伸出管板长度为
换热管有效长度(两管板内侧间距):
mmLLn28855.156230005.120
管束模数MpaLDnaEKitt96.451009.3288508.226921970004
系数6325.01083.21079.1551AA
壳体不带波形膨胀节时,换热管束与圆筒刚度比:
0673.01009.319700008.226921970005sstAEnaEQ
系数1162.01079.108.2269251Ana
系数4050.00673.016325.06.04.016.04.0Qs
系数)6.0(1)1(4.0Qt
)0673.06.0(6325.01)1162.01(4.0
5015.1
换热管受压失稳当量长度lcr=1154mm
系数8821.132220197000214.32teLtrREC
换热管回转半径mmddit748.1222383825.0225.02222
系数5240.90748.12/1154/ilcr
ilCcrr/>
换热管稳定许用压应力MpaCilRrcrteLtcr66.1468821.1322748.12/115415.12202/15.1][
c.
对于其延长部分兼作法兰的管板,计算Mm,按GB —2011第7章确定Mp,取pt作为法
兰计算压力。
垫片接触面宽度mmN192/715753
按GB —2011 表 7-1 计算:
垫片基本密封宽度mmNb5.921920
mmb4.60>
,垫片有效密封宽度mmbb8.75.953.253.20
按GB —2011 中 b)规定,垫片压紧力作用中心圆直径:
mmbDDG4.6378.7265324
按GB —2011 表7-4:
垫片压紧力的力臂mmDDLGbG8.3824.6377152
查GB —2011 表 7-2,垫片系数m=3,比压力y=69Mpa
预紧状态下需要的最小螺柱载荷:
NbyDWGa61008.1698.74.63714.314.3
操作状态下需要的最小螺柱载荷:
tGtGp
bmpDpDW28.6785.02
438.74.63728.6632.24.637785.02
N61021.1
预紧状态下需要的最小螺柱面积2612.46492281006.1mmWAbaa
操作状态下需要的最小螺柱面积2361087.52061021.1mmWAtbpp
需要的螺柱面积2331087.5}1087.5,12.4649max{},max{mmAAApam
基本法兰力矩mmNLAMbGmm731019.52288.381087.5
内压引起的作用于法兰内径截面上的轴向力
d. 假定管板计算厚度δ,计算f~fffhsffKKKKkkkKb和、、、、ω、ω、、、、、δ”’”’’
e. 按f~fKK和查管板第一弯矩系数m1、系数G2,计算系数ψ 查
GB/T 151—2014图7-12得m1=??
f. 管板第二弯矩系数m2 按QKf和查
GB/T 151—2014图7-14 a 得 m2=
g. 对于其延长部分兼作法兰的管板,计算M1、ξ、~MΔ、f~MΔ,由GB/T 151—2014图
7-15按K和Q查G3。
h. 计算换热管与壳程圆筒的热膨胀变形差γ和系数c1~c6