理论力学刚体的平面运动

合集下载

理论力学-刚体的平面运动

理论力学-刚体的平面运动
表示为
ω
O
vB
ψ
B
x
vB = vA+ vBA
其中vA的大小 vA=R ω 。
vBA
例题
刚体的平面运动
由速度合成矢量图可得
例 题 3
vA
y
A
vA

vA vBA vB π π sin( ) sin( ) sin( ) 2 2
ω
O
所以
vB vA
y
π 2 π 2
ω
O φ
A B

刚体的平面运动
作业 9-1
曲柄连杆机构如图所 示,OA= r , AB 3r 。如 曲柄 OA 以匀角速度 ω 转动, A ω

求当 60,0 和 90 时点 B的速度。 B
刚体的平面运动
vA
ω

作业 9-1
解:
A vA vB
基点法
连杆AB作平面运动,以A为基点,B点
sin( ) sin( ) R cos cos
例题
刚体的平面运动
例 题 4
在图中,杆 AB 长 l ,
B
滑倒时 B 端靠着铅垂墙
壁。已知 A点以速度u沿 水平轴线运动,试求图
ψ u
A
示位置杆端 B 点的速度 及杆的角速度。
O
例题
刚体的平面运动
解: 基点法
B ω A
60
C D
60
E
例题
刚体的平面运动
解 : 基点法
例 题 2
vDB
B ω A
60
C
vB
60

vD
60

理论力学10刚体的平面运动

理论力学10刚体的平面运动

vB = v A + vBA
a a ? a
VB VBA
大小 ? 方向 a
B VA
v B = v A ctg φ且 v BA
vA = sin φ
v BA = AB ⋅ ω AB v BA vA ∴ω = = l l sin φ
φ VA
ω A x
14
[例2] 图示机构 端以速度 A沿X轴负向运动,AB=l; 例 图示机构A端以速度 端以速度V 轴负向运动, 轴负向运动 求B端的速度? 端的速度? 端的速度 解:1)分析AB;2)分析A,B两点的速度 在AB直线上的投影相等,可以得到: y B
行移动 刚体简单运动 平行移动 定轴转动 定轴转动 刚体复杂运动 刚体的平面运动
平动 合成? 合成? 转动
刚体平面运动的分解 本章分析 平面运动刚体的角速度 平面运动刚体各点的速度 平面运动刚体各点的速度
1
第十章 刚体的平面运动
§10–1 刚体平面运动的概述 §10–2 平面运动分解为平动和转动 · 刚体的平面运动方程 §10–3 平面图形内各点的速度· 速度投影定理 速度瞬心 §10–4 平面图形内各点的加速度 · 加速度瞬心的概念
20
5.几种确定速度瞬心位置的方法 ①已知图形上一点的速度v A 和图形角速度ω, 可以确定速度瞬心的位置.(P点)
AP = vA , AP⊥v A ,且P在v A 顺ω转向绕A点 ω
转90º的方向一侧. ②已知一平面图形在固定面上作无滑动的滚 动, 则图形与固定面的接触点P为速度瞬 心.
21
③已知某瞬间平面图形上A,B两点速度 v A ,v B 的方向,且 v A 不平行 v B 。 过A , B两点分别作速度 v A ,v B的垂线,交点 P即为该瞬间的速度瞬心。 ④ 已知某瞬时图形上A ,B两点速度 v A , v B 大小,且 v A ⊥AB, vB ⊥AB v A − vB (a) v A 与vB 同向, ω = AB v A + vB (b) v A 与vB 反向, ω = AB 注意:交点可能在刚体的外部) (注意:交点转动· 刚体的平面运动方程

理论力学7—刚体的平面运动

理论力学7—刚体的平面运动


A
[vB ]AB [v A ]AB
平面图形上任意两点的速度在其连线上的投影( 大小和方向)相等。这就是速度投影定理。
例7-3 用速度投影定理解例1。 解:由速度投影定理得 vB
[vB ]AB [v A ]AB

B
vA cos30 vB cos60
解得

30°
vA
A
vB 10 3 cm s
0
O
I
vCA与vA方向一致且相等, 点C的速度
vC vA vCA 2vA
7.2 平面图形上各点的速度
7.2.2 投影法
vB v A vBA
vBA
vB vA
B
将两边同时向AB方向投影:
[vB ]AAB,因 此[vBA]AB=0。于是
M
x
xO f1 (t ), yO f2 (t ), f3 (t )
这就是刚体的平面运动方程。
运动分解
y S O' O M

x
如果O'位置不动,则平面图形此时绕轴O'做定 轴转动; 如果O'M方位不变,则平面图形做平移。因此刚 体的平面运动包含了平移和定轴转动两种情况。 但能不能说平移和定轴转动是刚体平面运动的特 殊情况呢? 不能!
M
7.1 刚体平面运动的描述 而垂直于图形S的任 一 条 直 线 A1A2 必 然 作平移。 A1A2 的 运 动 可 用 其与图形S的交 点A的运动来代 替。无数的点A 构成了平面S。
A1 N A S
A2
M
因此,刚体的平面运动可以简化为平面图 形S在其自身平面内的运动。
刚体的平面运动方程 平面图形S在其平面上的位 y 置完全可由图形内任意线段 S O'M的位置来确定,而要确 定此线段的位置,只需确定 O' 线段上任一点O'的位置和线 段O'M与固定坐标轴Ox间的 O 夹角 即可。点O'的坐标和 角 都是时间t的函数,即

理论力学第7章 刚体平面运动

理论力学第7章 刚体平面运动

基础部分——运动学第7 章刚体平面运动连杆作什么运动呢?行星齿轮机构行星轮作什么运动?第7章刚体平面运动运动过程中,刚体上任一点到某一固定平面的距离保持不变刚体上任一点都在与某一固定平面平行的平面内运动沿直线轨道滚动的车轮机械臂小臂的运动平面运动的刚体在自身平面内运动的平面图形SxyOxyOASIIxyOA SII平面图形上任一线段的位置位置x Ay AϕB )(1t f x A =)(2t f y A =)(3t f =ϕ平面运动平移+ 转动xyOASIIxAyAϕB基点⇒O ′O O ′O O ′O′三种运动?平面运动基点平移基点转动注意:平移动系不一定固结与某一实际刚不一定固结与某一实际刚体。

O ′xyO平移动系O'x'y'x ′y ′O ′基点推广结论:刚体的平面运动可以分解为随基点的平移和绕基点的转动问题一:x yOA SIIx Ay AϕB问题二:随基点的平移与基点的选择有无关系绕基点的转动与基点的选择有无关系结论:同一瞬时平面图形绕任一基点转动的ω、α都相同。

动点re a 点的速度合成定理SAv ωABB v A v ?=B v x ′y ′基点BA v 三种运动?大小? 方向?BAA B v v v +=AωA Av BAv Bv平面图形上任一点的速度等于基点的速度与该点随图形绕基点转动速度的矢量和。

SAv ωABAv BAv Bv BAA B v v v +=试一试:基点法作平面运动。

[例7-1] 曲柄—滑块机构解:转动。

r 3ABOωϕAv Bv BAv 基点大小方向?AvBA3ABOωϕAv B v BAv Av ABω转向?= v 滑块Bϕ大小方向A 32SAv ωAB Av BAv Bv 平面图形上任意两点的速度在该两点连线上的投影(大小和正负号)相等。

速度投影定理[][]ABA AB B v v =[]ABBA vr 3再分析例7-1ABOωϕAv Bv Bv解:请比较两种方法A 32如何解释这种现象?观察到了什么现象?[先看一照片]若选取速度为零的点作为基点,则求解速度问题•基点法•速度投影法优点:缺点:优点:缺点:SAv ωAv BAv Bv AA 为基点B有没有更好的方法呢?Aω0≠ω唯一存在AL ′证明:MAA M v v v +=SA v v MAv LMPωAv PA =∴0=⋅−=ωPA v v A P ∵该瞬时瞬时速度中心速度瞬心唯一性:瞬时性:不共线,故速度均不为零。

08-理论力学-第二部分运动学第八章刚体的平面运动

08-理论力学-第二部分运动学第八章刚体的平面运动

形S在该瞬时的位置也就确定了。
88
运动学/刚体的平面运动
四、平面运动的分解 ——平移和转动
当图形S上A点不动时,则
刚体作定轴转动 。
当图形S上 角不变时,
则刚体作平移。
故刚体平面运动可以看成是 平移和转动的合成运动。
例如:车轮的平面运动可以看成: 车轮随同车厢的平移 和相对车厢的转动的合成。
99
2121
如图示平面图形,某瞬时速度瞬心为P点, 该瞬时平面图形内任一点B速度大小
vB vP vBP vBP
B
大小:vB BP
方向:BP,指向与 转向相一致。
vB
S
vA
C
vC
同理:vA=ω·AP, vC=ω·CP
由此可见,只要已知图形在某一瞬时的速度瞬心 位置和角速度 ,就可求出该瞬时图形上各点的速度。
的平面Ⅱ内的运动。
66
运动学/刚体的平面运动
二、平面运动的简化 刚体的平面运动可以简化为
平面图形S在其自身平面内的运动。 即在研究平面运动时,不需考虑 刚体的形状和尺寸,只需研究平 面图形的运动,确定平面图形上 各点的速度和加速度。
三、平面运动方程 为了确定代表平面运动刚体的
平面图形的位置,我们只需确定平 面图形内任意一条线段的位置。
vBA
s
B
vB vA
A
vA
方向: AB, 指向与 转向一致。
即:平面图形上任一点的速度等于基点的速度与该点随
平面图形绕基点转动的速度的矢量和。 ——基点法
基点法是求解平面图形内一点速度的基本方法。 1414
运动学/刚体的平面运动
二、速度投影法
由于A, B点是任意的,因此

《理论力学》第八章 刚体平面运动

《理论力学》第八章 刚体平面运动

平面运动刚体绕基点转动的角速 度和角加速度与基点的选择无关!
HOHAI UNIVERSITY ENGINEERING MECHANICS
以蓝点为基点
以红点为基点
平移的速度与加速度与基点选择有关不同,而绕 基点转动的角速度与角加速度与基点的选择无关
例1: 已知曲柄-滑块机构中OA=r , AB=l;曲柄OA 以匀角速度绕O轴转动。求连杆AB的运动方程。 解: 建立图示参考坐标系,
已知图形上两点的速度平行,但两点 连线与速度方位不垂直 可以认为速度
0
瞬心在无穷远
平面 运动
平动图形上各点 的速度和加速度 是相同的,但瞬 时平动其上各点 的速度相同而各 点的加速度一般 不同
作平面运动的刚体上求各点速度的方法的适 用范围 1、基点法:已知基点速度和作平面运动刚体
的角速度。是基本方法,可求平面图形的速度 和角加速度,图形上一点的速度。
例2:曲柄滑块机构如图所示,曲柄OA以匀角速度 ω转动。已知曲柄OA长为R,连杆AB长为l。当曲柄 在任意位置 = ωt时,求滑块B的速度。
HOHAI UNIVERSITY ENGINEERING MECHANICS
解: 一、基点法
因为A点速度 vA已知,故选A为基点
vA
AB

v B v A v BA
平动方程 y
称O为基点
y
P
HOHAI UNIVERSITY ENGINEERING MECHANICS
f3 ( t )
讨论:
1. 为常数
刚体平 面运动 方程
y0 转动方程 O1 x 0
O

S x
x 刚体随基点平移 (随同动系平移)
2. (xO,yO)为常数

理论力学第九章刚体的平面运动

理论力学第九章刚体的平面运动

O 基点
转角
基点的选取是任意的,平面图形的位置可由O’点 坐标及直线O’M与x’的夹角φ 完全确定。 基点的选择不同,其运动方程9-1a不同,平面图形随基 点平移的速度和加速度也不同。但平面图形绕不同基 点转动的角速度和角加速度却完全相同。证明如下
f (t ) f (t ) 3 3
结 论
刚体的平面运动可以简化为平面图形S 在其自身平面L上的运动。
6
2、运动分析
思考
刚体平面运动是复杂运动,考虑是否可以用 简单运动合成来分析?
Oxy 平移坐标系(动系) 平面运动=随 Oxy 的平移+绕 O 点的转动
=
+
7
3 运动方程
xO f1 t 9-1a yO f 2 t f3 t 9-1b

vB AB = vA
OA

vD
vB
vB
cos30 2 CD作定轴转动(C)
0.2309 m s
vE
vA
vB vD CD 3vB 0.6928 m s CB

vD vE DE = vD ,vE cos 30 vD , vE cos 30 0.8 m s
第九章 刚体的平面运动
本章重点:刚体平面运动的基本概念,求平面图形上各 点的速度与加速度的基点法,以及求速度的 速度投影法和瞬心法,运动学的综合应用。
1
刚体平面运动举例:行星齿轮中小齿轮运动情况
2
车轮运动情况
3
观察曲柄滑块机构中连杆AB的运动情况
4
§ 9-1
1、概念
刚体平面运动的概述和运动分解
30

《理论力学》第八章刚体的平面运动

《理论力学》第八章刚体的平面运动

刚体的平面运动特点
刚体的平面运动具有 连续性,即刚体上任 意一点的运动轨迹都 是连续的。
刚体的平面运动具有 周期性,即刚体的运 动轨迹可以是周期性 的。
刚体的平面运动具有 对称性,即刚体的运 动轨迹可以是对称的。
02
刚体的平面运动分析
刚体的平动分析
平动定义
刚体在平面内沿着某一确定方向作等速直线运动。
详细描述
通过综合分析动能和势能的变化,可以深入理解刚体在平面运动中的能量转换过程。例 如,当刚体克服重力做功时,重力势能转化为动能;当刚体克服摩擦力做功时,机械能 转化为内能。这种能量转换过程遵循能量守恒定律,即系统总能量的变化等于外界对系
统所做的功与系统内能变化之和。
06
刚体的平面运动的实例分析
刚体的平面运动通常可以分为两种类型:纯滚动和滑动。在 纯滚动中,刚体只滚不滑,刚体上任意一点在任意时刻都位 于一个固定的圆周上。在滑动中,刚体既滚又滑,刚体上任 意一点在任意时刻都位于一个变化的圆周上。
刚体的平面运动分类
纯滚动
刚体只滚不滑,刚体上任意一点 在任意时刻都位于一个固定的圆 周上。
滑动
刚体既滚又滑,刚体上任意一点 在任意时刻都位于一个变化的圆 周上。
势能定理
总结词
势能定理描述了势能与其他形式的能量转换的关系。
详细描述
势能定理指出,在刚体的平面运动过程中,非保守力(如摩擦力、空气阻力等)对刚体所做的功等于系统势能的 减少量。非保守力做正功时,系统势能减少;非保守力做负功时,系统势能增加。
动能和势能的综合分析
总结词
在刚体的平面运动中,动能和势能的综合分析有助于理解运动过程中能量的转换和守恒。
做平动,这种运动也是复合运动。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

B
A O vo C P
B ω
A O vo C vPO Pvo
解(1)∵轮子纯滚动 取O为基点
∴vP=0
vP vO vPO
∵ vP 0
vO vPO 0
vPO vO
由 vPO vO
且 vPO R
vO
R
B vAO vA ω
A voO vo C P
B vA
AO
C
P
(2)A点速度,取O为基点
于零?如果存在的话,该点如何确定?
2.速度瞬心的概念 一般情况,在每一瞬时,平面图形 上都唯一地存在一个速度为零的点,该 点称为平面图形在该瞬时的瞬时速度中
B
vB
vA
A O vo C vC
P
心,简称速度瞬心.
证明: vP vA vPA 取 AP vA /
vPA AP vA , 方向PA, 恰与vA反向. 所以
三、平面运动的分解• 刚体的平面运动方程
确定平面图形的位置------只需确定平面图形内任意 一条线段的位置.
任意线段AB的位置可 用A点的坐标和AB与x轴夹 角表示.因此图形S 的位
置决定于 xA, yA, 三个
独立的参变量,它们都是 时间的函数.
平面图形的运动方程
xA f1(t) yA f2 (t)
vA vO vAO vAO R vO
( vO )
R
vA vO2 vAO2
vO 2 vO 2
2vO 或取P为基点: vA vP vAP
vA vAP AP 2R 2vO
(3)B点速度,取O为基点
B vBO vo
vB
ω
A O vo C
P
vB vO vBO
vBO R vO vB vO vBO
P
或取P为基点: vC vP vCP
vC vCP CP 2R
2vO
[例2] 曲柄连杆机构,OA=r,AB= 3 r,OA以匀角速度ω 转动,求B的速度和AB杆的角速度。 A 解:vA= OA·ω=r ·ω
ω
B
30°
O
vB= vA/cos30°
vA A
ωBA
ω
vA B
O
vB
vBA
vBA= vA·tan30°
f3 (t)
(9—1)
四、平面运动的分解:平动和转动
当A点不动时-----则刚体作定轴转动。 当 角不变时-----则刚体作平动。
故刚体平面运动--------可以看成是平动和转动的合成运动.
刚体的平动:
A
B
刚体上任一直线始终与
初始位置平行。
1.水平曲线轨迹上行驶的火车箱是否平移? 否。
2.平移时,刚体上各点轨迹是平行直线,对吗? 不一定。可是平行曲线。
即:刚体的平面运动为平动和转动的合成运动。
§9-2 求平面图形内各点速度的基点法
一.基点法(合成法)
取A为基点, 将动系 固结于A点,动系作平动。
取B为动点, 则B点
的运动可视为牵连运动 为平动和相对运动为圆 周运动的合成。
已知:A点的速度vA,求B点的速度vB
vBA vB
vB vBA
ve vA; vr vBA, va vB 根据速度合成定理 va ve vr , 则B点速度为:
vB vA vBA
其中: vBA的大小为 vBA AB,
平面图形上任一点的速度等于基点的速度与该点随图形绕 基点转动的速度的矢量和.
这种求解速度的方法称为基点法,也称为合成法. 它是求解平面图形内一点速度的基本方法.
vB vBA
[例1] 车轮的半径为R,沿直线作纯滚动,轮轴以速度vO前 进,求轮子的角速度和A、B和C各点的速度。
O
vB cos30° = vA
vA A
ω O
B vB
vB= vA/cos30°
vB
23 3
r
[例4] OA=O1 B= r,OA以匀角速度ω转动,求B的速度,
AB杆的角速度, O1 B 杆的角速度。
vBA
vB
解:⑴ vA= OA·ω=r ·ω
B vA
vB AB vA AB
O
ω 45°
ωAB
A vA
3.平面图形S在t 时间内从位置I运动到位置II,是何种运动?
I B
A
II B´´

I
B
II
B´´

A AA´´
以A为基点: 随基点A平动到A'B'后, 绕基点转 角到A' B''
另一种运动过程:
I
B
II B´B´
A

A´´
以B为基点: 随基点B平动到A'B'后, 绕基点转 角到A'' B'
vO vO
( vO )
R
P
vA
AO
vB vBP BP 2R
2vO
P
(4)C点速度,取O为基点 B
ω
A
O vo C vo
vC vO vCO
vCO R vO
( vO )
R
P vCO vC
vC vO2 vCO2
2vO
B
vB
vA
A O vo C vC
§9-1 刚体平面运动的概念和运动分解
见左图: A点----作圆周运动, B点----作直线运动,
AB 杆----而是平面运动.
一.平面运动的定义 刚体上的各点都在平行于某一固定
平面的平面内运动.
二.平面运动的简化
W
刚体的平面运动可以简化 为平面图形S在其自身平面内 的运动.
即在研究平面运动时,不需考 虑刚体的形状和尺寸,只需研究平 面图形的运动,确定平面图形上各 点的速度和加速度.
vP 0
3.几种确定速度瞬心位置的方法
(1)已知图形上一点的速度vA 和图形角速度,
vBA AB (vBA)AB 0
vB AB vA AB
即:平面图形上任意两点的速度在该两点连线上的投影彼此相
等.这种求解速度的方法称为 速度投影法.
[例3] 曲柄连杆机构,OA=r,AB= 3 r,OA以匀角速度ω 转动,求B的速度。
A 解:vA= OA·ω=r ·ω
ω
B 30°
vB AB vA AB
O1
vB = vA cos45°
vB
2 r
2

vB A= vB
AB
vBA AB
(
2 2
r
2r r ) 2 2

O1
vB O1 B
2 r
2 r
2
2
§9-3 求平面图形内各点速度的瞬心法
1. 问题的提出
若选取速度为零的点作为基点,求解速度问题的计算会大大
简化.于是,自然会提出,在某一瞬时图形是否有一点速度等
vBA
3 3
r
vA A
ωBA
ω
vA B
O
vB
vBA
vBA
3 3
r
∵ vABABAB
∴ AB vBA AB
3 3
r
1
3r 3
二.速度投影法
由于A, B点是任意的,因此 vB vA vBA 表示了图形上任 意两点速度间的关系.而且恒有 vBAAB ,因此将上式在AB
连线上投影,有
vB AB vA AB vBAAB
相关文档
最新文档