内蒙古赤峰市中考数学试卷含答案解析
内蒙古赤峰市中考数学真题试题(含答案)

2016年赤峰市中考数学试题一选择题(每小题给出的选项中只有一个符合题意,请将符合题意的选项序号,在答题卡的对应位置上按要求涂黑。
每小题3分,共30分。
)1、12016的倒数是A. -12016B.12016C. 2016D. – 20162、等腰三角形有一个角是90°,则另两个角分别是A. 30°,60°B. 45°,45°C. 45°,90°D. 20°,70°3、平面直角坐标系内的点A(-1,2)与点B(-1,-2)关于A. y轴对称B. x轴对称C.原点对称D.直线y = x 对称4、中国的领水面积约为370 000km2,其中南海的领水面积约占我国领水面积的12,用科学记数法表示中国南海的领水面积是A.3.7×105 km2B. 37×104km2C. 0.85×104km2D. 1.85×105 km25、从数字2,3,4,中任选两个数组成一个两位数,组成的数是偶数的概率是A. 23B.12C.13D.566、如图,工人师傅在工程施工中,需在同一平面内弯制一个变形管道ABCD,使其拐角∠ABC = 150°,∠BCD = 30°,则A. AB∥BCB. BC∥CDC. AB∥DCD. AB与CD相交6题图7题图8题图7、一个长方体的三视图如图所示,则这个长方体的体积为A. 30B. 15C.45D.208、如图,⊙O的半径为1,分别以⊙O的直径AB上的两个四等分点O1、O2为圆心,12为半径作半圆,则图中阴影部分的面积为A. πB. 12π C.14π D.2π235OO1O2O xyDOxy9、函数y = k(x – k)与 y =kx 2、y =(0)kk x,在同一坐标系上的图象正确的是10、8月份是新学期开学准备季,东风和百惠两书店对学习用品和工具书实施优惠销售,优惠方案分别是:在东风书店购买学习用品或工具书累计花费60元后,超出部分按50%收费;在百惠书店购买学习用品或工具书累计花费50元后,超出部分按60%收费.郝爱学同学准备买价值300元的学习用品和工具书,她在哪家书店消费更优惠A.东风B.百惠C. 两家一样D.不能确定二 填空题(请把答案填写在答题卡相应的横线上,每小题3分,共18分) 11、分解因式 4x 2– 4xy + y 2= _________. 12、数据 499,500,501,500的中位数是_______。
赤峰中考数学试题及答案

赤峰中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是正数?A. -3B. 0C. 2D. -5答案:C2. 一个数的相反数是-7,这个数是多少?A. 7B. -7C. 0D. 14答案:A3. 计算下列哪个表达式的结果为0?A. 3 + 2B. 5 - 5C. 4 × 0D. 8 ÷ 2答案:B4. 一个直角三角形的两条直角边长分别为3和4,斜边长是多少?A. 5B. 7C. 9D. 12答案:A5. 下列哪个分数是最简分数?A. 6/8B. 5/10C. 7/14D. 3/4答案:D6. 一个圆的半径为5厘米,它的周长是多少?A. 10π厘米B. 15π厘米C. 20π厘米D. 25π厘米答案:C7. 一个数的平方等于36,这个数是多少?A. 6B. ±6C. 36D. ±36答案:B8. 一个等差数列的首项为2,公差为3,第5项是多少?A. 17B. 14C. 11D. 8答案:A9. 一个二次函数的图像开口向上,且顶点坐标为(-1, -4),下列哪个点不可能在该函数图像上?A. (0, -3)B. (-2, -6)C. (1, -2)D. (2, 0)答案:D10. 计算下列哪个表达式的结果是负数?A. (-2) × (-3)B. (-2) + (-3)C. (-2) × 3D. (-2) ÷ (-3)答案:C二、填空题(每题3分,共15分)11. 一个数的绝对值是5,这个数可能是________。
答案:±512. 一个数的立方等于-8,这个数是________。
答案:-213. 一个等腰三角形的底角为45°,顶角是________。
答案:90°14. 一个数的平方根是2,这个数的立方根是________。
答案:2√215. 一个数除以-2的结果是3,这个数是________。
赤峰市中考数学试题及答案

赤峰市中考数学试题及答案在赤峰市的中考中,数学试卷是必不可少的一部分。
以下是一些常见的数学试题及其答案,供参考。
一、选择题1. 已知等差数列的首项为a,公差为d。
若a=2,d=3,数列的第n 项为10,则n的值为:A. 4B. 5C. 6D. 7答案:C. 62. 若正方形ABCD的边长为4 cm,点E是边AB的中点,则三角形ADE的面积为:A. 6 cm²B. 8 cm²C. 12 cm²D. 16 cm²答案:B. 8 cm²二、填空题1. 若x=2,y=-3,则2x-3y的值为____。
答案:142. 用两个数字4、6、8、9能组成多少个互不重复的两位数?答案:12个三、解答题1. 计算下列各题的解:a) 7 + 12 ÷ 4b) (8 + 3) × 2 - 10答案:a) 10b) 142. 解方程组:2x + y = 73x - y = -1答案:x = 2, y = 3以上是赤峰市中考数学试题及答案的一部分范例。
在中考数学考试中,选择题常常涉及对基础知识点的掌握和运用能力的测试,而填空题和解答题则更加注重学生对于数学思维和解题能力的考察。
希望通过这些题目的讲解和答案的给出,能够帮助你更好地了解赤峰市中考数学试题的难度和出题思路,为备考提供参考。
同时,希望你在备考过程中,能够注重平时的积累和练习,加强对数学知识的理解和掌握,提高解题能力,从而在中考中取得优异的成绩。
祝你取得好成绩!。
2022年内蒙古赤峰市中考数学试卷和答案解析

2022年内蒙古赤峰市中考数学试卷和答案解析一、选择题(每小题给出的选项中只有一个符合题意,请将符合题意的选项序号,在答题卡的对应位置上按要求涂黑.每小题3分,共42分)1.(3分)﹣5的绝对值是()A.﹣B.﹣5C.D.52.(3分)下列图案中,不是轴对称图形的是()A.B.C.D.3.(3分)同种液体,压强随着深度增加而增大.7km深处海水的压强为72100000Pa,数据72100000用科学记数法表示为()A.7.21×106B.0.721×108C.7.21×107D.721×105 4.(3分)解不等式组时,不等式①、②的解集在同一数轴上表示正确的是()A.B.C.D.5.(3分)下面几何体的俯视图是()A.B.C.D.6.(3分)如图,点A(2,1),将线段OA先向上平移2个单位长度,得到线段O′A′,则点A的对应点A′的坐标是()A.(﹣3,2)B.(0,4)C.(﹣1,3)D.(3,﹣1)7.(3分)下列运算正确的是()A.a3+a2=a5B.a2•a3=a6C.2a•3a2=6a3D.(﹣a4)3=﹣a78.(3分)下列说法正确的是()A.调查某班学生的视力情况适合采用随机抽样调查的方法B.声音在真空中传播的概率是100%C.甲、乙两名射击运动员10次射击成绩的方差分别是S甲2=2.4,S乙2=1.4,则甲的射击成绩比乙的射击成绩稳定D.8名同学每人定点投篮6次,投中次数统计如下:5,4,3,5,2,4,1,5,则这组数据的中位数和众数分别是4和59.(3分)如图,剪两张对边平行的纸条,随意交叉叠放在一起,其中一张纸条在转动过程中,下列结论一定成立的是()A.四边形ABCD周长不变B.AD=CDC.四边形ABCD面积不变D.AD=BC10.(3分)某中学对学生最喜欢的课外活动进行了随机抽样调查,要求每人只能选择其中的一项.根据得到的数据,绘制的不完整统计图如下()A.这次调查的样本容量是200B.全校1600名学生中,估计最喜欢体育课外活动的大约有500人C.扇形统计图中,科技部分所对应的圆心角是36°D.被调查的学生中,最喜欢艺术课外活动的有50人11.(3分)已知(x+2)(x﹣2)﹣2x=1,则2x2﹣4x+3的值为()A.13B.8C.﹣3D.512.(3分)如图所示,圆锥形烟囱帽的底面半径为12cm,侧面展开图为半圆形()A.10cm B.20cm C.5cm D.24cm 13.(3分)如图,菱形ABCD,点A、B、C、D均在坐标轴上.∠ABC=120°(﹣3,0),点E是CD的中点,点P是OC上的一动点()A.3B.5C.2D.14.(3分)如图,AB是⊙O的直径,将弦AC绕点A顺时针旋转30°得到AD,延长CD,交⊙O于点E,则图中阴影部分的面积为()A.2πB.2C.2π﹣4D.2π﹣2二、填空题(请把答案填写在答题卡相应的横线上.每小题3分,共12分)15.(3分)分解因式:2x3+4x2+2x=.16.(3分)已知王强家、体育场、学校在同一直线上,下面的图象反映的过程是:某天早晨,王强从家跑步去体育场锻炼,步行回家吃早餐,饭后骑自行车到学校.图中x表示时间.(填写所有正确结论的序号)①体育场离王强家2.5km②王强在体育场锻炼了30min③王强吃早餐用了20min④王强骑自行车的平均速度是0.2km/min17.(3分)如图,为了测量校园内旗杆AB的高度,九年级数学应用实践小组,利用镜子、皮尺和测角仪等工具,按以下方式进行测量:把镜子放在点O处,这时恰好能在镜子里看到旗杆顶点A,此时测得观测者观看镜子的俯角α=60°,BD=11m,则旗杆AB 的高度约为m.(结果取整数,≈1.7)18.(3分)如图,抛物线y=﹣x2﹣6x﹣5交x轴于A、B两点,交y轴于点C,点D(m,m+1),则点D关于直线AC的对称点的坐标为.三、参考答案题(在答题卡上参考答案,答在本试卷上无效,参考答案时要写出必要的文字说明、证明过程或演算步骤.共8题,满分96分)19.(10分)先化简,再求值:(1+)÷,其中a=()﹣1+4cos45°.20.(10分)如图,已知Rt△ABC中,∠ACB=90°,BC=5.(1)作BC的垂直平分线,分别交AB、BC于点D、H;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的条件下,连接CD21.(12分)为了解青少年健康状况,某班对50名学生的体育达标情况进行了测试,满分为50分.根据测试成绩组别成绩x(分)频数(人数)第一组5≤x<151第二组15≤x<255第三组25≤x<3512第四组35≤x<45m第五组45≤x<5514请结合图表完成下列各题:(1)求表中m的值;(2)请把频数分布直方图补充完整;(3)若测试成绩不低于35分为达标,则本次测试的达标率是多少?(4)第三组12名学生中有A、B、C、D四名女生,现将这12名学生平均分成两组进行竞赛练习,每组两名女生22.(12分)某学校建立了劳动基地,计划在基地上种植A、B两种苗木共6000株,其中A种苗木的数量比B种苗木的数量的一半多600株.(1)请问A、B两种苗木各多少株?(2)如果学校安排350人同时开始种植这两种苗木,每人每天平均能种植A种苗木50株或B种苗木30株,应分别安排多少人种植A种苗木和B种苗木23.(12分)阅读下列材料定义运算:min|a,b|,当a≥b时,b|=b;当a<b时,b|=a.例如:min|﹣1,3|=﹣1;min|﹣1完成下列任务(1)①min|(﹣3)0,2|=;②min|﹣,﹣4|=.(2)如图,已知反比例函数y1=和一次函数y2=﹣2x+b的图象交于A、B两点.当﹣2<x<0时,min|,﹣2x+b|=(x+1)(x ﹣3)2,求这两个函数的解析式.24.(12分)如图,已知AB为⊙O的直径,点C为⊙O外一点,连接OC,DF是AC的垂直平分线,垂足为点E,连接AD、CD (1)求证:AD是⊙O的切线;(2)若CD=6,OF=4,求cos∠DAC的值.25.(14分)【生活情境】为美化校园环境,某学校根据地形情况,要对景观带中一个长AD =4m(如图①,改造后的水池ABNM仍为长方形,以下简称水池1).同时,再建造一个周长为12m的矩形水池EFGH(如图②,以下简称水池2).【建立模型】如果设水池ABCD的边AD加长长度DM为x(m)(x>0),加长后水池1的总面积为y1(m2),则y1关于x的函数解析式为:y1=x+4(x>0);设水池2的边EF的长为x(m)(0<x<6),面积为y2(m2),则y2关于x的函数解析式为:y2=﹣x2+6x(0<x<6),上述两个函数在同一平面直角坐标系中的图象如图③.【问题解决】(1)若水池2的面积随EF长度的增加而减小,则EF长度的取值范围是(可省略单位),水池2面积的最大值是m2;(2)在图③字母标注的点中,表示两个水池面积相等的点是,此时的x(m)值是;(3)当水池1的面积大于水池2的面积时,x(m)的取值范围是;(4)在1<x<4范围内,求两个水池面积差的最大值和此时x的值;(5)假设水池ABCD的边AD的长度为b(m),其他条件不变(这个加长改造后的新水池简称水池3),则水池3的总面积y3(m2)关于x(m)(x>0)的函数解析式为:y3=x+b(x>0).若水池3与水池2的面积相等时,x(m)有唯一值26.(14分)同学们还记得吗?图①,图②是人教版八年级下册教材“实验与探究”中我们研究过的两个图形.受这两个图形的启发,数学兴趣小组提出了以下三个问题【问题一】如图①,正方形ABCD的对角线相交于点O,点O又是正方形A1B1C1O的一个顶点,OA1交AB于点E,OC1交BC于点F,则AE与BF的数量关系为;【问题二】受图①启发,兴趣小组画出了图③:直线m、n经过正方形ABCD的对称中心O,直线m分别与AD、BC交于点E、F,且m⊥n,若正方形ABCD边长为8;【问题三】受图②启发,兴趣小组画出了图④:正方形CEFG的顶点G在正方形ABCD的边CD上,顶点E在BC的延长线上,CE=2.在直线BE上是否存在点P,使△APF为直角三角形?若存在;若不存在,说明理由.参考答案与解析一、选择题(每小题给出的选项中只有一个符合题意,请将符合题意的选项序号,在答题卡的对应位置上按要求涂黑.每小题3分,共42分)1.【参考答案】解:﹣5的绝对值是:5.故选:D.【解析】此题主要考查了绝对值,正确掌握绝对值的性质是解题关键.2.【参考答案】解:选项B、C、D能找到这样的一条直线,直线两旁的部分能够互相重合,选项A不能找到这样的一条直线,使图形沿一条直线折叠,所以不是轴对称图形,故选:A.【解析】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.【参考答案】解:72100000=7.21×107.故选:C.【解析】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【参考答案】解:不等式组的解集是﹣7<x≤3,在数轴上表示为:,故选:A.【解析】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能把不等式组的解集在数轴上表示出来是解此题的关键.5.【参考答案】解:几何体的俯视图是:故选:B.【解析】本题考查简单几何体的三视图,参考答案本题的关键是画出相应的俯视图.6.【参考答案】解:如图:由题意得:点A的对应点A′的坐标是(﹣1,3),故选:C.【解析】本题考查了坐标与图形变化﹣平移,熟练掌握点的平移规律是解题的关键.7.【参考答案】解:A、a3与a2不属于同类项,不能合并;B、a3•a3=a5,故B不符合题意;C、7a•3a2=6a3,故C符合题意;D、(﹣a4)5=﹣a12,故D不符合题意;故选:C.【解析】本题主要考查单项式乘单项式,合并同类项,同底数幂的乘法,幂的乘方与积的乘方,参考答案的关键是对相应的运算法则的掌握.8.【参考答案】解:A、调查某班学生的视力情况,适合采用全面调查的方法,不符合题意;B、声音在真空中传播的概率是0%,不符合题意;C、甲、乙两名射击运动员10次射击成绩的方差分别是S甲2=4.4,S乙2=2.4,则甲的射击成绩不如乙的射击成绩稳定,不符合题意;D、8名同学每人定点投篮4次,4,3,2,2,4,5,5,则这组数据的中位数和众数分别是4和8,符合题意.故选:D.【解析】考查了调查方式的选择方法、概率的意义,方差的意义及众数、中位数的定义等知识,解题的关键是了解统计的有关定义和方法,难度不大.9.【参考答案】解:由题意可知:AB∥CD,AD∥BC,∴四边形ABCD为平行四边形,∴AD=BC,故选:D.【解析】本题主要考查平行四边形的判定和性质;证明四边形ABCD为平行四边形是解题的关键.10.【参考答案】解:∵10÷5%=200,∴这次调查的样本容量为200,故A选项结论正确,不符合题意;∵1600×=400(人),∴全校1600名学生中,估计最喜欢体育课外活动的大约有400人,故B选项结论不正确,符合题意;∵200×25%=50(人),∴被调查的学生中,最喜欢艺术课外活动的有50人,故D选项结论正确,不符合题意;∵360°×=36°,∴扇形统计图中,科技部分所对应的圆心角是36°,故C选项结论正确,不符合题意;故选:B.【解析】本题主要考查统计的知识,熟练掌握扇形统计图等统计的知识是解题的关键.11.【参考答案】解:(x+2)(x﹣2)﹣2x=1,x2﹣8﹣2x=1,x2﹣2x=5,所以3x2﹣4x+5=2(x2﹣4x)+3=2×3+3=10+3=13,故选:A.【解析】本题考查了平方差公式和求代数式的值,能够整体代入是解此题的关键.12.【参考答案】解:设母线的长为R,由题意得,πR=2π×12,解得R=24,∴母线的长为24cm,故选:D.【解析】本题主要考查弧长的计算,根据展开后的半圆弧长等于圆锥形烟囱帽的底面周长列方程求解是解题的关键.13.【参考答案】解:根据题意得,E点关于x轴的对称点是BC的中点E',此时PD+PE有最小值为DE',∵四边形ABCD是菱形,∠ABC=120°,0),∴OA=OC=3,∠DBC=60°,∴△BCD是等边三角形,∴DE'=OC=5,即PD+PE的最小值是3,故选:A.【解析】本题主要考查菱形的性质,熟练掌握菱形的性质,等边三角形的判定和性质是解题的关键.14.【参考答案】解:连接OE,OC,由旋转知AC=AD,∠CAD=30°,∴∠BOC=60°,∠ACE=(180°﹣30°)÷2=75°,∴∠BCE=90°﹣∠ACE=15°,∴∠BOE=2∠BCE=30°,∴∠EOC=90°,即△EOC为等腰直角三角形,∵CE=5,∴OE=OC=2,∴S阴影=S扇形OEC﹣S△OEC=﹣×=4π﹣4,故选:C.【解析】本题主要考查旋转的性质及扇形面积的计算,熟练掌握扇形面积的计算是解题的关键.二、填空题(请把答案填写在答题卡相应的横线上.每小题3分,共12分)15.【参考答案】解:原式=2x(x2+8x+1)=2x(x+8)2.故答案为:2x(x+3)2.【解析】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.16.【参考答案】解:由图象中的折线中的第一段可知:王强家距离体育场2.5千米,用时15分钟跑步到达,∴①的结论正确;由图象中的折线中的第二段可知:王强从第15分钟开始锻炼,第30分钟结束,∴王强锻炼的时间为:30﹣15=15(分钟),∴②的结论不正确;由图象中的折线中的第三段可知:王强从第30中开始回家,第67分钟到家;由图象中的折线中的第四段可知:王强从第67分钟开始吃早餐,第87分钟结束,∴王强吃早餐用时:87﹣67=20(分钟),∴③的结论正确;由图象中的折线中的第五段可知:王强从第87分钟开始骑车去往8千米外的学校,第102分钟到达学校,∴王强骑自行车用时为:102﹣87=15(分钟),∴王强骑自行车的平均速度是:3÷15=0.5(km/min)∴④的结论正确.综上,结论正确的有:①③④,故答案为:①③④.【解析】本题主要考查了函数的图象,从函数的图象中正确的获取信息是解题的关键.17.【参考答案】解:由题意可得∠COD=∠AOB=60°,在Rt△COD中,CD=1.7m,tan60°==,解得DO≈5,∴BO=BD﹣DO=11﹣1=10(m),在Rt△AOB中,tan60°==,解得AB≈17,∴旗杆AB的高度约为17m.故答案为:17.【解析】本题考查解直角三角形的应用﹣仰角俯角问题,熟练掌握锐角三角函数的定义是参考答案本题的关键.18.【参考答案】解:把点D(m,m+1)代入抛物线y=﹣x2﹣5x﹣5中得:m+1=﹣m4﹣6m﹣5,解得:m8=﹣1,m2=﹣7,∴D(﹣1,0)或(﹣3,当y=0时,﹣x2﹣2x﹣5=0,∴x=﹣6或﹣5,∴A(﹣5,7),0),当x=0时,y=﹣4,∴OC=OA=5,∴△AOC是等腰直角三角形,∴∠OAC=45°,①如图1,D(﹣4,此时点D与B重合,∵点D与D'关于直线AC对称,∴AC是BD的垂直平分线,∴AB=AD'=﹣1﹣(﹣5)=7,且∠OAC=∠CAD'=45°,∴∠OAD'=90°,∴D'(﹣5,﹣4);②如图2,D(﹣6,∵点D(m,m+1),∴点D在直线y=x+5上,此时直线y=x+1过点B,∴BD⊥AC,即D'在直线y=x+1上,∵A(﹣3,0),﹣5),则直线AC的解析式为:y=﹣x﹣6,∵﹣x﹣5=x+1,∴x=﹣2,∴E(﹣3,﹣2),∵点D与D'关于直线AC对称,∴E是DD'的中点,∴D'(5,1),综上,点D关于直线AC的对称点的坐标为(﹣5,3).故答案为:(﹣5,﹣4)或(2.【解析】本题考查了抛物线与x轴的交点、二次函数图象上点的坐标特征、等腰直角三角形的判定与性质、轴对称的性质;熟练掌握二次函数图象上点的坐标特征和轴对称的性质是解决问题的关键.三、参考答案题(在答题卡上参考答案,答在本试卷上无效,参考答案时要写出必要的文字说明、证明过程或演算步骤.共8题,满分96分)19.【参考答案】解:(1+)÷=•=•=3(a﹣8)=3a﹣3,当a=()﹣1+4cos45°=2﹣7+4×=2﹣4+2=2时,原式=3×6﹣3=3.【解析】本题考查了特殊角的三角函数值,负整数指数幂,分式的化简求值,准确熟练地进行计算是解题的关键.20.【参考答案】解:(1)如图,DH为所作;(2)∵DH垂直平分BC,∴DC=DB,∴∠B=∠DCB,∵∠B+∠A=90°,∠DCB+∠DCA=90°,∴∠A=∠DCA,∴DC=DA,∴△BCD的周长=DC+DB+BC=DA+DB+BC=AB+BC=8+5=13.【解析】本题考查了作图﹣基本作图:熟练掌握5种基本作图是解决问题的关键.也考查了线段垂直平分线的性质.21.【参考答案】解:(1)m=50﹣1﹣5﹣12﹣14=18;(2)如图,(3)本次测试的达标率为×100%=64%;(4)画树状图为:共用12种等可能的结果,其中B,所以B、C两名女生分在同一组的概率==.【解析】本题考查了列表法与树状图法:利用列表法或树状图展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求出事件A或B的概率.22.【参考答案】解:(1)设A种苗木有x株,B种苗木有y株,根据题意,得,解得,答:A种苗木有2400株,B种苗木有3600株;(2)设安排m人种植A种苗木,根据题意,得,解得m=100,经检验,m=100是原方程的根,350﹣m=350﹣100=250(人),答:应安排100人种植A种苗木,250人种植B种苗木.【解析】本题考查了二元一次方程组和分式方程的应用,理解题意并根据题意建立等量关系是解题的关键.23.【参考答案】解:(1)由题意可知:①min|(﹣3)0,3|=1,②min|﹣,﹣4|=﹣6;故答案为:1,﹣4.(2)当﹣7<x<0时,min|2=﹣8x﹣3,∵一次函数y2=﹣2x+b,∴b=﹣3,∴y2=﹣6x﹣3,当x=﹣2时,y=4,∴A(﹣2,1)将A点代入y8=中,得k=﹣2,∴y1=﹣.【解析】本题主要考查了新定义运算和反比例函数图像的性质,熟练掌握新定义运算的法则和反比例函数的性质是参考答案本题的关键.24.【参考答案】(1)证明:∵AC=BC,点O为AB的中点,∴CO⊥AB.∵DF是AC的垂直平分线,∴DC=DA,∴∠DCA=∠DAC.∵∠DCA=∠OCA,∴∠DAC=∠OCA.∴DA∥OC,∴DA⊥OA.∵OA是⊙O的半径,∴AD是⊙O的切线;(2)解:在△CDE和△CFE中,,∴△CDE≌△CFE(ASA),∴CD=CF=6,∴CO=CF+OF=10.∵DF是AC的垂直平分线,∴CE=AE=AC.∵∠CEF=∠COA=90°,∠ECF=∠OCA,∴△CEF∽△COA,∴,∴,∴AC=2,在Rt△AOC中,∵cos∠OCA=,∴cos∠DAC=cos∠OCA=.【解析】本题主要考查了圆的切线的判定,等腰三角形的性质,平行线的判定与性质,全等三角形的判定与性质,线段垂直平分线的性质,相似三角形的判定与性质,勾股定理,直角三角形的边角关系定理,灵活应用等量代换是解题的关键.25.【参考答案】解:(1)∵y2=﹣x2+4x=﹣(x﹣3)2+7,又∵﹣1<0,∴抛物线的开口方向向下,当x≥5时,∵0<x<6,∴当8≤x<6时,水池2的面积随EF长度的增加而减小8.故答案为:3≤x<6;2;(2)由图象可知:两函数图象相交于点C,E,此时两函数的函数值相等x+4=﹣x2+6x,解得:x=1或4,∴表示两个水池面积相等的点是:C,E,此时的x(m)值是:7或4.故答案为:C,E;1或7;(3)由图象知:图象中点C的左侧部分和点E的右侧部分,一次函数的函数值大于二次函数的函数值,即当0<x<1或8<x<6时,水池1的面积大于水池5的面积,故答案为:0<x<1或6<x<6;(4)在抛物线上的CE段上任取一点F,过点F作FG∥y轴交线段CE于点G,则线段FG表示两个水池面积差,设F(m,﹣m2+5m),则G(m,∴FG=(﹣m2+6m)﹣(m+6)=﹣m2+5m﹣6=﹣+,∵﹣6<0,∴当m=时,FG有最大值为.∴在2<x<4范围内,两个水池面积差的最大值为;(5)∵水池2与水池2的面积相等,∴y3=y5,即:x+b=﹣x2+6x,∴x7﹣5x+b=0.∵若水池6与水池2的面积相等时,x(m)有唯一值,∴Δ=(﹣5)4﹣4×1×b=4,解得:b=.∴若水池3与水池6的面积相等时,x(m)有唯一值米.【解析】本题主要考查了一次函数的图象与性质,一次函数图象上点的坐标的特征,二次函数图象的性质,二次函数图象上点的坐标的特征,图象上点的坐标的实际意义,配方法求二次函数的极值,二次函数与二次方程的联系,充分理解函数图象上点的坐标的数学意义是解题的关键.26.【参考答案】解:【问题一】∵正方形ABCD的对角线相交于点O,∴OA=OB,∠OAB=∠OBA=45°,∵四边形A1B1C2O是正方形,∴∠EOF=90°,∴∠AOE=∠BOF,∴△AOE≌△BOF(ASA),∴AE=BF,故答案为:AE=BF;【问题二】如图③,连接OA,OB,∵点O是正方形ABCD的中心,∴S△AOB=S正方形ABCD=×87=16,∵点O是正方形ABCD的中心,∴∠OAE=∠OBG=45°,OA=OB,∵m⊥n,∴∠EOG=90°,∴∠AOE=∠BOG,∴△AOE≌△BOG(ASA),∴S△AOE=S△BOG,∴S四边形OEAG=S△AOE+S△AOG=S△BOG+S△AOG=S△AOB=16;【问题三】在直线BE上存在点P,使△APF为直角三角形,①当∠AFP=90°时,如图④,AD相交于点Q,∵四边形ABCD和四边形CEFG是正方形,∴EQ=AB=6,∠BAD=∠B=∠E=90°,∴四边形ABEQ是矩形,∴AQ=BE=BC+CE=8,EQ=AB=4,∴∠EFP+∠EPF=90,∵∠AFP=90°,∴∠EFP+∠AFQ=90°,∴△EFP∽△QAF,∴,∵QF=EQ﹣EF=4,∴,∴EP=1,∴BP=BE﹣EP=8;②当∠APF=90°时,如图⑤,同①的方法得,△ABP∽△PEF,∴,∵PE=BE﹣BP=8﹣BP,∴,∴BP=2或BP=3;③当∠PAF=90°时,如图⑥,过点P作AB的平行线交DA的延长线于M,延长EF,同①的方法得,四边形ABPM是矩形,∴PM=AB=6,AM=BP,同①的方法得,四边形ABEN是矩形,∴AN=BE=8,EN=AB=5,∴FN=EN﹣EF=4,同①的方法得,△AMP∽△FNA,∴,∴,∴AM=3,∴BP=4,即BP的长度为2或3或8或7.【解析】此题是几何变换综合题,主要考查了正方形的性质,矩形的判定和性质,全等三角形的判定和性质,相似三角形的判定和性质,作出辅助线构造出相似三角形和全等三角形是解本题的关键.。
2019年内蒙古赤峰市中考数学试题及参考答案(word解析版)

2019年赤峰市初中毕业、升学统一考试试卷数学(本试卷卷面分值150分,考试时间120分钟)一、选择题(每小题给出的选项中只有一个符合题意,请将符合题意的选项序号。
每小题3分,共42分)1.在﹣4、﹣、0、4这四个数中,最小的数是()A.4 B.0 C.﹣D.﹣42.2013﹣2018年我国与“一带一路”沿线国家货物贸易总额超过60000亿元,将60000用科学记数法表示为()A.6×104B.0.6×105C.6×106D.60×1033.下列运算正确的是()A.+=B.x3•x2=x5C.(x3)2=x5D.x6÷x2=x34.不透明袋子中有除颜色外完全相同的4个黑球和2个白球,从袋子中随机摸出3个球,下列事件是必然事件的是()A.3个都是黑球B.2个黑球1个白球C.2个白球1个黑球D.至少有1个黑球5.如图是一个几何体的三视图,则这个几何体是()A.三棱锥B.圆锥C.三棱柱D.圆柱6.不等式组的解集在数轴上表示正确的是()A.B.C.D.7.如图是九年级某考生做的水滴入一个玻璃容器的示意图(滴水速度保持不变),能正确反映容器中水的高度(h)与时间(t)之间对应关系的大致图象是()A.B.C.D.8.如图,菱形ABCD周长为20,对角线AC、BD相交于点O,E是CD的中点,则OE的长是()A.2.5 B.3 C.4 D.59.某品牌手机三月份销售400万部,四月份、五月份销售量连续增长,五月份销售量达到900万部,求月平均增长率.设月平均增长率为x,根据题意列方程为()A.400(1+x2)=900 B.400(1+2x)=900C.900(1﹣x)2=400 D.400(1+x)2=90010.如图,AB是⊙O的弦,OC⊥AB交⊙O于点C,点D是⊙O上一点,∠ADC=30°,则∠BOC 的度数为()A.30°B.40°C.50°D.60°11.如图,点P是反比例函数y=(k≠0)的图象上任意一点,过点P作PM⊥x轴,垂足为M.若△POM的面积等于2,则k的值等于()A.﹣4 B.4 C.﹣2 D.212.如图,D、E分别是△ABC边AB,AC上的点,∠ADE=∠ACB,若AD=2,AB=6,AC=4,则AE的长是()A.1 B.2 C.3 D.413.如图,点D在BC的延长线上,DE⊥AB于点E,交AC于点F.若∠A=35°,∠D=15°,则∠ACB的度数为()A.65°B.70°C.75°D.85°14.如图,小聪用一张面积为1的正方形纸片,按如下方式操作:①将正方形纸片四角向内折叠,使四个顶点重合,展开后沿折痕剪开,把四个等腰直角三角形扔掉;②在余下纸片上依次重复以上操作,当完成第2019次操作时,余下纸片的面积为()A.22019B.C.D.二、填空题(每小题3分,共12分)15.因式分解:x3﹣2x2y+xy2=.16.如图是甲、乙两名射击运动员10次射击成绩的统计表和折线统计图.你认为甲、乙两名运动员,的射击成绩更稳定.(填甲或乙)17.如图,一根竖直的木杆在离地面3.1m处折断,木杆顶端落在地面上,且与地面成38°角,则木杆折断之前高度约为m.(参考数据:sin38°≈0.62,cos38°≈0.79,tan38°≈0.78)18.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①b>0;②a﹣b+c=0;③一元二次方程ax2+bx+c+1=0(a≠0)有两个不相等的实数根;④当x<﹣1或x>3时,y>0.上述结论中正确的是.(填上所有正确结论的序号)三、解答题(解答时要写出必要的文字说明、证明过程或演算步骤.共8题,满分96分)19.(10分)先化简,再求值:÷+,其中a=|1﹣|﹣tan60°+()﹣1.20.(10分)已知:AC是▱ABCD的对角线.(1)用直尺和圆规作出线段AC的垂直平分线,与AD相交于点E,连接CE.(保留作图痕迹,不写作法);(2)在(1)的条件下,若AB=3,BC=5,求△DCE的周长.21.(12分)赤峰市某中学为庆祝“世界读书日”,响应”书香校园”的号召,开展了“阅读伴我成长”的读书活动.为了解学生在此次活动中的读书情况,从全校学生中随机抽取一部分学生进行调查,将收集到的数据整理并绘制成如图所示不完整的折线统计图和扇形统计图.(1)随机抽取学生共名,2本所在扇形的圆心角度数是度,并补全折线统计图;(2)根据调查情况,学校决定在读书数量为1本和4本的学生中任选两名学生进行交流,请用树状图或列表法求这两名学生读书数量均为4本的概率.22.(12分)某校开展校园艺术节系列活动,派小明到文体超市购买若干个文具袋作为奖品.这种文具袋标价每个10元,请认真阅读结账时老板与小明的对话:(1)结合两人的对话内容,求小明原计划购买文具袋多少个?(2)学校决定,再次购买钢笔和签字笔共50支作为补充奖品,两次购买奖品总支出不超过400元.其中钢笔标价每支8元,签字笔标价每支6元,经过沟通,这次老板给予8折优惠,那么小明最多可购买钢笔多少支?23.(12分)如图,AB为⊙O的直径,C、D是半圆AB的三等分点,过点C作AD延长线的垂线CE,垂足为E.(1)求证:CE是⊙O的切线;(2)若⊙O的半径为2,求图中阴影部分的面积.24.(12分)阅读下面材料:我们知道一次函数y=kx+b(k≠0,k、b是常数)的图象是一条直线,到高中学习时,直线通常写成Ax+By+C=0(A≠0,A、B、C是常数)的形式,点P(x0,y0)到直线Ax+By+C=0的距离可用公式d=计算.例如:求点P(3,4)到直线y=﹣2x+5的距离.解:∵y=﹣2x+5∴2x+y﹣5=0,其中A=2,B=1,C=﹣5∴点P(3,4)到直线y=﹣2x+5的距离为:d====根据以上材料解答下列问题:(1)求点Q(﹣2,2)到直线3x﹣y+7=0的距离;(2)如图,直线y=﹣x沿y轴向上平移2个单位得到另一条直线,求这两条平行直线之间的距离.25.(14分)如图,直线y=﹣x+3与x轴、y轴分别交于B、C两点,抛物线y=﹣x2+bx+c经过点B、C,与x轴另一交点为A,顶点为D.(1)求抛物线的解析式;(2)在x轴上找一点E,使EC+ED的值最小,求EC+ED的最小值;(3)在抛物线的对称轴上是否存在一点P,使得∠APB=∠OCB?若存在,求出P点坐标;若不存在,请说明理由.26.(14分)【问题】如图1,在Rt△ABC中,∠ACB=90°,AC=BC,过点C作直线l平行于AB.∠EDF=90°,点D在直线l上移动,角的一边DE始终经过点B,另一边DF与AC交于点P,研究DP和DB 的数量关系.【探究发现】(1)如图2,某数学兴趣小组运用“从特殊到一般”的数学思想,发现当点D移动到使点P与点C重合时,通过推理就可以得到DP=DB,请写出证明过程;【数学思考】(2)如图3,若点P是AC上的任意一点(不含端点A、C),受(1)的启发,这个小组过点D 作DG⊥CD交BC于点G,就可以证明DP=DB,请完成证明过程;【拓展引申】(3)如图4,在(1)的条件下,M是AB边上任意一点(不含端点A、B),N是射线BD上一点,且AM=BN,连接MN与BC交于点Q,这个数学兴趣小组经过多次取M点反复进行实验,发现点M在某一位置时BQ的值最大.若AC=BC=4,请你直接写出BQ的最大值.参考答案与解析一、选择题(每小题给出的选项中只有一个符合题意,请将符合题意的选项序号。
内蒙古赤峰市2022年中考[数学]考试真题与答案解析
![内蒙古赤峰市2022年中考[数学]考试真题与答案解析](https://img.taocdn.com/s3/m/ee5fb365e55c3b3567ec102de2bd960590c6d90e.png)
内蒙古赤峰市2022年中考[数学]考试真题与答案解析一、选择题每小题给出的选项中只有一个符合题意,请将符合题意的选项序号,在答题卡的对应位置上按要求涂黑.每小题3分,共42分。
1. -5的绝对值是()A. B. -5 C. D. 5答案:D答案解析:,故选:D.2. 下列图案中,不是轴对称图形的是()A. B. C. D.答案:A答案解析:A不是轴对称图形;B、C、D都是轴对称图形;故选:A.3. 同种液体,压强随着深度增加而增大.深处海水的压强为,数据72100000用科学记数法表示为()A. B.C. D.答案:C15-1555=-7km a72100000p 67.2110⨯80.72110⨯77.2110⨯572110⨯答案解析:72100000=,故选:C .4. 解不等式组时,不等式①、②的解集在同一数轴上表示正确的是()A. B. C. D.答案:B答案解析:不等式组的解集为,表示在同一数轴为: ,故选:B .5. 下面几何体的俯视图是()A. B. C. D.答案:B答案解析:圆台的俯视图是一个同心圆环.故选:B .6. 如图,点,将线段先向上平移2个单位长度,再向左平移3个单位长度,得到线段,则点的对应点的坐标是()77.2110⨯31x x ≤⎧⎨>-⎩①②31x x ≤⎧⎨>-⎩①②13x -<≤()2,1A OA ''O A A 'AA. B. C. D. 答案:C答案解析:∵点A 坐标为(2,1),∴线段OA 向h 平移2个单位长度,再向左平移3个单位长度,点A 的对应点A ′的坐标为(2-3,1+2),即(-1,3),故选C .7. 下列运算正确的是( )A. B. C. D. 答案:C答案解析:A 、a 3和a 2不是同类项,不能合并,该选项不符合题意;B 、a 2⋅a 3=a 5原式计算错误,该选项不符合题意;C 、正确,该选项符合题意;D 、原式计算错误,该选项不符合题意;故选:C .8. 下列说法正确的是()A. 调查某班学生的视力情况适合采用随机抽样调查的方法B. 声音在真空中传播的概率是100%C. 甲、乙两名射击运动员10次射击成绩的方差分别是,,则甲的射击成绩比乙的射击成绩稳定()3,2-()0,4()1,3-()3,1-325a a a +=236a a a⋅=23236a a a⋅=()347aa -=-23236a a a ⋅=()3412aa -=-22.4S =甲21.4S =乙D. 8名同学每人定点投篮6次,投中次数统计如下:5,4,3,5,2,4,1,5,则这组数据的中位数和众数分别是4和5答案:D答案解析:A 、调查某班学生的视力情况适合采用普查的方法,故A 不符合题意;B 、声音在真空中传播的概率是0,故B 不符合题意;C 、甲、乙两名射击运动员10次射击成绩的方差分别是,,则乙的射击成绩比甲的射击成绩稳定;故C 不符合题意;D 、8名同学每人定点投篮6次,投中次数统计如下:5,4,3,5,2,4,1,5,则这组数据的中位数和众数分别是4和5;故D 符合题意;故选:D9. 如图,剪两张对边平行的纸条,随意交叉叠放在一起,重合部分构成一个四边形,其中一张纸条在转动过程中,下列结论一定成立的是()A. 四边形周长不变B.C. 四边形面积不变D. 答案:D答案解析:由题意可知,∵,,∴四边形是平行四边形,22.4S =甲21.4S =乙ABCD ABCD AD CD =ABCD AD BC=//AB CD //AD BC ABCD∴;故D 符合题意;随着一张纸条在转动过程中,不一定等于,四边形周长、面积都会改变;故A 、B 、C 不符合题意;故选:D10. 某中学对学生最喜欢的课外活动进行了随机抽样调查,要求每人只能选择其中的一项.根据得到的数据,绘制的不完整统计图如下,则下列说法中不正确的是()A. 这次调查200B. 全校1600名学生中,估计最喜欢体育课外活动的大约有500人C. 扇形统计图中,科技部分所对应的圆心角是D. 被调查的学生中,最喜欢艺术课外活动的有50人答案:B答案解析:①由折线统计图和扇形图可知:喜欢播音的人数是10人,占调查人数的5%,这次调查的样本容量是10÷5%=200(人),故A 选项正确;②全校1600名学生中,估计最喜欢体育课外活动的大约有:1600× =400(人)故B 选项错误;的AD BC =AD CD ABCD 36︒50200③被调查的学生中,最喜欢艺术课外活动的有200×25%=50(人)可以算出喜欢科技的人数为:200-50-50-10-70=20人∴扇形统计图中,科技部分所对应的圆心角是°,故C 正确;④被调查的学生中,最喜欢艺术课外活动的有200×25%=50(人)故D 正确;故选:B11. 已知,则的值为( )A. 13B. 8C. -3D. 5答案:A答案解析:∵,∴∴,故选:A .12. 如图所示,圆锥形烟囱帽的底面半径为,侧面展开图为半圆形,则它的母线长为()A. B. C. D. 答案:D答案解析:根据题意,圆锥形烟囱帽的底面周长为:;∵圆锥的侧面展开图为半圆形,∴,∴;∴它的母线长为;故选:D°20360=36200⨯()()2221x x x +--=2243x x -+()()2221x x x +--=225x x -=222432(2)313x x x x -+=-+=12cm 10cm 20cm 5cm 24cm21224ππ⨯=180··24180Rππ=24R =24cm13. 如图,菱形,点、、、均在坐标轴上,,点,点是的中点,点是上的一动点,则的最小值是()A. 3B. 5C.D.答案:A答案解析:如图:连接BE ,,∵菱形ABCD ,∴B 、D 关于直线AC 对称,∵直线AC 上的动点P 到E 、D 两定点距离之和最小∴根据“将军饮马”模型可知BE 长度即是PD+PE 的最小值.,∵菱形ABCD ,,点,∴,,∴∴△CDB是等边三角形,∴ABCD A B C D 120ABC ∠=︒()30A -,E CD P OC PD PE+120ABC ∠=︒()30A -,60,30CDB DAO ∠=︒∠=︒3OA=OD AD DC CB ====BD =∵点是的中点,∴且BE ⊥CD , ∴,故选:A .14. 如图,是的直径,将弦绕点顺时针旋转得到,此时点的对应点落在上,延长,交于点,若,则图中阴影部分的面积为()A. B. C. D. 答案:C答案解析:如图,连接OE ,OC ,过点O 作OF ⊥CE 于点F ,则,由旋转得,∴∠,∵∠∴∠E CD 12DE CD ==3BE ==AB O e AC A 30°AD C D AB CD O e E 4CE =2π24π-2π-114222EF CE ==⨯=,AC AD =ADC ACD =∠30,A ︒=1(18030)752ADC ACD ︒︒︒=∠=⨯-=,∴∠∴∠又∠∴∠∴∠∴∴∵∴∠∴∠∴故选:C .二、填空题15. 分解因式:______.答案:答案解析:,,,故答案是:.16. 已知王强家、体育场、学校在同一直线上,下面图像反映的过程是:某天早晨,王强从家跑步去体育场锻炼,锻炼结束后,步行回家吃早餐,饭后骑自行车到学校.图中表示时间,表示王强离家的距离.则下列结论正确的是_________.(填写所有正确结论的序号)①体育场离王强家②王强在体育场锻炼了的2150AOE ACD ︒=∠=30,EOD ︒=75,OED EOD ODC ︒+∠=∠=75753045,OED EOD ︒︒︒︒=-∠=-=45,EOF OEF ︒=∠=2OF EF ==OE ===OE OC=45OEC OFE ︒=∠=90EOC ︒=42=EOF EOF S S S ∆-=⨯阴影扇形2 4.π=-32242x x x ++=22(1)x x +32242x x x ++22(21)x x x =++22(1)x x =+22(1)x x +x y 2.5km 30min③王强吃早餐用了④王强骑自行车的平均速度是答案:①③④答案解析:体育场离张强家,①正确;王强在体育场锻炼了,②错误;王强吃早餐用了,③正确;王强骑自行车的平均速度是,④正确.故答案为:①③④.17. 如图,为了测量校园内旗杆AB 的高度,九年级数学应用实践小组,根据光的反射定律,利用镜子、皮尺和测角仪等工具,按以下方式进行测量:把镜子放在点O 处,BO 后退到点D ,这时恰好能在镜子里看到旗杆顶点A ,此时测得观测者观看镜子的俯角α=60°,观测者眼睛与地面距离CD=1.7m ,BD=11m ,则旗杆AB 的高度约为_________m .(结果取整数,)20min0.2km/min2.5 km ()301515min -=()876720min -=30.2km/min 10287=-1.7≈答案:17答案解析:由题意知∠COD=∠AOB=60°,∠CDE=∠ABE=90°,∵CD=1.7m ,∴OD=≈1(m),∴OB=11-1=10(m),∴△COD ∽△AOB .∴,即,∴AB=17(m),答:旗杆AB 的高度约为17m .故答案为:17.18. 如图,抛物线交轴于、两点,交轴于点,点是抛物线上的点,则点关于直线的对称点的坐标为_________.60CD tan =︒CD OD AB OB = 1.7110AB =265y x x =---x A B y C (),1D m m +D AC答案:(0,1)答案解析:∵抛物线交轴于、两点,交轴于点,∴当时,;当时,∴∴OA=OC=5∴∵是抛物线上的点∴,解得当时,与A 重合;当时,;∴CD ∥x 轴,∴设点关于直线的对称点M ,则∴M 在y 轴上,且△DCM 是等腰直角三角形∴DC=CM=6∴M 点坐标为(0,1),故答案为:(0,1).265y x x =---x A B y C 2650y x x =---=121,5x x =-=-0x =5y =-(5,0),(1,0),(0,5)A B C ---45ACO OAC ∠=∠=︒(),1D m m +2165m m m +=---121,6m m =-=-1m =-()1,0D -6m =-()6,5D --45ACD OAC ∠=∠=︒D AC 45,ACD ACM DC CM∠=∠=︒=三、解答题在答题卡上解答,答在本试卷上无效,解答时要写出必要的文字说明、证明过程或演算步骤.共8题,满分96分。
2022年内蒙古赤峰市中考数学试题(含答案解析)
(1)请问A、B两种苗木各多少株?
(2)如果学校安排350人同时开始种植这两种苗木,每人每天平均能种植A种苗木50
株或B种苗木30株,应分别安排多少人种植A种苗木和B种苗木,才能确保同时
完成任务?
23.阅读下列材料
定义运算: ,当 时, ;
当 时, .例如: ;
点,点 是 上的一动点,则 的最小值
是பைடு நூலகம்
A.3B.5
C. D.
14.如图, 是 的直径,将弦 绕点 顺时针旋转 得
到 ,此时点 的对应点 落在 上,延长 ,交
于点 ,若 ,则图中阴影部分的面积为
A. B.
C. D.
二、填空题(请把答案填写在答题卡相应的横线上,每小题3分,共12分)
15.分解因式: ______.
.
(1)作 的垂直平分线,分别交 、 于点 、 ;
(要求:尺规作图,不写作法,保留作图痕迹)
(2)在(1)的条件下,连接 ,求 的周长.
21.(12分)为了解青少年健康状况,某班对50名学生的体育达标情况进行了测试,满分为
50分.根据测试成绩,绘制出不完整的频数分布表和不完整的频数分布直方图如下:
请结合图表完成下列各题:
一、选择题(每小题给出的选项中只有一个符合题意,请将符合题意的选项序号,在答题卡的对应位置上按要求涂黑.每小题3分,共42分)
1.-5的绝对值是
A. B.-5C. D.5
2.下列图案中,不是轴对称图形的是
ABCD
3.同种液体,压强随着深度增加而增大. 深处海水的压强为 ,
数据72100000用科学记数法表示为
2022年赤峰市初中毕业、升学统一考试试卷
2023赤峰中考数学试题及答案
2023赤峰中考数学试题及答案第一部分:选择题1. 下列公式中,哪一个是等价的?(A) 12÷3×4 (B) 15÷(3×4) (C) 12÷3÷4 (D) (12÷3)÷4答案:(A) 解析:根据数学运算顺序,乘法和除法的优先级相同,从左到右依次计算。
2. 若正整数a、b满足关系式ab=80,则下列选项中哪一组(a,b)的值是可能的?(A) (5,16) (B) (4,25) (C) (8,14) (D) (6,13)答案:(C) 解析:80可以分解为5×16,因此(a,b)可以是(5,16)。
3. 若x=-2,那么下列选项中哪一个是正确的?(A) x²+1=-4 (B) x²-4=16 (C) x²+4=-12 (D) x²-5=-9答案:(A) 解析:将x代入各选项中,只有(A)得到等式。
4. 边长为3cm的正方形面积是多少?(A) 6cm² (B) 9cm² (C) 12cm² (D) 3cm²答案:(B) 解析:正方形的面积等于边长的平方,即3²=9。
5. 若y=3x+2,当x=4时,y的值是多少?(A) 12 (B) 14 (C) 16 (D) 18答案:(D) 解析:将x=4代入y=3x+2计算,得到y=14。
第二部分:填空题6. 本题要求计算:6÷3×2+4-1=______。
答案:9 解析:根据数学运算顺序,先计算除法和乘法,再进行加减法运算。
7. 把一个角分成60秒,则每秒的角度是______度。
答案:6 解析:一个角等于360度,每秒的角度是1/60度,即360÷60=6。
8. 若一年有365天,那么10年有______天。
答案:3650 解析:365天乘以10年,得到3650天。
2020年内蒙古赤峰市中考数学试卷(含答案解析)
2020年内蒙古赤峰市中考数学试卷副标题一、选择题(本大题共14小题,共42.0分)1.实数|一5|, —3, O t√4中,最小的数是()A.I —5∣B. —3C. 0 D・ V52.2020年6月23日9时43分,我国成功发射了北斗系统第55颗导航卫星,其授时精度为世界之最,不超过0.0000000099秒.数据“0.0000000099”用科学记数法表示为()A. 99 × IO'10B. 9.9 × 10~1°C. 9.9 × IO'9D. 0.99 × 10^83.下列图形绕某一点旋转一左角度都能与原图形重合,其中旋转角度最小的是()C. 正八边形4.学校朗诵比赛,共有9位评委分别给出某选手的原始评分,评左该选手的成绩时, 从9个原始评分中去掉一个最高分、一个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数据特征是()A.平均数B.中位数C.众数D.方差5.下列计算正确的是()圆及其一条弦第21贞,共27页B. 3√2- 2√2 = 1C. (x 2)3 = x 5D. m 5÷m 3= m 26.不等式组 + 4> o 的解集在数轴上表示正确的是()10.如图,AMEC 中,AB =AC. AD 是乙BAC 的平分线,EF 是AC的垂直平分线,交AD 于点O .若OA = 3,则ZBC 外接圆的面积 为()A. 3πB. 4πC. 6πD. 9兀11.如图,GM 经过平而直角坐标系的原点0,交X 轴于点F(-4,0),交y 轴于点C(0,3),点D 为第二象限内圆上一点.贝忆CDo 的正弦值是()如图,在△力EC 中,点D, E 分别是边AB, AC 的 中点,点F 是线段DE 上的一点.连接AF, BF,∆AFB = 90°,且43 = 8, BC = 14,则 EF 的长是A. 2B. 3 9.估i∣-(2√3 + 3√2) × Jj 的值应在()A.4和5之间B.5和6之间C.4D. 5C.6和7之间D.7和8之间A.-3-2-10123D. 130πcm 214.如图,在菱形ABCD 中,乙B = 60。
2020年内蒙古赤峰市中考数学试题(教师版含解析)
2020年赤峰市初中毕业、升学统一考试试卷数学第Ⅰ卷(共60分)一、选择题(每小题给出的选项中只有一个符合愿意,请将符合题章的选项序号,在答题卡的对应.位上按要求涂黑.每小题3分,共42分)1. 实数|5|-,-3,0( )A. |5|-B. -3C. 0D.【答案】B【解析】【分析】去掉A 、D 选项中的绝对值和根式符号,再将四个选项的实数进行对比,即可求出答案.【详解】解:A 选项:|-5|=5,D =2,∵-3<0<2<5,∴-3<0<|-5|,其中的最小值为-3,故选:B .【点睛】根据实数的大小比较法则,可得:负数<0<正数,两负数相比,绝对值大的反而小,两正数相比,绝对值大的大.2. 2020年6月23日9时43分,我国成功发射了北斗系统第55颗导航卫星,其授时精度为世界之最,不超过0.000 000 009 9秒.数据“0. 000 000 009 9”用科学记数法表示为 ( )A. 109910-⨯B. 109.910-⨯C. 99.910-⨯D. 89.910-⨯ 【答案】C【解析】【分析】根据科学记数法的表示方法解答即可.【详解】解:0. 000 000 009 9用科学记数法表示为99.910-⨯.故答案为:C .【点睛】此题考查了科学记数法的表示方法,科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3. 下列图形绕某一点旋转一定角度都能与原图形重合,其中旋转角度最小的是()A. 等边三角形B. 平行四边形C. 正八边形D. 圆及其一条弦【答案】C【解析】【分析】根据旋转的定义和各图形的性质找出各图形的旋转角,由此即可得.∠,是一个钝角【详解】如图1,等边三角形的旋转角为1如图2,平行四边形的旋转角为180︒,是一个平角如图3,正八边形的旋转角为2∠,是一个锐角如图4,圆及一条弦的旋转角为360︒由此可知,旋转角度最小的是正八边形故选:C.【点睛】本题考查了旋转的定义,正确找出各图的旋转角是解题关键.4. 演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是( ) A. 平均数 B. 中位数 C. 众数 D. 方差【答案】B【解析】【分析】根据题意,由数据的数字特征的定义,分析可得答案.【详解】根据题意,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分,7个有效评分与9个原始评分相比,最中间的一个数不变,即中位数不变,故选B.【点睛】此题考查中位数的定义,解题关键在于掌握其定义5. 下列计算正确的是( )A. a 2+a 3=a 5B. 3221-=C. (x 2)3=x 5D. m 5÷m 3=m 2 【答案】D【解析】分析:直接利用合并同类项法则以及幂的乘方运算法则、同底数幂的乘除运算法则分别计算得出答案. 详解:A 、a 2与a 3不是同类项,无法计算,故此选项错误;B 、32-2=22,故此选项错误;C 、(x 2)3=x 6,故此选项错误;D 、m 5÷m 3=m 2,正确.故选D .点睛:此题主要考查了合并同类项以及幂的乘方运算、同底数幂的乘除运算,正确掌握相关运算法则是解题关键.6. 不等式组20240x x +>⎧⎨-+≥⎩的解集在数轴上表示正确的是 ( ) A.B. C.D.【答案】C【解析】【分析】 本题分别求解两个不等式解集,继而求其公共解集,最后在数轴上表示即可.【详解】∵2x +>0,∴x >2-.∵240x -+≥,∴24x -≥-,∴2x ≤,故综上公共解集:2-<2x ≤,在数轴上表示C 选项符合题意.故选:C .【点睛】本题考查不等式组的求解以及解集在数轴上的表示方法,按照移项、合并同类项、变号等原则求解不等式,数轴标注时注意实心与空心的区别.7. 如图,Rt △ABC 中,∠ACB = 90°,AB = 5,AC = 3,把Rt △ABC 沿直线BC 向右平移3个单位长度得到△A 'B 'C ' ,则四边形ABC 'A '的面积是 ( )A. 15B. 18C. 20D. 22【答案】A【解析】【分析】 在直角三角形ACB 中,可用勾股定理求出BC 边的长度,四边形ABC’A’的面积为平行四边形ABB’A’和直角三角形A’C’B’面积之和,分别求出平行四边形ABB’A’和直角三角形A’C’B’的面积,即可得出答案.【详解】解:在Rt △ACB 中,∠ACB=90°,AB=5,AC=3, 由勾股定理可得:2222BC=AB AC =53=4--,∵Rt △A’C’B’是由Rt △ACB 平移得来,A’C’=AC=3,B’C’=BC=4, ∴A'C'B 11S =A'C'B'C'=34622⋅⋅⨯⨯=△, 又∵BB’=3,A’C’= 3,∴ABB'A'S BB'A 'C'339=⨯=⨯=四边形,∴A'C'B'ABC'A'ABB'A'S S S =96=15=++△四边形四边形,故选:A .【点睛】本题主要考察了勾股定理、平移的概念、平行四边形与直角三角形面积的计算,解题的关键在于判断出所求面积为平行四边形与直角三角形的面积之和,且掌握平行四边形的面积为底⨯高.8. 如图,在△ABC 中,点D ,E 分别是边AB ,AC 的中点,点F 是线段DE 上的一点连接AF ,BF ,∠AFB =90°,且AB=8,BC= 14,则EF 的长是 ( )A. 2B. 3C. 4D. 5【答案】B【解析】【分析】 根据直角三角形的性质得到DF=4,根据BC= 14,由三角形中位线定理得到DE=7,解答即可.【详解】解:∵∠AFB=90°,点D 是AB 的中点,∴DF= 12AB=4, ∵BC= 14,D 、E 分别是AB ,AC 的中点, ∴DE=12BC=7, ∴EF=DE-DF=3,故选:B【点睛】本题考查了直角三角形的性质和中位线性质,掌握定理是解题的关键.9. 估计(13323 ( ) A. 4和5之间B. 5和6之间C. 6和7之间D. 7和8之间 【答案】A【解析】【分析】根据二次根式的混合运算法则进行计算,再估算无理数的大小. 【详解】(13323=11332336,∵4<6<6.25,∵6<2.5,∴4<2+6<5,故选:A .【点睛】此题考查了二次根式的混合运算,无理数的估算,正确掌握二次根式的运算法则、会进行无理数的大小估算是解题的关键.10. 如图,ABC 中,AB =AC ,AD 是∠BAC 的平分线,EF 是AC 的垂直平分线,交AD 于点O .若OA =3,则ABC 外接圆的面积为( )A. 3πB. 4πC. 6πD. 9π【答案】D【解析】 【分析】 先根据等腰三角形的三线合一可得AD 是BC 的垂直平分线,从而可得点O 即为ABC 外接圆的圆心,再利用圆的面积公式即可得.【详解】AB AC =,AD 是BAC ∠的平分线AD BC ∴⊥,且AD 是BC 边上的中线(等腰三角形的三线合一)AD ∴是BC 的垂直平分线EF 是AC 的垂直平分线∴点O 为ABC 外接圆的圆心,OA 为外接圆的半径3OA =ABC ∴外接圆的面积为29OA ππ=故选:D .【点睛】本题考查了等腰三角形的三线合一、三角形外接圆,正确找出三角形外接圆的圆心是解题关键. 11. 如图,A 经过平面直角坐标系的原点O ,交x 轴于点B (-4,0),交y 轴于点C (0,3),点D 为第二象限内圆上一点.则∠CDO 的正弦值是( )A. 35B.34-C. 34D.45【答案】A【解析】【分析】连接BC,且∠BOC=90°,用勾股定理求出BC的长度,∠CDO与∠OBC均为OC所对圆周角,所以sin∠CDO=sin∠OBC,即∠CDO的正弦值可求.【详解】解:如下图所示,连接BC,∵⊙A过原点O,且∠BOC=90°,OB=4,OC=3,∴根据勾股定理可得:2222BC=OB OC=43++,又∵同弧所对圆周角相等,∠CDO与∠OBC均为OC所对圆周角,∴∠CDO=∠OBC,故sin∠CDO=sin∠OBC=OC3=BC5,故选:A.【点睛】本题考察了勾股定理、同弧所对圆周角相等以及求角的正弦值,解题的关键在于找出∠CDO与∠OBC均为OC所对圆周角,求出∠OBC的正弦值即可得到答案.12. 某几何体的三视图及相关数据(单位:cm)如图所示,则该几何体的侧面积是()A. 2652cm πB. 260cm πC. 265cm πD. 2130cm π【答案】C【解析】【分析】首先根据三视图判断出该几何体为圆锥,圆锥的高为12cm ,底部圆的半径为5cm ,可用勾股定理求出圆锥母线的长度,且圆锥侧面积的计算公式为S =R l π⋅⋅圆锥侧,其中R 为圆锥底部圆的半径,l 为母线的长度,将其值代入公式,即可求出答案.【详解】解:由三视图可判断出该几何体为圆锥,圆锥的高为12cm ,底部圆的半径为5cm ,∴圆锥母线长为:22=512=13l +cm ,又∵S =R l π⋅⋅圆锥侧,将R=5cm ,=13l cm 代入,∴2S ==65()R l cm ππ⋅⋅圆锥侧,故选:C .【点睛】本题考察了用三视图判断几何体形状、勾股定理、圆锥侧面积计算,解题的关键在于通过题目中已给出的三视图判断出几何体的形状.13. 如图,点B 在反比例函数6y x =(0x >)的图象上,点C 在反比例函数2y x=-(0x >)的图象上,且//BC y 轴,AC BC ⊥,垂足为点C ,交y 轴于点A ,则ABC 的面积为 ( )A. 3B. 4C. 5D. 6【答案】B【解析】【分析】作BD ⊥BC 交y 轴于D ,可证四边形ACBD 是矩形,根据反比例函数k 的几何意义求出矩形ACBD 的面积,进而由矩形的性质可求ABC 的面积.【详解】作BD ⊥BC 交y 轴于D ,∵//BC y 轴,AC BC ⊥,∴四边形ACBD 是矩形,∴S 矩形ACBD =6+2=8,∴ABC 的面积为4.故选B .【点睛】本题考查了反比例函数比例系数的几何意义,一般的,从反比例函数k y x=(k 为常数,k ≠0)图象上任一点P ,向x 轴和y 轴作垂线你,以点P 及点P 的两个垂足和坐标原点为顶点的矩形的面积等于常数k ,以点P 及点P 的一个垂足和坐标原点为顶点的三角形的面积等于12k .也考查了矩形的性质. 14. 如图,在菱形ABCD 中,∠B =60°,AB =2,动点P 从点B 出发,以每秒1个单位长度的速度沿折线BA →AC 运动到点C ,同时动点Q 从点A 出发,以相同速度沿折线AC →CD 运动到点D ,当一个点停止运动时,另一个点也随之停止.设△APQ 的面积为y ,运动时间为x 秒,则下列图象能大致反映y 与x 之间函数关系的是( )A. B. C. D.【答案】B【解析】【分析】当P 、Q 分别在AB 、AC 上运动时,y=12AP×QH=12(2-t )×tsin60°;当P 、Q 分别在AC 、DC 上运动时,同理可得:23(2)y t =-,即可求解. 【详解】解:(1)当P 、Q 分别在AB 、AC 上运动时,ABCD 是菱形,60B ∠=︒,则ABC ∆、ACD ∆为边长为2的等边三角形, 过点Q 作QH AB ⊥于点H ,21133(2)sin 6022y AP QH t t =⨯=-⨯︒=, 3A 、B 、D ; (2)当P 、Q 分别在AC 、DC 上运动时,同理可得:232)y t -, 符合条件的有B ;故选B .【点睛】此题考查动点问题的函数图象,解题关键在于分情况讨论.第Ⅱ卷(共90分)二、填空题(请把箐案填写在答题卡相应的横线上.每小题3分,共12分)15. 一个n 边形的内角和是它外角和的4倍,则n =______. 【答案】10 【解析】 【分析】利用多边形的内角和公式与外角和公式,根据一个n 边形的内角和是其外角和的4倍列出方程求解即可. 【详解】多边形的外角和是360°,根据题意得:()180?23604n ︒-=︒⨯,解得:10n =. 故答案为:10. 【点睛】本题主要考查了多边形内角和公式及外角的性质.求多边形的边数,可以转化为方程的问题来解决.16. 如图,航拍无人机从A 处测得一幢建筑物顶部C 的仰角是30°,测得底部B 的俯角是60° ,此时无人机与该建筑物的水平距离AD 是9米,那么该建筑物的高度BC 为__________米(结果保留根号).【答案】123【解析】 【分析】 由题意可得∠CAD=30°,∠BAD=60°,然后分别解Rt △ADC 和Rt △ADB ,求出CD 和BD 的长,进一步即可求得结果.【详解】解:由题意,得∠CAD=30°,∠BAD=60°,则在Rt △ADC 中,tan 9tan 3033CD AD CAD =⋅∠=⨯︒= 在Rt △ADB 中,tan 9tan 6093BD AD BAD =⋅∠=⨯︒=∴3393123BC=+=米.故答案为:123.【点睛】本题考查了解直角三角形的应用,属于常考题型,正确理解题意、熟练掌握解直角三角形的知识是解题关键.17. 某校为了解七年级学生的身体素质情况,从七年级各班随机抽取了数相同的男生和女生,组成一个容量为60的样本,进行各项体育项目的测试.下表是通过整理样本数据,得到的关于每个个体测试成绩的部分统计表:某校60名学生体育测试成绩频数分布表成绩划记频数百分比优秀 a 30%良好30 b合格9 15%不合格 3 5%合计60 60 100%如果该校七年级共有300名学生,根据以上数据,估计该校七年级学生身体素质良好及以上的人数为__________人.【答案】240【解析】【分析】根据表中的已知信息,分别补全a、b的值,并计算出样本中身体素质良好及以上的人数所占百分比为80%,故七年级全体学生体素质良好及以上的人数=总人数⨯80%.【详解】解:根据已知样本人数60人,可得成绩优秀的人数为60-30-9-3=18人,且良好人数对应的百分比应为b=30100%=50%60⨯,样本中身体素质良好及以上的人数所占百分比为30%+50%=80%,七年级共有300名学生,故其身体素质良好及以上的人数为30080%=240⨯(人),故答案为:240.【点睛】本题主要考察了用样本的频数估计总体的频数,解题的关键在于根据已知条件补充完整频数分布表,根据样本中身体素质良好及以上的频数推测七年级全体学生身体素质良好及以上的频数.18. 一个电子跳蚤在数轴上做跳跃运动.第一次从原点O 起跳,落点为A 1,点A 1表示的数为1;第二次从点A 1起跳,落点为OA 1的中点A 2;第三次从A 2点起跳,落点为0A 2的中点A 3;如此跳跃下去……最后落点为OA 2019的中点A 2020.则点A 2020表示的数为__________.【答案】201912【解析】 【分析】先根据数轴的定义、线段中点的定义分别求出点1234,,,A A A A 表示的数,再归纳类推出一般规律,由此即可得.【详解】由题意得:点1A 表示的数为0112=点2A 表示的数为11111222OA == 点3A 表示的数为22111242OA ==点4A 表示的数为33111282OA ==归纳类推得:点n A 表示的数为112n -(n 为正整数) 则点2020A 表示的数为2020120191122-=故答案为:201912.【点睛】本题考查了数轴的定义、线段中点的定义,根据点1234,,,A A A A 表示的数,正确归纳类推出一般规律是解题关键.三、解答题(在答题卡上解答,箐在本试卷上无效,解箸时妻写出必要的文字说明、证明过程或演算步骤.共8题,满分96分) .19. 先化简,再求值:221121m m m m m m---÷++,其中m 满足:210m m --=. 【答案】2m m+1,1. 【解析】【分析】将分式运用完全平方公式及平方差公式进行化简,并根据m 所满足的条件得出2m =m+1,将其代入化简后的公式,即可求得答案.【详解】解:原式为22m -1m-1m-m +2m+1m÷=2(m+1)(m-1)mm-(m+1)m-1⨯ =m m-m+1=2m m m -m+1m+1+ =2m m+1, 又∵m 满足2m -m-1=0,即2m =m+1,将2m 代入上式化简的结果,∴原式=2m m+1==1m+1m+1.【点睛】本题主要考察了分式的化简求值、分式的混合运算、完全平方公式及平方差公式的应用,该题属于基础题,计算上的错误应避免.20. 小琪同学和爸爸妈妈一起回老家给奶奶过生日,他们为奶奶准备了一个如图所示的正方形蛋糕,蛋糕的每条边上均匀镶嵌着4颗巧克力.爸爸要求小琪只切两刀把蛋糕平均分成4份,使每个人分得的蛋糕和巧克力数都相等.(1)请你在图1中画出一种分法(无需尺规作图);(2)如图2,小琪同学过正方形的中心切了一刀,请你用尺规作图帮她作出第2刀所在的直线,(不写作法,保留作图痕迹)【答案】(1)画图见解析;(2)画图见解析【解析】【分析】(1)顺着正方形蛋糕的对角线切出两刀,即可把蛋糕和巧克力均分成四份;(2)要将正方形蛋糕均分成四份,第一刀必须保证过蛋糕的中心,第二刀为第一刀的中垂线即可,保留尺规作图中垂线的痕迹.【详解】解:(1)如下图所示,顺着正方形蛋糕的对角线切出两刀,即可把蛋糕和巧克力均分成四份:(2)要将正方形蛋糕均分成四份,第一刀必须保证过蛋糕的中心,第二刀为第一刀的中垂线即可,如下图所示,设第一刀与蛋糕边线的交点为A、B,分别以A、B为圆心,任一半径(比AB的一半长即可),画圆弧,圆弧交点的连线即为第二刀:【点睛】本题主要考察了尺规作图—作中垂线,以线段的端点为圆心,做两个半径相等的圆(半径大于线段长度的一半),圆弧交点的连线即为中垂线.21. 如图1,一枚质地均匀的正四面体骰子,它有四个面,并分别标有1,2,3,4四个数字;如图2,等边三角形ABC的三个顶点处各有-个圆圈.丫丫和甲甲想玩跳圈游戏,游戏的规则为:游戏者从圜A起跳,每投掷一次骰子,骰子着地的一面点数是几,就沿着三角形的边逆时针方向连续跳跃几个边长.如:若第一次掷得点数为2,就逆时针连续跳2个边长,落到圈C;若第二次掷得点数为4,就从圈C继续逆时针连续跳4个边长,落到圈A .(1)丫丫随机掷一次骰子,她跳跃后落回到圈A 的概率为 ;(2) 丫丫和甲甲一起玩眺圈游戏: 丫丫随机投掷一次骰子,甲甲随机投掷两次骰子,都以最终落回到圈A 为胜者.这个游戏规则公平吗?请说明理由.【答案】(1)13;(2)公平,理由见详解 【解析】 【分析】(1)分别计算投掷点数为1、2、3、4时,丫丫跳跃后回到圈A 的次数,再按概率公式计算求解; (2)分别计算投掷点数为1、2、3、4时,丫丫和甲甲跳跃后回到圈A 的次数,再按概率公式计算求解; 【详解】解:(1)当投掷点为1时,丫丫跳跃后到圈B ;当投掷点为2时,丫丫跳跃后到圈C ;当投掷点为3时,丫丫跳跃后到圈A ;当投掷点为4时,丫丫跳跃后到圈B ; 如图,,共3种等可能的结果,丫丫跳跃后到圈A 只有一次,13P ∴=丫丫故答案为:13. (2)由(1)知丫丫随机投掷一次骰子,跳跃后回到圈A 的概率为13; 甲甲随机投掷两次骰子,如图共有等可能的情况有9种,其中甲甲跳跃后到圈A共3次,∴P甲甲=31 93 =P=P∴甲甲丫丫∴这个游戏公平.【点睛】此题考查了列表法或树状图法求概率.注意根据题意画树状图,然后利用概率=所求情况数与总情况数之比求解是关键.22. 甲、乙两支工程队修建二级公路,已知甲队每天修路的长度是乙队的2倍,如果两队各自修建公路500m,甲队比乙队少用5天.(1)求甲,乙两支工程队每天各修路多少米?(2)我市计划修建长度为3600 m的二级公路,因工程需要,须由甲、乙两支工程队来完成.若甲队每天所需费用为1.2万元,乙队每天所需费用为0. 5万元,求在总费用不超过40万元的情况下,至少安排乙队施工多少天?【答案】(1)甲工程队每天修路100米,乙工程队每天修路50米;(2)至少安排乙队施工32天.【解析】【分析】(1)设乙工程队每天修路x米,则甲工程队每天修路2x米,根据甲工程队修500米公路需要的天数=乙工程队修500米公路需要的天数-5即可列出分式方程,解方程并检验后即得答案;(2)设安排乙队施工y天,根据甲工程队施工费用+乙工程队施工费用≤40万元即可列出不等式,解不等式即可求出y的范围,进而可得结果.【详解】解:(1)设乙工程队每天修路x米,则甲工程队每天修路2x米,根据题意,得5005005 2x x=-,解得:x=50,经检验:x=50是所列方程的根,2x=100.答:甲工程队每天修路100米,乙工程队每天修路50米.(2)设安排乙队施工y天,根据题意,得3600501.20.540100yy-⨯+≤,解得:32y≥,所以y最小为32.答:至少安排乙队施工32天.【点睛】本题考查了分式方程的应用和一元一次不等式的应用,属于常考题型,正确理解题意、找准相等和不等关系是解题的关键.23. 如图,AB是O的直径,AC是O的一条弦,点P是O上一点,且P A=PC,PD//AC,与BA的延长线交于点D.(1)求证:PD是O的切线;(2)若tan∠P AC=23,AC = 12.求直径AB的长.【答案】(1)证明过程见解析;(2)AB=13,过程见解析【解析】【分析】(1)连接OP,因为PD//AC,两直线平行内错角相等,且PA=PC,可得∠DPA =∠PAC=∠PCA=∠PBA,又因为直径所对圆周角为直角,故∠APO+∠OPB=90°,其中∠OPB=∠OBP,即可证得∠DPO=90°,即PD为⊙O的切线;(2)作PE⊥AC,在等腰PAC中,三线合一,PE既为高线,也为AC边的中垂线,已知tan∠PAC=23,AC=12,用勾股定理可得AP的长度,且∠PAC=∠PBA,故PB的长度也可算得,再用勾股定理即可求得AB的长度.【详解】解:(1)如图所示,连接OP,∵PD//AC,∴∠DPA =∠PAC(两直线平行,内错角相等),又∵PA=PC,故PAC为等腰三角形,∠PAC=∠PCA,∠PAC是PC所对圆周角,∠PCA是PA所对圆周角,∴PC=PA,且∠PBA是PA所对圆周角,故∠PAC=∠PCA=∠PBA,∵AB是⊙O的直径,直径所对圆周角为直角,∴∠APB=90°,故∠APO+∠OPB=90°,又∵OP=OB,故OPB为等腰三角形,∠OPB=∠OBP,∴∠APO+∠DPA=90°,即∠DPO=90°,∴PD为⊙O的切线;(2)如下图所示,作PE⊥AC,∵PA=PC,故PAC为等腰三角形,等腰三角形三线合一,PE既为高线,也为AC边的中垂线,已知AC=12,∴AE=6,且tan∠PAC=23=PEAE,故PE=4,由勾股定理可得:2222AP=AE PE=64=213++由(1)已证得∠PAC=∠PCA=∠PBA ,故tan ∠PBA=23, ∴PA 2=PB 3,故由勾股定理可得:.【点睛】本题考查了等边对等角、等腰三角形三线合一、平行线间的性质、同弧所对圆周角相等、勾股定理,解题的关键在于应用等边对等角及平行线性质,证得图形中的相等角,利用角的代换来做题. 24. 阅读理解:材料一:若三个非零实数x ,y ,z 满足:只要其中一个数的倒数等于另外两个数的倒数的和,则称这三个实教x ,y ,z 构成“和谐三数组”.材料二:若关于x 的一元二次方程ax 2+bx +c = 0(a ≠0)的两根分别为1x ,2x ,则有12bx x a +=-,12c x x a⋅=. 问题解决:(1)请你写出三个能构成“和谐三数组”的实数 ;(2)若1x ,2x 是关于x 的方程ax 2+bx +c = 0 (a ,b ,c 均不为0)的两根,3x 是关于x 的方程bx +c =0(b ,c 均不为0)的解.求证:x 1 ,x 2,x 3可以构成“和谐三数组”;(3)若A (m ,y 1) ,B (m + 1,y 2) ,C (m +3,y 3)三个点均在反比例函数4y x=的图象上,且三点的纵坐标恰好构成“和谐三数组”,求实数m 的值. 【答案】(1)65,2,3(答案不唯一);(2)见解析;(3)m =﹣4或﹣2或2. 【解析】 【分析】(1)根据“和谐三数组”的定义可以先写出后2个数,取倒数求和后即可写出第一个数,进而可得答案;(2)根据一元二次方程根与系数的关系求出1211+x x ,然后再求出31x ,只要满足1211+x x =31x 即可; (3)先求出三点的纵坐标y 1,y 2,y 3,然后由“和谐三数组”可得y 1,y 2,y 3之间的关系,进而可得关于m 的方程,解方程即得结果. 【详解】解:(1)∵115236+=, ∴65,2,3是“和谐三数组”; 故答案为:65,2,3(答案不唯一);(2)证明:∵1x ,2x 是关于x 的方程ax 2+bx +c = 0 (a ,b ,c 均不为0)的两根, ∴12b x x a +=-,12c x x a⋅=, ∴12121211b x x b a c x x x x ca -++===-⋅, ∵3x 是关于x 的方程bx +c =0(b ,c 均不为0)的解, ∴3c x b=-,∴31b x c =-, ∴1211+x x =31x , ∴x 1 ,x 2,x 3可以构成“和谐三数组”;(3)∵A (m ,y 1) ,B (m + 1,y 2) ,C (m +3,y 3)三个点均在反比例函数4y x =的图象上, ∴14y m =,241y m =+,343y m =+, ∵三点的纵坐标y 1,y 2,y 3恰好构成“和谐三数组”, ∴123111y y y =+或213111y y y =+或312111y y y =+, 即13444m m m ++=+或13444m m m ++=+或31444m m m ++=+, 解得:m =﹣4或﹣2或2.【点睛】本题是新定义试题,主要考查了一元二次方程根与系数的关系、反比例函数图象上点的坐标特征和对新知“和谐三数组”的理解与运用,正确理解题意、熟练掌握一元二次方程根与系数的关系与反比例函数的图象与性质是解题的关键.25. 如图,巳知二次函数y =ax 2+bx +c (a ≠0)的图象与x 轴交于A (1 ,0) ,B (4,0)两点,与y 轴交于点C ,直线122y x =-+经过B ,C 两点. (1)直接写出二次函数的解析式 ;(2)平移直线BC ,当直线BC 与抛物线有唯一公共点Q 时,求此时点Q 的坐标;(3)过(2)中的点Q 作QE // y 轴,交x 轴于点E .若点M 是抛物线上一个动点,点N 是x 轴上一个动点.是否存在以E ,M ,N 三点为顶点的直角三角形(其中M 为直角顶点)与△BOC 相似?如果存在,请直接写出满足条件的点M 的个数和其中一个符合条件的点M 的坐标;如果不存在,请说明理由.【答案】(1)抛物线解析式为215222y x x =-+,(2)点Q (2,-1),(3)存在,满足条件的点M 有8个,M (33,132+) 【解析】【分析】 (1)求出点C 坐标,将A 、B 、C 坐标代入抛物线,即可求解.(2)设出直线BC 平移后的函数,令直线与抛物线函数相等,Δ等于零,求出Q 坐标即可.(3)利用△OBC ∽△EMN ,得到两种情况∠MEN=∠OCB ,∠MEN=∠OBC ;利用tan tan 2MEN OCB ,1tan tan 2MEN OBC ,得到M 的横坐标的方程,解方程即可. 【详解】(1)由题意知:直线122y x =-+经过B ,C 两点 ∴将x=0代入直线,解得y=2∴C (0,2) 由题意知:A (1 ,0) ,B (4,0),C (0,2)代入抛物线,可得016402a b c a b c c解得12a = ,52b =- ,2c = ∴抛物线解析式215222y x x =-+. (2)由题意知:设直线BC 平移后的函数为122yx m ∵直线BC 平移后与抛物线有唯一公共点Q ,∴215122222x x x m 化简得21202x x m 21444()02b ac m 即2m =-∴直线BC 平移后的函数为12y x =- 令21512222x x x 解得2x =,1y =-∴点Q (2,-1).(3)如图所示,过点M 作MP ⊥EN ,设M 点坐标为(m ,n ).由题意知:△OBC ∽△EMN分两种情况讨论:第一种,∠MEN=∠OCB在Rt △OBC 中,∵OC=2,OB=4∴4tan 22OCB∴tan tan 2MEN OCB又∵点Q (2,-1),QE ⊥AB∴点E (2,0)∴tan 22n MP MEN EP m 代入抛物线可得21522422m m m 化简1(1)(4)242m m m如图所示,有4个交点第二种,∠MEN=∠OBC在△RtOBC 中,∵OC=2,OB=4 ∴21tan 42OBC ∴1tan tan 2MEN OBC 又∵点Q (2,-1),QE ⊥AB ∴点E (2,0)∴1tan 22n MPMEN EPm 代入抛物线可得2542m m m 化简(1)(4)2m m m 如图所示,有4个交点综上所述,有8个交点.由上述可知M 只要满足下列任意一个函数即可; (1)(4)2m m m 1(1)(4)242m m m ∴令(1)(4)2m m m (m>4),解得33=+m ,33=-m (舍).∴M (33+,13+).【点睛】本题主要考查了一次函数平移与二次函数的综合问题,以及一次函数平移与二次函数的交点问题,正确掌握一次函数平移与二次函数的综合问题,以及一次函数平移与二次函数的交点问题的解法是解题的关键.26. 如图,矩形ABCD 中,点P 为对角线AC 所在直线上的一个动点,连接 PD ,过点P 作PE ⊥PD ,交直线AB 于点E ,过点P 作MN ⊥AB ,交直线CD 于点M ,交直线AB 于点N .3AB =AD =4.(1)如图1,①当点P 在线段AC 上时,∠PDM 和∠EPN 的数关系为:∠PDM ___ ∠EPN ; ②DP PE的值是 ; (2)如图2,当点P 在CA 延长线上时,(1)中的结论②是否成立?若成立,请证明;若不成立,说明理由;(3)如图3,以线段PD ,PE 为邻边作矩形PEFD .设PM 的长为x ,矩形PEFD 的面积为y .请直接写出y 与x 之间的函数关系式及y 的最小值.【答案】(1)①=3(2)成立,证明见解析;(3)2433)433y x =-+3【解析】【分析】 (1)①根据PE ⊥PD , MN ⊥AB 得到∠DPE=90°,∠PMD=∠PNE=90°,即可得到∠PDM=∠EPN ;②根据CD=3AB =AD =4,∠ADC=90°,得到∠ACD=30°,设MP=x ,则NP=4-x ,得到33x ,DM=43334-x ),证明△PDM ∽△EPN ,得到答案;(2)设NP=a ,则MP=4+a ,证明△PDM ∽△EPN ,即可得到结论成立;(3)利用勾股定理求出22222234(4)()81633PE PN EN x x x x =+=-+=-+,再根据矩形的面积公式计算得到函数关系式.【详解】(1)①∵PE ⊥PD ,∴∠DPE=90°,∴∠DPM+∠EPN=90°,∵MN ⊥AB ,∴∠PMD=∠PNE=90°,∴∠PDM+∠DPM=90°,∴∠PDM=∠EPN ;故答案为:=;②∵CD=AB =AD =4,∠ADC=90°,∴tan ∠ACD=3AD CD ==, ∴∠ACD=30°,设MP=x ,则NP=4-x ,∴,DM=4-x ),∵∠PDM=∠EPN ,∠PMD=∠PNE=90°,∴△PDM ∽△EPN ,∴DP PE =)4DM x PN x-=-(2)成立,设NP=a ,则MP=4+a ,∵∠ACD=30°,∴(4+a ),∴a ,由(1)同理得∠PDM=∠EPN ,∠PMD=∠PNE=90°,∴△PDM ∽△EPN ,∴DP PE =MD NP a== (3)∵PM=x ,∴PN=4-x ,x ,∴2222224(4))8163PE PN EN x x x =+=-+=-+,∴PE =PD =∴矩形PEFD 的面积为y=224(816)3)33PE PD x x x ⋅=-+=-+∵3>0,∴当x=3时,y 有最小值【点睛】此题考查矩形的性质,锐角三角函数,相似三角形的判定及性质,勾股定理,利用面积公式得到函数关系式及最小值,解答此题中运用类比思想.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年内蒙古赤峰市中考数学试卷
一、选择题:每小题3分,共30分 1.的倒数是( ) A.﹣ B. C.2016 D.﹣2016 2.等腰三角形有一个角是90°,则另两个角分别是( ) A.30°,60° B.45°,45° C.45°,90° D.20°,70° 3.平面直角坐标系内的点A(﹣1,2)与点B(﹣1,﹣2)关于( ) A.y轴对称 B.x轴对称 C.原点对称 D.直线y=x对称 4.中国的领水面积约为370000km2,其中南海的领水面积约占我国领水面积的,用科学记数法表示中国南海的领水面积是( )
A.37×105km2 B.37×104km2 C.×105km2 D.×105km2 5.从数字2,3,4中任选两个数组成一个两位数,组成的数是偶数的概率是( )
A. B. C. D. 6.如图,工人师傅在工程施工中,需在同一平面内弯制一个变形管道ABCD,使其拐角∠ABC=150°,∠BCD=30°,则( ) A.AB∥BC B.BC∥CD C.AB∥DC D.AB与CD相交 7.一个长方体的三视图如图所示,则这个长方体的体积为( )
A.30 B.15 C.45 D.20 8.如图,⊙O的半径为1,分别以⊙O的直径AB上的两个四等分点O1,O2
为圆心,为半径作圆,则图中阴影部分的面积为( )
A.π B.π C.π D.2π 9.函数y=k(x﹣k)与y=kx2,y=(k≠0),在同一坐标系上的图象正确的是( )
A. B. C. D. 10.8月份是新学期开学准备季,东风和百惠两书店对学习用品和工具实施优惠销售.优惠方案分别是:在东风书店购买学习用品或工具书累计花费60元后,超出部分按50%收费;在百惠书店购买学习用品或工具书累计花费50元后,超出部分按60%收费,郝爱同学准备买价值300元的学习用品和工具书,她在哪家书店消费更优惠( )
A.东风 B.百惠 C.两家一样 D.不能确定
二、填空题:每小题3分,共18分 11.分解因式:4x2﹣4xy+y2= . 12.数据499,500,501,500的中位数是 . 13.如图,两同心圆的大圆半径长为5cm,小圆半径长为3cm,大圆的弦AB与小圆相切,切点为C,则弦AB的长是 .
14.下列图表是由我们熟悉的一些基本数学图形组成的,其中是轴对称图形的是 (填序号) 15.如图,正方形ABCD的面积为3cm2,E为BC边上一点,∠BAE=30°,F为AE的中点,过点F作直线分别与AB,DC相交于点M,N.若MN=AE,则AM的长等于 cm.
16.甲乙二人在环形跑道上同时同地出发,同向运动.若甲的速度是乙的速度的2倍,则甲运动2周,甲、乙第一次相遇;若甲的速度是乙的速度3倍,则甲运动周,甲、乙第一次相遇;若甲的速度是乙的速度4倍,则甲运动周,甲、乙第一次相遇,…,以此探究正常走时的时钟,时针和分针从0点(12点)同时出发,分针旋转 周,时针和分针第一次相遇.
三、解答题:共102分 17.计算:(﹣)﹣1+3tan30°﹣+(﹣1)2016. 18.化简:÷并任选一个你认为合理的正整数代入求值. 19.在平面直角坐标系内按下列要求完成作图(不要求写作法,保留作图痕迹).
(1)以(0,0)为圆心,3为半径画圆; (2)以(0,﹣1)为圆心,1为半径向下画半圆; (3)分别以(﹣1,1),(1,1)为圆心,为半径画圆; (4)分别以(﹣1,1),(1,1)为圆心,1为半径向上画半圆. (向上、向下指在经过圆心的水平线的上方和下方)
20.下表是博文学校初三?一班慧慧、聪聪两名学生入学以来10次数学检测成绩(单位:分).
慧慧 116 124 130 126 121 127 126 122 125 123 聪聪 122 124 125 128 119 120 121 128 114 119 回答下列问题: (1)分别求出慧慧和聪聪成绩的平均数; (2)分别计算慧慧和聪聪两组数据的方差; (3)根据(1)(2)你认为选谁参加全国数学竞赛更合适?并说明理由; (4)由于初三?二班、初三?三班和初三?四班数学成绩相对薄弱,学校打算派慧慧和聪聪分别参加三个班的数学业余辅导活动,求两名学生分别在初三?二班和初三?三班的概率.
21.为有效开发海洋资源,保护海洋权益,我国对南海诸岛进行了全面调查,一测量船在A岛测得B岛在北偏西30°,C岛在北偏东15°,航行100海里到达B岛,在B岛测得C岛在北偏东45°,求B,C两岛及A,C两岛的距离(≈,结果保留到整数)
22.如图,一块长5米宽4米的地毯,为了美观设计了两横、两纵的配色条纹(图中阴影部分),已知配色条纹的宽度相同,所占面积是整个地毯面积的.
(1)求配色条纹的宽度; (2)如果地毯配色条纹部分每平方米造价200元,其余部分每平方米造价100元,求地毯的总造价. 23.如图,在平面直角坐标系中,O(0,0),A(0,﹣6),B(8,0)三点在⊙P上.
(1)求圆的半径及圆心P的坐标; (2)M为劣弧的中点,求证:AM是∠OAB的平分线; (3)连接BM并延长交y轴于点N,求N,M点的坐标.
24.如图,在平面直角坐标系xOy中,反比例函数y=的图象与一次函数y=k(x﹣2)的图象交点为A(3,2),B(x,y).
(1)求反比例函数与一次函数的解析式及B点坐标; (2)若C是y轴上的点,且满足△ABC的面积为10,求C点坐标. 25.如图,正方形ABCD的边长为3cm,P,Q分别从B,A出发沿BC,AD方向运动,P点的运动速度是1cm/秒,Q点的运动速度是2cm/秒,连接A,P并过Q作QE⊥AP垂足为E.
(1)求证:△ABP∽△QEA; (2)当运动时间t为何值时,△ABP≌△QEA; (3)设△QEA的面积为y,用运动时刻t表示△QEA的面积y(不要求考t的取值范围).(提示:解答(2)(3)时可不分先后)
26.在平面直角坐标系中,已知点A(﹣2,0),B(2,0),C(3,5). (1)求过点A,C的直线解析式和过点A,B,C的抛物线的解析式; (2)求过点A,B及抛物线的顶点D的⊙P的圆心P的坐标; (3)在抛物线上是否存在点Q,使AQ与⊙P相切,若存在请求出Q点坐标. 2016年内蒙古赤峰市中考数学试卷
参考答案与试题解析
一、选择题:每小题3分,共30分 1.的倒数是( ) A.﹣ B. C.2016 D.﹣2016 【考点】倒数. 【分析】根据倒数的定义,即可解答. 【解答】解:的倒数是2016. 故选:C.
2.等腰三角形有一个角是90°,则另两个角分别是( ) A.30°,60° B.45°,45° C.45°,90° D.20°,70° 【考点】等腰三角形的性质. 【分析】由于等腰三角形的两底角相等,所以90°的角只能是顶角,再利用三角形的内角和定理可求得另两底角. 【解答】解:∵等腰三角形的两底角相等, ∴两底角的和为180°﹣90°=90°, ∴两个底角分别为45°,45°, 故选B.
3.平面直角坐标系内的点A(﹣1,2)与点B(﹣1,﹣2)关于( ) A.y轴对称 B.x轴对称 C.原点对称 D.直线y=x对称 【考点】关于x轴、y轴对称的点的坐标. 【分析】根据关于x轴对称点的坐标特点:纵坐标互为相反数,横坐标不变可得答案.
【解答】解:平面直角坐标系内的点A(﹣1,2)与点B(﹣1,﹣2)关于x轴对称.
故选:B.
4.中国的领水面积约为370000km2,其中南海的领水面积约占我国领水面积的,用科学记数法表示中国南海的领水面积是( )
A.37×105km2 B.37×104km2 C.×105km2 D.×105km2 【考点】科学记数法—表示较大的数. 【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,整数位数减1即可.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
【解答】解:370000×=185000=×105, 故选D.
5.从数字2,3,4中任选两个数组成一个两位数,组成的数是偶数的概率是( )
A. B. C. D. 【考点】列表法与树状图法. 【分析】先画树状图展示所有9种等可能的结果数,再找出组成的数是偶数的结果数,然后根据概率公式求解.
【解答】解:画树状图为:
共有6种等可能的结果数,其中组成的数是偶数的结果数为4, 所以组成的数是偶数的概率==. 故选A.
6.如图,工人师傅在工程施工中,需在同一平面内弯制一个变形管道ABCD,使其拐角∠ABC=150°,∠BCD=30°,则( )
A.AB∥BC B.BC∥CD C.AB∥DC D.AB与CD相交 【考点】平行线的判定. 【分析】根据同旁内角互补,两直线平行即可求解. 【解答】解:∵∠ABC=150°,∠BCD=30°, ∴∠ABC+∠BCD=180°, ∴AB∥DC. 故选:C.
7.一个长方体的三视图如图所示,则这个长方体的体积为( )