8刚体的平面运动3
大物刚体力学-3

C
v A = 2vo
vB = vD = 2vo (方向如图) 方向如图)
点瞬时静止) (C点瞬时静止) 点瞬时静止
7
vC = 0
在刚体上任取一点P,其速度为
v v v ′ vP = vO + vP v v ′ Q vP = rω , vo = rω
v v ′ ∴ vP = vo
由图得
0
v ′ vP
20
力的三要素:大小、方向、作用点。 力的三要素:大小、方向、作用点。 对刚体而言,力的三要素:大小、方向、作用线。 对刚体而言,力的三要素:大小、方向、作用线。 若力的作用线通过质心, 若力的作用线通过质心,则该力对质心轴的力矩为 零,故该力仅产生质心加速度。 故该力仅产生质心加速度。 应 用:
根据质心运动定律,有
v mg cosθ − N = m R+r
2 c
(1)
15
v v 以小球和大球为系统,外力 N , f 不做功机械 能守恒,取地面为重力势能零点,则有
1 2 1 mg ( R + r ) = mg ( R + r ) cosθ + mvc + I cω 2 2 2
由题意为纯滚动,所以
§7.5 刚体平面运动的动力学
复习: 复习:
刚体上任一质元的运动轨迹都平行于某一 平 面,这种运动称为刚体的平面平行运动。 刚体的平面平行运动。 刚体的平面平行运动 特点:刚体上每一质元的运动轨迹都是平面曲 特点: 线,且各平面互相平行;刚体在运动中转轴始终 保持平行且垂直于某一固定平面。
1
• 刚体平面平行运动的描述(运动学) 刚体平面平行运动的描述(运动学)
r r 如所示, 是一对力偶。 如所示,力 F 和 F '是一对力偶。则对质心轴所 形成的力矩为: 形成的力矩为: r r r r r 方向? M = r × F + r '× F ' 方向?
第八章-2 刚体的平面运动

aB aAx aAy aBA a
√ √
√
n BA
aAy
A
aAx
方向 √ √ 大小
√
?
√
? AB
将上式向 轴投影
a BA
2 AB
aAy
AB
n a BA
n aB a Ax a Ay 2 aBA 74.36(cm / s 2 )
aB 1 n (a Ax a Ay ) aBA 2 2
a
① 加速度没有投影定理。 ② 加速度瞬心存在,但一般不与速度瞬心重合。 ③ 由于加速度瞬心寻找很困难,求解中只用基点法。
半径为 R 的轮子 在水平面上纯滚,已知某瞬 时轮心的速度为 vO,加速 度为aO .求轮上速度瞬心的 加速度和 B 点的加速度。
例
aBY aO aBX B O C aCX
aB
B
aAx
n aB BA
§8-5 运动综合应用举例
工程中的机构大都由数个物体组成,各物体间通过联 结点而传递运动。为分析机构的运动,首先要分清各 物体都作什么运动,计算联结点的速度和加速度。 平面运动理论用来分析同一平面运动刚体,或刚体间 接触处没有相对滑动的机构的运动量联系。当两刚体 相接触而有相对滑动时,则需要点的合成运动理论。 复杂机构可能同时有平面运动和点的合成运动问题, 应分清关系、综合处理。
B’ B
30°
vB’A
vB' A 30 3 mm/ s
AE
vB ' A 3 rad / s AB 2
从而得槽杆AE的角速度
求加速度
1、选滑块B为动点,动系与槽杆AE固结。 aa = a e + a r+ a C ( 4 ) 2、以 A 点为基点,求 B’点的加速度
刚体的自由度和平面平行运动

J
C
2
刚体的动能等于质心的平动动能与对质心的转动
动能之和。
刚体的平面平行运动
例题4-9 讨论一匀
y
N
质实心的圆柱体在斜
O
x
面上的运动。
fr r
解 圆柱体所受的力共有三个: 重力G ,斜面的支承力N 和
aCx
G=mg
摩擦力f r,如图所示。设圆柱体的质量为m,半径
为r,那么,它对其几何的转动惯量
JC
1 mR2 2
aC
F
联立以上四式,解得
刚体的平面平行运动
aC
2F(R l) 3mR
f R 2l F 3R
由此可见
l<r/2, f>0, 静摩擦力向后 l>r/2, f<0, 静摩擦力向前 l=r/2, f=0
刚体的平面平行运动
aC
2F(R l) 3mR
f R 2l F 3R
J 1 mr 2 2
刚体的平面平行运动
我们取和斜面平行而向下的方向为x轴的方向,和 斜面垂直而向上为y轴的方向
这样可得
maCx mg sin fr
maCy N mg cos J frr
以上三式中,aCx和aCy是圆柱体质心在x轴和y轴方
向的加速度,是圆柱体对其通过质心的几何轴转
车轮上任意一点的速度
v vC r
G点的速度
vG vC r 0
B点的速度
vB vC R 2vC
A点的速度
vA vC2 (R)2
RA
A
2vC
B
RB
RB
RA RG vC
第6章刚体的平面运动

(b)
25
⑤已知某瞬时图形上A,B两点的速度方向相 同,且不与AB连线 垂直。 此时, 图形的瞬心在无穷远处,图形的角 速度 =0, 图形上各点速度相等, 这种情况称 为瞬时平动。 (此时各点的加速度不相等)
对④(a)的情况,若vA=vB,
也是瞬时平动.
26
例如: 曲柄连杆机构在图示位置时,连杆BC作瞬时平动。 此时连杆BC的图形角速度
车轮绕基点的转动(相对运动)
15
16
2.平面运动的分解与基点选择的关系
①平面图形随基点的平动与基点的选择有关。
②平面图形绕基点的转动与基点的选择无关。 证明: 在平面图形上取任意两直线O'P、O'' P' , 二者夹角为a, 则a =常量。 以O'为基点,作平动坐标系O'x'y', 设O'P与x'的夹角为,则图形绕O'点转 动的角速度和角加速度分别为:
o
取长度 OI
vO / 则: vIO OI vO 方位⊥IO,指向与vO 相反。所以
vI=0
22
即在某一瞬时必唯一存在一点速度等于零,该点称为平 面图形在该瞬时的瞬时速度中心,简称速度瞬心(I). 3.速度瞬心又称为瞬时转动中心 设某瞬时平面图形的角速度为, 速度瞬心在I点。以I点为基点,有:
vC 3 0 vB sin 60 r 0 2
()
34
§6-4 平面图形内各点的加速度
一. 基点法 (合成法) 已知:图形S 内一点A 的加速度 a A 和图形 的 , (某一瞬时)。 求: 该瞬时图形上任一点B的加速度。
取A为基点,将平动坐标系铰接于A点, 取B动点,则B点的运动分解为相对运动 为圆周运动和牵连运动为平动.
刚体的平面运动

O1O2 0.05 + O1 A = + 0.1 D tan 30 tan 30D
ω ABD =
0.2 = 1.072 rad / s 0.1866
ω ABD
P
vD = PD ⋅ ω ABD = ( PA + AD ) ⋅ ω = (0.1866 + 0.05) ⋅1.072 = 0.254 m / s
O1 B 与连杆间成 30° 角.如 OA = r , AB = 2 3r , O1 B = 2r ,求在该瞬时,滑块 B 的切向和法
向加速度。 解: AB 杆作平面运动,速度分析如图
vB cos 60D = v A , vB = 2v A = 2rωO
n 2 2 故 B 点的法向加速度: aB = vB / O1 B = 2rωO
刚体的平面运动(一)
一、填空题 1、刚体的平面运动可分解为 随基点的平移 和 绕基点的转动 ; 平移的速度和加速度 与基 点的选择有关,_转动的角速度和角加速度_与基点的选择无关。
2、若已知刚体上任一点的速度 v 和刚体的角速度 ω ,那么速度瞬心的位置应在_过该点与 v 垂 直的直线上_,距该点的距离_____ v / ω _____;若瞬心在无穷远,则此时角速度为__零___, 刚体作___瞬时平移__。 3、刚体定轴转动时,轴上各点的速度__为零___,加速度__为零__;而绕速度瞬心转动时,速 度瞬心的速度__为零__,加速度 二、判断题 (× ) 1、刚体的平面运动与刚体的平动其相似之处是刚体上各点的运动轨迹都在同一平面内。 (× ) 2、平面图形上任意两点的速度在固定坐标轴上的投影相等。 (√) 3、平面图形的角速度不等于零,则图形上不可能存在两个或两个以上速度为零的点。 (√) 4、作平面运动的平面图形上(瞬时平动除外),每一瞬时都存在一个速度瞬心。 三、选择题 1、一圆盘作平面运动,如图所示的速度分布情况中,可能出现的是 A.图(a) B.图(b) C.图(c) A 。 D.图(d) 不一定为零 。
理论力学第章刚体的平面运动

E
30
B vB
A vA
vD
vB CD CB
3vB
0.693
m s-1
vE60
CO
ω
轮E沿水平面滚动,轮心E的速度 水平,由速度投影定理,D,E 两
点的速度关系为
vE cos 30 vD
求得 vE 0.8 m s-1
§9.3 求平面图形内各点速度的瞬心法
一、问题的提出
B
vA vA
C
vD vA vDA
A Ⅱ
由于齿轮Ⅰ固定不动,接触点D不滑动,所以
ωO O
D
vDA ωⅡ
vD=0 ,因而有 vDA v A O r1 r2
Ⅰ
vDA为D点绕基点A的转动速度,应有
vDA Ⅱ DA
因此
Ⅱ
vDA DA
O (r1
r2
r2 )
(逆时针)
y
SM
O
o
x
§9.1 刚体平面运动的概述和运动分解
刚体平面运动方程
xo xo (t )
yo
yo (t )
(t)
刚体的平面运动可以看成是平动和转动的合成运动。
四、刚体的平面运动分解为平动和转动
刚体平面运动可以分解为随同基点的平动和绕基点
的转动,平面图形随同基点平动的速度和加速度与基点 的选取的有关。绕基点转动的角速度和角加速度则与基 点的选择无关。
动画
刚体平面运动分解
动画
平面运动
动画
平面运动
动画
平面运动分解
动画
平面运动
动画
理论力学8章分析解析
2018/10/20
理论力学第8章
22
补充例题。圆轮纯滚动的运动特点。 1. 圆轮在水平面上作纯滚动。轮心A作水平直 线运动。 无滑动条件:轮心A的 水平位移OC等于轮缘 滚动过的弧长,即 OC=MC。设OC长度为x, MC的圆心角为φ,则
x r
2018/10/20 理论力学第8章 23
OA sin AB sin r sin sin l
2018/10/20 理论力学第8章 13
2018/10/20
理论力学第8章
14
用基点法建立A和B的 速度关系。
v B v A v BA vB v A sin vBA sin 0 v A cos vBA cos r cos vBA AB l cos cos sin( ) vB r sin r sin r cos cos cos r , cos
2018/10/20
理论力学第8章
34
轮A的速度和加速度分析:
vA v A r A, A 10rad / s R vC 2 R A 4m / s aA aA r A , A 10rad / s 2 R t n aC a A aCA aCA
v B v A v BA vB cos30 v A cos30 vB sin 30 v A sin 30 vBA v B v A r vBA 0,
2018/10/20
BA 0
理论力学第8章
19
对于轮B: C为瞬心。
vC v B vCB 0 vB vCB vCB vB r vCB B r
刚体的平面运动
刚体的平面运动在前面几节中,物体被看成了没有形状、没有大小的质点. 然而,实际的物体总是有其形状和大小的,而且常常发生形变. 作为一种理想模型,我们把形状和大小不变的物体叫做刚体. 刚体上质点之间的距离在刚体运动时保持不变. 那末,刚体运动有些什么规律呢?一、刚体运动有两种基本形式:平动和定轴转动1、平动刚体上任意两点的连线保持平行的运动叫做刚体的平动,如图1所示. 图中是一个正方体刚体在作曲线平动. 不难看出,刚体上各点的轨迹曲线的形状相同,各点的速度也相同. 因此,只要弄清楚了刚体上任意一点的运动过程,也就弄清楚了整个刚体的运动过程.这就是说,刚体的平动可以用刚体上任意一个质点的运动来代表. 因此,前面几章研究质点运动实际上就是研究刚体的平动.2、定轴转动若刚体上的所有质点围绕同一直线作圆运动,则称这种运动为刚体转动,该直线叫做刚体的转轴. 转轴可以穿过刚体,也可以不穿过刚体. 转轴静止的刚体转动叫做刚体定轴转动.如图2所示。
刚体定轴转动时,刚体上任意质点的轨迹圆所在的平面叫做转动平面. 刚体的各个转动平面相互平行,都垂直于转轴.刚体定轴转动的描述。
类似于圆周运动的描述刚体上各点都绕同一转轴作半径不同的圆周运动,在相同时间内转过相同的角度。
刚体上各点的角位移θ∆、角速度ω、角加速度β均相同。
二、刚体平面运动刚体的平动和转动是最常见、最简单的刚体运动。
我们感兴趣的是另一种刚体运动称为刚体的平面运动。
例如汽车在平直路面上行驶时,其轮子在路面上滚动就是一例。
刚体平面运动的特点是,刚体在运动中刚体上各点始终处在平行于空间一固定平面的各自平面中。
1、刚体平面运动概述和运动分解(1)如图3所示,刚体运动中由位形Ⅰ到位形Ⅱ,总可以认为以刚体上任意选定的参考点(称为基点)为代表的刚体的平动,加上刚体绕此参考点的一个转动的叠加完成。
(2)由图3(a )、(b )看出,基点选取不同,刚体平动运动将不同,但绕基点的转动却是相同的。
刚体平面运动的运动方程
该方程为
xM yM
xA AM cos( yA AM sin(
) )
(7-2a)
式中,AM 和 是常量。
式(7-2a)对时间求一次导数和二次导数可 求得 M 点的速度和加速度在坐标轴上的投影:
xM yM
xA yA
AM sin( ) AM cos( )
(7-2b)
图7-4
xM yM
而线段 AB 的位置则由 A 点的坐标 xA ,yA 和AB 对于 x 轴的转角
来确定。平面图形 S 运动时,xA ,yA 和 随时间 t 变化,它们都
是 t 的单值连续函数,即
xA f1(t) yA f2 (t)
(t)
(7-1a) (7-1b) (7-1c)
图7-3
平面图形上任一点 的运动方程,如图7-4所示。
既然刚体上所有点的运动都可以由平行于 P0的平面图形 S(或其延展 平面)上相应点的运动来代替,而平面图形 S 又在自身平面内运动, 那么刚体的平面运动可以简化为一个平行于固定参考平面的图形 S 在自身平面内的运动。
设平面图形 S 在固定平面 P 内运动,在平面上建立静坐标系 Oxy ,
如图7-3所示。平面图形 S 的位置可用其上任一段 AB 的位置来确定,
xA yA
AM 2 cos( AM2 sin(
) )
AM sin( )
AM cos( )
的运动方程
刚体的平面运动是一种比平行移动和定轴转动更复杂的运动,如车 轮沿直线轨道的滚动(见图7-1(a)),曲柄连杆机构中连杆 AB 的运动(见图7-1(b))等。
(a)
图7-1
(b)
刚体运动时,其上任一点到某固定平面的距离保持不变的运
工程力学:第八章 刚体的平面运动
大小
at BA
AB
方向垂直于 AB,指向同
大小 aBnA 2 AB
aBnA 方向由 B指向 A
动力学
研究受力物体的运动与作用力之间的关系
➢质点动力学的基本方程 ➢动量定理 ➢动量矩定理 ➢动能定理
质点动力学
牛顿三定律:
第一定律(惯性定律)
第二定律(力与加速度之间的关系的定律)
第三定律(作用与反作用定律)
刚体绕定轴的转动微分方程
主动力: F1, F2 , , Fn
Jz
d
dt
M z (Fi )
或 J z M z (F )
或
Jz
d2
dt 2
Mz(F)
转动微分方程
简单形状物体的转动惯量计算
(1)均质细直杆对一端的转动惯量
Jz
1 3
ml 2
均质细直杆对中心轴 ml 2
的转动惯量
12
(2)均质薄圆环对中心轴的转动惯量
质点和质点系的动量矩
质点Q对点 O 的动量矩
MO (mv) r mv
对 z 轴的动量矩 M z (mv) MO (mv)xy
z
MO(mv) Mz(mv)
q
O
r
A mv
Q y
A
x
Q
[M O (mv )]z M z (mv )
质点系的动量矩
z
vi
m2
O ri
mi m1
y
x m3 mn
二者关系
求平面图形内各点速度
基点法
已知平面图形内A 点的速度和图形 的角速度,则另一点B 点的速度:
vB vA vBA
其中 vBA AB
速度投影定理