第八章 刚体平面运动答案河南科技大学理论力学课后答案
1-8章的习题答案理论力学.doc

第一章静力学公理和物体的受力分析一、选择题与填空题1.C2.ACD3.A, B两处约束力的方向如图所示60°第二章平面力系一、选择题与填空题■1. B; D。
2. B。
3. F;向上。
4. B。
5. 4^M;方向与水平线成60角,指向 23L右下。
6. 10kN; 10kN ; 5kN; 5kN。
7. 100kN;水平向右。
二•计算题1. F B - -70 KN F AX =70 KN ,F Ay =120 KN , M A二-30KN m2. F AX - -qa F BX二 F qa F Ay =qa F F By 二 qa - F3. F= -5kN F Dy = 4.33kN F E-4.33kN F C =24.41kND xF B^ -17.08kN F AX=F BX = -5kN l^y = -14.08kN M A=T4.66kN mF AX =10N FAy =20N M A =15N mF CD =14.1N6F Ax=2.5kN F Ay=—2.16kN M A=」kN ,m F c =20.33kN7 F B=40kNF AX = —10kNFA ^-20kN M -50kN m F cx = 40kNF ey = 0F HX =300N F Hy =100N第三章空间力系少2(-8. F A ^ = -100N F Ay 二-300N F Ex 二-300N F Ey =100N F °y 二 200N整=一一A > X Y m 一:J E £c X一、选择题与填空题f—- - Fa 6 Fa 1.B。
2.B。
3. M x(F)=O ; M y(F) —H2 44.F x=-40.2N; F y=30-2N; M z=240.2 N m。
5.F z= F sin :;F y= F cos :cos :;M x(F)二 F(ccos'cos : bsin )。
理论力学习题解答(8-13章)

对于一个物体,如果受到的合力为零,则该物体处于力的平衡状态。
力的平衡与运动状态
力的平衡状态下,物体的运动状态保持不变,即速度和方向都不发生变化。
力矩是力和力臂的乘积,表示力对物体转动作用的物理量。
力矩概念
力矩的方向
力矩的几何意义
力矩的方向按照右手定则确定,即右手四指从转动轴指向力的方向,大拇指指向转动方向。
动量定理,描述了物体加速度与其所受合外力之间的线性关系。
详细描述
牛顿第二定律,也被称为动量定理,表述为F=ma,其中F代表合外力,m代表质量,a代表加速度。该定律揭示了物体的加速度与作用在物体上的力成正比,与物体的质量成反比。
牛顿第二定律
作用与反作用定律,描述了作用力和反作用力大小相等、方向相反的特性。
伯努利方程
层流与湍流,定常流动与非定常流动,一维、二维、三维流动。
流体流动的分类
流体质量守恒,流量连续,无质量亏损或增加。
连续性方程
流体动力学基础
03
拉格朗日法
追踪流体质点运动的方法,描述流场中质点位置随时间变化。
01
微元体分析法
对流场中微小体积元进行分析,列出流体运动和力的平衡方程。
02
欧拉法
描述流体运动随时间变化的方法,基于流体质点运动观点。
天体运动的计算方法
天体运动的计算方法通常涉及到对万有引力定律的应用,以及运用运动学和动力学原理。
总结词
在计算天体运动时,首先需要确定天体的质量、位置和速度等参数,然后根据万有引力定律计算出天体之间的相互作用力。接着,运用牛顿第二定律和运动学原理,可以求解出天体的加速度、速度和位移等参数。最后,通过比较理论计算结果和观测数据,可以对天体运动的规律进行验证和预测。
理论力学第8章习题解答

第八章 质点系动力学:矢量方法 习题解答8-1 一个质量为5 kg 弹头M 以水平速度v = 60 m/s 飞行,在D 处爆炸成位于同一水平面内如图示速度方向的两块碎片A 和B 。
已知碎片A 的速度大小v A = 90 m/s 。
试求:(1) 碎片A 的质量m A ;(2) 碎片B 的速度大小v B 。
解:取弹头M 为研究对象,弹头爆炸前后动量守恒 () 30cos B A v m M Mv -= () 30sin 0B A A A v m M v m --=解得M v vm A A 33=,AA B v v vv v 32--=, 代入数据得:kg 92.1=A m ,m/s 64.112=B v .8-2 一个质量为m 1的人手里拿着质量为m 2的物体,以仰角θ,速度v 0向前跳起。
当他到达最高点时将物体以相对速度u 水平地向后抛出。
如果不计空气阻力,问由于物体的抛出,跳远距离增加了多少?解:取m 1和m 2物体系统为研究对象,人跳至最高点时只有水平速度 ϑc o s 01v v =,所费时间 gv t ϑsin 0=。
抛物前后系统水平动量守恒,即 ()()u v m v m v m m -+=+1211021c o s ϑ,式中1v 为抛物后人的速度。
解得21201c o s m m um v v ++=ϑ,可见,人的速度增量为2121Δm m um v +=,从而跳远距离增加()gm m uv m v t s 21021sin ΔΔ+==ϑ.8-3质量为m 1的平台AB 放在水平面上,平台与水平面间的滑动摩擦因数为f 。
质量为m 2的小车D 由绞车拖动,相对平台的运动规律为221bt s =,其中b 为已知常数。
不计绞车质量,求平台的加速度。
解:1)设平台与水平面间的滑动摩擦因数比较小,当小车D 相对平台运动时,平台AB 的有速度1v (向左),小车D 的相对速度bt s v == r ,(向右),小车D 的绝对速度bt v v v v +-=+-=1r e a ,(向右), 滑动摩擦力为 N fF F =题8-3图题8-3受力图题8-1图由动量定理,()[]F v bt m v m t=-+-1211d d()021=++-N F g m m解得()212121m m g m m f b m a ++-=, ()g m m bm f 212+≤.当()gm m bm f 212+>时,01=a .8-4 质量为m 1的矩形板可在如图所示的光滑水平面上运动。
第八章刚体的平面运动习题解答

基点法
瞬心法
8-10在瓦特行星机构中,杆O1A绕轴O1转动,并借连杆AB带动曲柄OB绕轴O转动(曲柄OB活动地装在O轴上),如图8-37所示。齿轮Ⅱ与连杆AB固连于一体,在轴O上还装有齿轮Ⅰ。已知 ;又杆O1A的角速度 。试求当 且 时,曲柄OB和齿轮Ⅰ的角速度。
图8-37
瞬心法
基点法
8-11图8-38所示的双曲柄连杆机构中,滑块B和E用杆BE连接,主动曲柄OA和从动曲柄OD都绕O轴转动。主动曲柄OA作匀速转动,角速度的大小为 。已知各部件的尺寸为: 。试求当曲柄OA垂直于滑块的导轨方向时,从动曲柄OD和连杆DE的角速度。
图8-59
以O为动点,杆AB为动系
(1)速度分析
(2)加速度分析
圆轮O
以O为基点,分析C点
向y
8-33图8-60所示机构中,已知曲柄OA以匀角速度 绕定轴O转动,OA=100mm,l=500mm。在图示位置, ,试确定杆BD的角速度和角加速度。
图8-60
以A为动点,杆AB为动系
(1)速度分析
(2)加速度分析
图8-43
速度分析
加速度分析
8-17边长l=400mm的等边三角板ABC在其所在平面内运动,如图8-44所示。已知某瞬时点A的速度 ,加速度 ,方向均沿AC;点B的速度大小为 ,加速度大小为 。试求该瞬时点C的速度和加速度。
图8-44
即
(1)
向图示x、y方向投影
(2)
向图示x、y方向投影
8-18图8-45所示机构中,曲柄OA长为 ,以匀角速度 绕轴O转动;滑块B可在水平滑槽内滑动。已知AB=AC=2l,在图示瞬时,OA铅直,试求此时点C的速度及加速度。
图8-62
《理论力学》第八章_刚体的平面运动习题解

vE
vO
v0
1 (157.05 52.35) 52.35(mm / s) (方向:向上。) 2
vD
[习题8-6] 两刚体M,N用铰C连结,作平面平行运动。已知AC=BC=600mm,在图 示位置,vA=200mm/s, vB=100mm/s,方向如图所示。试求C点的速度。 解:
y
x
'
O
'
B
vB
300
A
60
0
O
0 v A
解:
v A OA 0 200 3 600(rad / s)
v B v A v BA [v B ] AB [v A ] AB
v B cos 30 0 v A 600
vB 600 692.84(mm / s) 0.866
C3 0
A
Rr t 2 2r
故,动齿轮以中心A为基点的平面运动方程为:
x A ( R r ) cos y A ( R r ) sin
t 2
2
t 2
2
A
Rr t 2 2r
[习题8-3] 试证明:作平面运动的平面图形内任意两点的连线中点的速度等于该两点速度的矢 量和之一半。 已知:如图所示, AC CB , 求证: vC 证明:
300
v B v A v BA
ve
O
vBA AB 200 2 400(mm / s)
v B v A v BA 2v A v BA cos 150 0
2 2
5332 400 2 2 533 400 0.866
《理论力学》课后习题解答(赫桐生版)

理论力学(郝桐生)第一章习题1-1.画出下列指定物体的受力图。
解:习题1-2.画出下列各物系中指定物体的受力图。
解:习题1-3.画出下列各物系中指定物体的受力图。
解:第二章习题2-1.铆接薄钢板在孔心A、B和C处受三力作用如图,已知P1=100N沿铅垂方向,P2=50N沿AB方向,P3=50N沿水平方向;求该力系的合成结果。
解:属平面汇交力系;合力大小和方向:习题2-2.图示简支梁受集中荷载P=20kN,求图示两种情况下支座A、B的约束反力。
解:(1)研究AB,受力分析:画力三角形:相似关系:几何关系:约束反力:(2) 研究AB,受力分析:画力三角形:相似关系:几何关系:约束反力:习题2-3.电机重P=5kN放在水平梁AB的中央,梁的A端以铰链固定,B端以撑杆BC支持。
求撑杆BC所受的力。
解:(1)研究整体,受力分析:(2) 画力三角形:(3) 求BC受力习题2-4.简易起重机用钢丝绳吊起重量G=2kN的重物,不计杆件自重、磨擦及滑轮大小,A、B、C三处简化为铰链连接;求杆AB和AC所受的力。
解:(1) 研究铰A,受力分析(AC、AB是二力杆,不计滑轮大小):建立直角坐标Axy,列平衡方程:解平衡方程:AB杆受拉,BC杆受压。
(2) 研究铰A,受力分析(AC、AB是二力杆,不计滑轮大小):建立直角坐标Axy,列平衡方程:解平衡方程:AB杆实际受力方向与假设相反,为受压;BC杆受压。
习题2-5.三铰门式刚架受集中荷载P作用,不计架重;求图示两种情况下支座A、B的约束反力。
解:(1) 研究整体,受力分析(AC是二力杆);画力三角形:求约束反力:(2) 研究整体,受力分析(BC是二力杆);画力三角形:几何关系:求约束反力:习题2-6.四根绳索AC、CB、CE、ED连接如图,其中B、D两端固定在支架上,A端系在重物上,人在E点向下施力P,若P=400N,α=4o,求所能吊起的重量G。
解:(1) 研究铰E,受力分析,画力三角形:由图知:(2) 研究铰C,受力分析,画力三角形:由图知:习题2-7.夹具中所用的两种连杆增力机构如图所示,书籍推力P作用于A点,夹紧平衡时杆AB与水平线的夹角为;求对于工件的夹紧力Q和当α=10o时的增力倍数Q/P。
08第八章习题解答

第八章习题解答8-1匀质杆AB 长l ,重G ,沿光滑的圆弧轨道运动如图示。
设当OA 在水平位置时,3arcisn =θ,125gl v A =,求此时轨道对于杆AB 的约束力。
题8-1图解:以杆AB 为研究对象,受力分析A F N 、B F N、G 如图示,杆AB 作定轴转动。
∵53arcsin =θ 53sin =∴θ 54cos =θ 25242sin =θ 2572cos =θ ∵ l R 85=、125gl v A = l g R v A 1516==∴ω l OC 83=AB 杆的质心加速度为OC a ⋅=21ω,OC a ⋅=α2 惯性力主矢*F和主矩*M 方向如图所示,大小为mg l l g m a m F 528315161*1=⋅⋅=⋅=l m a m F 832*2⋅⋅=⋅=ααα222*19243])83(121[ml l m ml M =+=题8-1答案图列平衡方程式∑=0)(F m zO 01924353832=−⋅⋅αml l mg l g 215216=α 0=∑ixF 0sin cos 2cos N *1*2N =−++⋅A B F F F F θθθ 0=∑iyF0cos sin 2sin *1*2N =−−+⋅mg F F F B θθθ mg l g ml F 2158121521683*2=⋅=代入上式得:mg F B4349N =,mg F A 4337N =8-2 匀质杆AB 长l ,重G ,用两根软绳悬挂如图示。
求当其中一根软绳切断,杆AB 开始运动时,另一根软绳中的拉力。
题8-2图解:建立参考基e C−,连体基1e O −和2e B −设当AO 被切断时,BO 的角加速度为1α,AB 杆的角加速度为2α题8-2答案图以杆AB 为研究对象,受力分析如图示重力G ,绳中张力T F 。
杆AB 作平面运动,惯性力主矢*F 和主矩*M 方向如图所示,大小为:C ma F =*,2*αC J M =e C e C e tC C a a a a αω222 ++= , 02=eC a ω e B e B e tC a a a αω112 +=, 01=e B a ω , B e B a a=α1 e C e B C a a a αα21 +=, eC e B C a m a m a m αα21 += 11*122ααl m ma F e B ==∴ 22*22ααl m ma F e C == 22*121αml M =0)(=∑F m Dz0121442222=+⋅−⋅ααml lmg l ml lg 562=α0)(=∑F m Cz012122222T =−⋅⋅αml l Fmg F 52T =8-3 匀质杆AB 长2l ,重G ,一端A 用长l 的软绳OA 拉住,一端B 放在光滑地面上如图示。
理论力学课后习题及答案解析..

第一章习题4-1.求图示平面力系的合成结果,长度单位为m。
解:(1) 取O点为简化中心,求平面力系的主矢:求平面力系对O点的主矩:(2) 合成结果:平面力系的主矢为零,主矩不为零,力系的合成结果是一个合力偶,大小是260Nm,转向是逆时针。
习题4-3.求下列各图中平行分布力的合力和对于A点之矩。
解:(1) 平行力系对A点的矩是:取B点为简化中心,平行力系的主矢是:平行力系对B点的主矩是:向B点简化的结果是一个力R B和一个力偶M B,且:如图所示;将R B向下平移一段距离d,使满足:最后简化为一个力R,大小等于R B。
其几何意义是:R的大小等于载荷分布的矩形面积,作用点通过矩形的形心。
(2) 取A点为简化中心,平行力系的主矢是:平行力系对A点的主矩是:向A点简化的结果是一个力R A和一个力偶M A,且:如图所示;将R A向右平移一段距离d,使满足:最后简化为一个力R,大小等于R A。
其几何意义是:R的大小等于载荷分布的三角形面积,作用点通过三角形的形心。
习题4-4.求下列各梁和刚架的支座反力,长度单位为m。
解:(1) 研究AB杆,受力分析,画受力图:列平衡方程:解方程组:反力的实际方向如图示。
校核:结果正确。
(2) 研究AB杆,受力分析,将线性分布的载荷简化成一个集中力,画受力图:列平衡方程:解方程组:反力的实际方向如图示。
校核:结果正确。
(3) 研究ABC,受力分析,将均布的载荷简化成一个集中力,画受力图:列平衡方程:解方程组:反力的实际方向如图示。
校核:结果正确。
习题4-5.重物悬挂如图,已知G=1.8kN,其他重量不计;求铰链A的约束反力和杆BC所受的力。
解:(1) 研究整体,受力分析(BC是二力杆),画受力图:列平衡方程:解方程组:反力的实际方向如图示。
习题4-8.图示钻井架,G=177kN,铅垂荷载P=1350kN,风荷载q=1.5kN/m,水平力F=50kN;求支座A的约束反力和撑杆CD所受的力。