2009年赤峰市中考数学试题及答案
赤峰市中考数学试卷及答案(Word解析版)

内蒙古赤峰市中考数学试卷一、选择题(共8小题,每小题3分,共24分)1.(3分)(•赤峰)有理数﹣3的相反数是()A.3B.﹣3 C.D.﹣考点:相反数.专题:计算题;压轴题.分析:根据相反数的意义,只有符号不同的数为相反数.解答:解:﹣3的相反数是3.故选A.点评:本题考查了相反数的意义.只有符号不同的数为相反数,0的相反数是0.2.(3分)(•赤峰)下面的几何体中,主(正)视图为三角形的是()A.B.C.D.考点:简单几何体的三视图分析:主视图是从几何体的正面看所得到的图形,根据主视图所看的方向,写出每个图形的主视图及可选出答案.解答:解:A、主视图是长方形,故此选项错误;B、主视图是长方形,故此选项错误;C、主视图是三角形,故此选项正确;D、主视图是正方形,中间还有一条线,故此选项错误;故选:C.点评:此题主要考查了简单几何体的三视图,关键是掌握主视图所看的位置.3.(3分)(•赤峰)赤峰市开放以来经济建设取得巨大成就,全市GDP总值为1686.15亿元,将1686.15亿元用科学记数法表示应为()A.168615×102元B.16.8615×104元C.1.68615×108元D.1.68615×1011元考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:1686.15亿=1686 1500 0000=1.68615×1011,故选:D.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(•赤峰)下面是扬帆中学九年八班43名同学家庭人口的统计表:家庭人口数(人) 3 4 5 6 2学生人数(人)15 10 8 7 3这43个家庭人口的众数和中位数分别是()A.5,6 B.3,4 C.3,5 D.4,6考点:众数;中位数分析:利用众数及中位数的定义解答即可.解答:解:数据3出现了15次,故众数为3;43人的中位数应该是排序后的第22个学生的家庭人数,、故中位数为家庭人数为4人,故选B.点评:本题考查了众数及中位数的知识,解题的关键是了解其定义,难度较小.5.(3分)(•赤峰)如图,把一块含有30°角(∠A=30°)的直角三角板ABC的直角顶点放在矩形桌面CDEF的一个顶点C处,桌面的另一个顶点F与三角板斜边相交于点F,如果∠1=40°,那么∠AFE=()A.50°B.40°C.20°D.10°考点:平行线的性质;三角形的外角性质专题:计算题.分析:由四边形CDEF为矩形,得到EF与DC平行,利用两直线平行同位角相等求出∠AGE 的度数,根据∠AGE为三角形AGF的外角,利用外角性质求出∠AFE的度数即可.解答:解:∵四边形CDEF为矩形,∴EF∥DC,∴∠AGE=∠1=40°,∵∠AGE为△AGF的外角,且∠A=30°,∴∠AFE=∠AGE﹣∠A=10°.故选D.点评:此题考查了平行线的性质,熟练掌握平行线的性质是解本题的关键.6.(3分)(•赤峰)如图,AB是⊙O的直径,C,D是⊙O上两点,CD⊥AB.若∠DAB=65°,则∠BOC=()A.25°B.50°C.130°D.155°考点:圆周角定理;垂径定理分析:由CD⊥AB.若∠DAB=65°,可求得∠D的度数,又由圆周角定理,即可求得∠AOC 的度数,继而求得答案.解答:解:∵CD⊥AB.∠DAB=65°,∴∠ADC=90°﹣∠DAB=25°,∴∠AOC=2∠ADC=50°,∴∠BOC=180°﹣∠AOC=130°.故C.点评:此题考查了圆周角定理以及直角三角形的性质.此题难度不大,注意掌握数形结合思想的应用.7.(3分)(•赤峰)化简结果正确的是()A.a b B.﹣ab C.a2﹣b2D.b2﹣a2考点:约分.分析:首先将分式的分子因式分解,进而约分求出即可.解答:解:==﹣ab.故选:B.点评:此题主要考查了约分,正确分解因式是解题关键.8.(3分)(•赤峰)如图,一根长5米的竹杆AB斜立于墙AC的右侧,底端B与墙角C的距离为3米,当竹杆顶端A下滑x米时,底端B便随着向右滑行y米,反映y与x变化关系的大致图象是()A.B.C.D.考点:动点问题的函数图象.分析:利用勾股定理列式求出AC,再根据勾股定理列式表示出y与x的函数关系式,然后判断出函数图象即可得解.解答:解:由勾股定理得,AC===4m,竹杆顶端A下滑x米时,底端B便随着向右滑行y米后,AC=4﹣x,BC=3+y,所以,y+3==,所以,y=﹣3,当x=0时,y=0,当A下滑到点C时,x=4,y=2,由函数解析式可知y与x的变化不是直线变化.故选A.点评:本题考查了动点问题的函数图象,主要利用了勾股定理,列出y与x的函数关系式是解题的关键,难点在于正确区分A、B选项.二、填空题(共8小题,每小题3分,共24分)9.(3分)(•赤峰)化简:2x﹣x=x.考点:合并同类项.分析:利用合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,直接得出答案.解答:解:2x﹣x=x.故答案为:x.点评:此题主要考查了合并同类项,正确掌握合并同类项法则是解题关键.10.(3分)(•赤峰)一只蚂蚁在如图所示的矩形地砖上爬行,蚂蚁停在阴影部分的概率是.考点:几何概率分析:根据矩形的性质求出阴影部分占整个面积的,进而得出答案.解答:解:由题意可得出:图中阴影部分占整个面积的,∴一只蚂蚁在如图所示的矩形地砖上爬行,蚂蚁停在阴影部分的概率是:.故答案为:.点评:本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.11.(3分)(•赤峰)下列四个汽车图标中,既是中心对称图形又是轴对称图形的图标有1个.考点:中心对称图形;轴对称图形.分析:根据中心对称图形定义把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心;轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,可分析出答案.解答:解:第一个图不是轴对称图形,不是中心对称图形,故不合题意;第二个图形是中心对称图形,也是轴对称图形,故符合题意;第三个图形不是中心对称图形,是轴对称图形,故不合题意;第三个图形不是中心对称图形,是轴对称图形,故不合题意.故答案为:1.点评:此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.12.(3分)(•赤峰)如图,E的矩形ABCD中BC边的中点,将△ABE沿AE折叠到△AEF,F在矩形ABCD内部,延长AF交DC于G点.若∠AEB=55°,求∠DAF=20°.考点:翻折变换(折叠问题)分析::由△ABE沿AE折叠到△AEF,得出∠BAE=∠FAE,由∠AEB=55°,∠ABE=90°,求出∠BAE,利用∠DAF=∠BAD﹣∠BAE﹣∠FAE求解.解答:解:∵△ABE沿AE折叠到△AEF,∴∠BAE=∠FAE,∵∠AEB=55°,∠ABE=90°,∴∠BAE=90°﹣55°=35°,∴∠DAF=∠BAD﹣∠BAE﹣∠FAE=90°﹣35°﹣35°=20°.故答案为:20点评:本题主要考查了折叠问题,解题的关键是利用折叠图形的角相等求解.13.(3分)(•赤峰)如图,反比例函数y=(k>0)的图象与以原点(0,0)为圆心的圆交于A,B两点,且A(1,),图中阴影部分的面积等于.(结果保留π)考点:反比例函数图象的对称性;扇形面积的计算分析:根据反比例函数的图象关于坐标原点对称,是中心对称图形可得:图中两个阴影面积的和等于扇形OAB的面积,又知A(1,),即可求出圆的半径.解答:解:如图,∵A(1,),∴∠AOD=60°,OA=2.又∵点A、B关于直线y=x对称,∴∠AOB=2(60°﹣45°)=30°.又∵反比例函数的图象关于坐标原点对称,是中心对称图形,∴S阴影=S扇形AOB==.故答案是:.点评:本题主要考查反比例函数图象的对称性的知识点,解决本题的关键是利用反比例函数的对称性得到阴影部分与圆之间的关系.14.(3分)(•赤峰)如图所示,在象棋盘上建立平面直角坐标系,使“马”位于点(2,2),“炮”位于点(﹣1,2),写出“兵”所在位置的坐标(﹣2,3).考点:坐标确定位置分析:以“马”的位置向左2个单位,向下2个单位为坐标原点建立平面直角坐标系,然后写出兵的坐标即可.解答:解:建立平面直角坐标系如图,兵的坐标为(﹣2,3).故答案为:(﹣2,3).点评:本题考查了坐标确定位置,确定出原点的位置并建立平面直角坐标系是解题的关键.15.(3分)(•赤峰)直线l过点M(﹣2,0),该直线的解析式可以写为y=x+2.(只写出一个即可)考点:一次函数的性质.专题:开放型.分析:设该直线方程为y=kx+b(k≠0).令k=1,然后把点M的坐标代入求得b的值.解答:解:设该直线方程为y=kx+b(k≠0).令k=1,把点M(﹣2,0)代入,得0=﹣2+b=0,解得b=2,则该直线方程为:y=x+2.故答案是:y=x+2(答案不唯一,符合条件即可).点评:本题考查了一次函数的性质.一次函数图象上所有点的坐标都满足直线方程.16.(3分)(2014•赤峰)平移小菱形◇可以得到美丽的“中国结”图案,下面四个图案是由◇平移后得到的类似“中国结”的图案,按图中规律,第20个图案中,小菱形的个数是800个.考点:规律型:图形的变化类.分析:仔细观察图形发现第一个图形有2×12=2个小菱形;第二个图形有2×22=8个小菱形;第三个图形有2×32=18个小菱形;由此规律得到通项公式,然后代入n=20即可求得答案.解答:解:第一个图形有2×12=2个小菱形;第二个图形有2×22=8个小菱形;第三个图形有2×32=18个小菱形;…第n个图形有2n2个小菱形;第20个图形有2×202=800个小菱形;故答案为:800.点评:本题考查了图形的变化类问题,解题的关键是仔细观察图形的变化,并找到图形的变化规律.三、解答题(共10小题,满分102分)17.(6分)(•赤峰)计算:(π﹣)0+﹣8sin45°﹣()﹣1.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值专题:计算题.分析:原式第一项利用零指数幂法则计算,第二项化为最简二次根式,第三项利用特殊角的三角函数值计算,最后一项利用负指数幂法则计算即可得到结果.解答:解:原式=1+4﹣8×﹣4=﹣3.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(6分)(•赤峰)求不等式组的正整数解.考点:一元一次不等式组的整数解.分析:先解每一个不等式,求出不等式组的解集,再求出正整数解即可.解答:解:由①得4x+4+3>x解得x>﹣,由②得3x﹣12≤2x﹣10,解得x≤2,∴不等式组的解集为﹣<x≤2.∴正整数解是1、2.点评:此题主要考查了不等式组的解法,并会根据未知数的范围确定它所满足的特殊条件的值.一般方法是先解不等式组,再根据解集求出特殊值.19.(10分)(•赤峰)如图,已知△ABC中AB=AC.(1)作图:在AC上有一点D,延长BD,并在BD的延长线上取点E,使AE=AB,连AE,作∠EAC的平分线AF,AF交DE于点F(用尺规作图,保留作图痕迹,不写作法);(2)在(1)的条件下,连接CF,求证:∠E=∠ACF.考点:全等三角形的判定与性质;等腰三角形的性质;作图—复杂作图专题:作图题;证明题.分析:(1)以A为圆心,以AB长为半径画弧,与BD的延长线的交点即为点E,再以点A 为圆心,以任意长为半径画弧,分别与AC、AE相交,然后以这两点为圆心,以大于它们长度为半径画弧,两弧相交于一点,过点A与这一点作出射线与BE的交点即为所求的点F;(2)求出AE=AC,根据角平分线的定义可得∠EAF=∠CAF,再利用“边角边”证明△AEF和△ACF全等,根据全等三角形对应角相等可得∠E=∠ACF.解答:(1)解:如图所示;(2)证明:∵AB=AC,AE=AB,∴AE=AC,∵AF是∠EAC的平分线,∴∠EAF=∠CAF,在△AEF和△ACF中,,∴△AEF≌△ACF(SAS),∴∠E=∠ACF.点评:本题考查了全等三角形的判断与性质,等腰三角形的性质,作一条线段等于已知线段,角平分线的作法,确定出全等三角形的条件是解题的关键.20.(10分)(•赤峰)自从公布“八项规定”以来,光明中学积极开展“厉行节约,反对浪费”活动,为此,学校学生会对九年八班某日午饭浪费饭菜情况进行调查,调查内容分为四种:A.饭和菜全部吃光;B.有剩饭但菜吃光;C.饭吃光但菜有剩;D.饭和菜都有剩.学生会根据统计结果,绘制了如图两个统计图,根据统计图提供的信息回答下列问题:(1)九年八班共有多少名学生?(2)计算图2中B所在扇形的圆心角的度数,并补全条形统计图;(3)光明中学有学生2000名,请估计这顿午饭有剩饭的学生人数,按每人平均剩10克米饭计算,这顿午饭将浪费多少千克米饭?考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)用A的人数除以相对应的百分比就是总学生数;(2)B的人数=总人数﹣A的人数﹣C的人数﹣D的人数,B所在扇形的圆心角的度数为:×360°=72°,再根据B的人数为10,补全条形统计图;(3)先求出这顿午饭有剩饭的学生人数为:2000×=600(人),再用人数乘每人平均剩10克米饭,把结果化为千克.解答:解:(1)九年八班共有学生数为:30÷60%=50(人);(2)B有剩饭但菜吃光的人数为:50﹣30﹣5﹣5=10(人),B所在扇形的圆心角的度数为:×360°=72°,补全条形统计图如图1:(3)这顿午饭有剩饭的学生人数为:2000×=600(人),600×10=6000(克)=6(千克).点评:本题主要考查了条形统计图,扇形统计图及样本估计总数,解题的关键是能把条形统计图和扇形统计图结合起来解决问题.21.(10分)(•赤峰)位于赤峰市宁城的“大明塔”是我国辽代的佛塔,距今已有1千多年的历史.如图,王强同学为测量大明塔的高度,在地面的点E处测得塔基BC上端C的仰角为30°,他又沿BE方向走了26米,到达点F处,测得塔顶端A飞仰角为52°,已知塔基是以OB为半径的圆内接正八边形,B点在正八边形的一个顶点上,塔基半径OB=18米,塔基高BC=11米,求大明塔的高OA(结果保留到整数,≈1.73,tan52°≈1.28).考点:解直角三角形的应用-仰角俯角问题分析:在直角△CBE中利用三角函数首先求得EC的长,则OF即可求解,然后在直角△AOF 中,利用三角函数即可求解.解答:解:∵在直角△CBE中,∠CEB=30°,BC=11,∴EC=22,则EB==11≈19,∵在直角△AOF中,∠AFO=52°,OF=18+19+26=63,∴OA=OF•tan∠AFO≈63×1.28=81(米).答:大明塔高约81米.点评:本题考查仰角的定义,要求学生能借助仰角构造直角三角形并解直角三角形.22.(10分)(•赤峰)某养殖专业户计划购买甲、乙两种牲畜,已知乙种牲畜的单价是甲种牲畜单价的2倍多200元,买3头甲种牲畜和1头乙种牲畜共需5700元.(1)甲、乙两种牲畜的单价各是多少元?(2)若购买以上两种牲畜50头,共需资金9.4万元,求甲、乙两种牲畜各购买多少头?(3)相关资料表明:甲、乙两种牲畜的成活率分别为95%和99%,若使这50头牲畜的成活率不低于97%且购买的总费用最低,应如何购买?考点:一次函数的应用;一元一次方程的应用分析:(1)设甲种牲畜的单价是x元,列方程3x+2x+200=5700,求出甲种牲畜的单价,再求出乙种牲畜的单价即可.(2)设购买甲种牲畜y头,列方程1100y+(50﹣y)=94000求出甲种牲畜购买20头,乙种牲畜购买30头,(3)设费用为m,购买甲种牲畜n头,则m=1100n+240(50﹣n)=﹣1300n+120000依题意得:n+(50﹣n)≥×50,据m随n的增大而减小,求得n=25时,费用最低.解答:解:(1)设甲种牲畜的单价是x元,依题意得,3x+2x+200=5700解得:x=1100乙种牲畜的单价是:2x+200=2400元,即甲种牲畜的单价是1100元,乙种牲畜的单价是2400元.(2)设购买甲种牲畜y头,依题意得,1100y+(50﹣y)=94000解得y=20,50﹣20=30,即甲种牲畜购买20头,乙种牲畜购买30头.(3)设费用为m,购买甲种牲畜n头,则m=1100n+240(50﹣n)=﹣1300n+120000依题意得:n+(50﹣n)≥×50,解得:n≤25,k=﹣1300<0,m随n的增大而减小,∵当n=25时,费用最低,所以各购买25头时满足条件.点评:本题主要考查了一次函数的应用,理解题意,抓住题目蕴含的数量关系是解决问题的关键.23.(12分)(•赤峰)如图,矩形OABC的顶点A,C分别在x轴和y轴上,点B的坐标为(﹣4,6),双曲线y=(x<0)的图象经过BC的中点D,且于AB交于点E.(1)求反比例函数解析式和E点坐标;(2)若F是OC上一点,且以∠OAF和∠CFD为对应角的△FDC、△AFO相似,求F点的坐标.考点:反比例函数综合题.专题:综合题.分析:(1)由ABCD为矩形,D为BC中点,根据B坐标确定出D坐标,代入反比例解析式求出中k的值,确定出反比例解析式,将x=﹣4代入反比例解析式求出y的值,确定出E坐标即可;(2)如图所示,设F(0,y),根据以∠OAF和∠CFD为对应角的△FDC、△AFO 相似,列出比例式,求出y的值,即可确定出F坐标.解答:解:(1)∵四边形ABCD为矩形,D为BC中点,B(﹣4,6),∴D(﹣2,6),设反比例函数解析式为y=,将D(﹣2,6)代入得:k=﹣12,∴反比例解析式为y=﹣,将x=﹣4代入反比例解析式得:y=3,则E(﹣4,3);(2)设F(0,y),如图所示,连接DF,AF,∵∠OAF=∠DFC,△AOF∽△FDC,∴=,即=,整理得:y2﹣6y+8=0,即(y﹣2)(y﹣4)=0,解得:y1=2,y2=4,则F坐标为(0,2)或(0,4).点评:此题属于反比例函数综合题,涉及的知识有:坐标与图形性质,待定系数法确定函数解析式,相似三角形的性质,以及一元二次方程的解法,熟练掌握待定系数法是解本题的关键.24.(12分)(•赤峰)如图1,E是直线AB,CD内部一点,AB∥CD,连接EA,ED.(1)探究猜想:①若∠A=30°,∠D=40°,则∠AED等于多少度?②若∠A=20°,∠D=60°,则∠AED等于多少度?③猜想图1中∠AED,∠EAB,∠EDC的关系并证明你的结论.(2)拓展应用:如图2,射线FE与矩形ABCD的边AB交于点E,与边CD交于点F,①②③④分别是被射线FE隔开的4个区域(不含边界,其中区域③、④位于直线AB上方,P是位于以上四个区域上的点,猜想:∠PEB,∠PFC,∠EPF的关系(不要求证明).考点:平行线的性质专题:阅读型;分类讨论.分析:(1)①根据图形猜想得出所求角度数即可;②根据图形猜想得出所求角度数即可;③猜想得到三角关系,理由为:延长AE与DC交于F点,由AB与DC平行,利用两直线平行内错角相等得到一对角相等,再利用外角性质及等量代换即可得证;(2)分四个区域分别找出三个角关系即可.解答:解:(1)①∠AED=70°;②∠AED=80°;③猜想:∠AED=∠EAB+∠EDC,证明:延长AE交DC于点F,∵AB∥DC,∴∠EAB=∠EFD,∵∠AED为△EDF的外角,∴∠AED=∠EDF+∠EFD=∠EAB+∠EDC;(2)根据题意得:点P在区域①时,∠EPF=360°﹣(∠PEB+∠PFC);点P在区域②时,∠EPF=∠PEB+∠PFC;点P在区域③时,∠EPF=∠PEB﹣∠PFC;点P在区域④时,∠EPF=∠PFC﹣∠PEB.点评:此题考查了平行线的性质,熟练掌握平行线的性质是解本题的关键.25.(12分)(•赤峰)阅读下列材料:如图1,圆的概念:在平面内,线段PA绕它固定的一个端点P旋转一周,另一个端点A所形成的图形叫做圆.就是说,到某个定点等于定长的所有点在同一个圆上,圆心在P(a,b),半径为r的圆的方程可以写为:(x﹣a)2+(y﹣b)2=r2,如:圆心在P(2,﹣1),半径为5的圆方程为:(x﹣2)2+(y+1)2=25(1)填空:①以A(3,0)为圆心,1为半径的圆的方程为(x﹣3)2+y2=1;②以B(﹣1,﹣2)为圆心,为半径的圆的方程为(x+1)2+(y+2)2=3.(2)根据以上材料解决下列问题:如图2,以B(﹣6,0)为圆心的圆与y轴相切于原点,C是⊙B上一点,连接OC,作BD⊥OC 垂足为D,延长BD交y轴于点E,已知sin∠AOC=.①连接EC,证明EC是⊙B的切线;②在BE上是否存在一点P,使PB=PC=PE=PO?若存在,求P点坐标,并写出以P为圆心,以PB为半径的⊙P的方程;若不存在,说明理由.考点:圆的综合题分析:(1)根据阅读材料中的定义求解;(2)①根据垂径定理由BD⊥OC得到CD=OD,则BE垂直平分OC,再根据线段垂直平分线的性质得EO=EC,则∠EOC=∠ECO,加上∠BOC=∠BCO,易得∠BOE=∠BCE=90°,然后根据切线的判定定理得到EC是⊙B的切线;②由∠BOE=∠BCE=90°,根据圆周角定理得点C和点O偶在以BE为直径的圆上,即当P点为BE的中点时,满足PB=PC=PE=PO,利用同角的余角相等得∠BOE=∠AOC,则sin∠BOE=sin∠AOC=,在Rt△BOE中,利用正弦的定义计算出BE=10,利用勾股定理计算出OE=8,则E点坐标为(0,8),于是得到线段AB的中点P的坐标为(﹣3,4),PB=5,然后写出以P(﹣3,4)为圆心,以5为半径的⊙P的方程.解答:(1)解:①以A(3,0)为圆心,1为半径的圆的方程为(x﹣3)2+y2=1;②以B(﹣1,﹣2)为圆心,为半径的圆的方程为(x+1)2+(y+2)2=3;故答案为(x﹣3)2+y2=1;(x+1)2+(y+2)2=3;(1)①证明:∵BD⊥OC,∴CD=OD,∴BE垂直平分OC,∴EO=EC,∴∠EOC=∠ECO,∵BO=BC,∴∠BOC=∠BCO,∴∠EOC+∠BOC=∠ECO+∠BCO,∴∠BOE=∠BCE=90°,∴BC⊥CE,∴EC是⊙B的切线;②存在.∵∠BOE=∠BCE=90°,∴点C和点O偶在以BE为直径的圆上,∴当P点为BE的中点时,满足PB=PC=PE=PO,∵B点坐标为(﹣6,0),∴OB=6,∵∠AOC+∠DOE=90°,∠DOE+∠BEO=90°,∴∠BOE=∠AOC,∴sin∠BOE=sin∠AOC=,在Rt△BOE中,sin∠BOE=,∴=,∴BE=10,∴OE==8,∴E点坐标为(0,8),∴线段AB的中点P的坐标为(﹣3,4),PB=5,∴以P(﹣3,4)为圆心,以5为半径的⊙P的方程为(x+3)2+(y﹣4)2=25.点评:本题了圆的综合题:熟练掌握垂径定理、切线的判定定理、圆周角定理和等腰三角形的性质;阅读理解能力也是本题考查的重点;会运用锐角三角函数的定义和勾股定理进行几何计算.26.(14分)(2014•赤峰)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣1,0),B (3,0)两点,与y轴交于点C(0,﹣3).(1)求该抛物线的解析式及顶点M坐标;(2)求△BCM面积与△ABC面积的比;(3)若P是x轴上一个动点,过P作射线PQ∥AC交抛物线于点Q,随着P点的运动,在抛物线上是否存在这样的点Q,使以A,P,Q,C为顶点的四边形为平行四边形?若存在,请求出Q点坐标;若不存在,请说明理由.考点:二次函数综合题分析:(1)有抛物线与x轴交于点A(﹣1,0),B(3,0)两点,则可设抛物线解析式为y=a(x+1)(x﹣3).由与y轴交于点C(0,﹣3),则代入易得解析式,顶点易知.(2)求△BCM面积与△ABC面积的比,由两三角形不为同高或同底,所以考虑求解求出两三角形面积再作比即可.因为S△BCM=S梯形OCMD+S△BMD﹣S△BOC,S△ABC=•AB•OC,则结论易得.(3)由四边形为平行四边形,则对边PQ、AC平行且相等,过Q点作x轴的垂线易得Q到x轴的距离=OC=3,又(1)得抛物线解析式,代入即得Q点横坐标,则Q点可求.解答:解:(1)设抛物线解析式为y=a(x+1)(x﹣3),∵抛物线过点(0,3),∴﹣3=a(0+1)(0﹣3),∴a=1,∴抛物线解析式为y=(x+1)(x﹣3)=x2﹣2x﹣3,∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴M(1,4).(2)如图1,连接BC、BM、CM,作MD⊥x轴于D,∵S△BCM=S梯形OCMD+S△BMD﹣S△BOC=•(3+4)•1+•2﹣4﹣•3•3=+﹣=3S△ABC=•AB•OC=•4•3=6,∴S△BCM:S△ABC=3:6=1:2.(3)存在,理由如下:①如图2,当Q在x轴下方时,作QE⊥x轴于E,∵四边形ACQP为平行四边形,∴PQ平行且相等AC,∴△PEQ≌△AOC,∴EQ=OC=3,∴﹣3=x2﹣2x﹣3,解得x=2或x=0(与C点重合,舍去),∴Q(2,﹣3).②如图3,当Q在x轴上方时,作QF⊥x轴于F,∵四边形ACPQ为平行四边形,∴QP平行且相等AC,∴△PFQ≌△AOC,∴FQ=OC=3,∴3=x2﹣2x﹣3,解得x=1+或x=1﹣,∴Q(1+,3)或(1﹣,3).综上所述,Q点为(2,﹣3)或(1+,3)或(1﹣,3)点评:本题考查了二次函数图象与性质、平行四边形及坐标系中求不规则图形面积等基础考点,难度适中,适合学生练习.。
赤峰市中考数学试卷

赤峰市中考数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)(2016·巴彦) ﹣|﹣2|的倒数是()A . 2B .C . -D . ﹣22. (2分) (2019九上·南岗期末) 下列图标中是轴对称图形,不是中心对称图形的是()A .B .C .D .3. (2分)(2017·曹县模拟) 据科学研究,火星距离地球的最近距离约为5500万千米,这个数据用科学记数法可表示为()千米.A . 5.5×106B . 5.5×107C . 55×106D . 0.55×1084. (2分)(2020·珠海模拟) 如图是由个相同的小正方体组成的几何体,则从正面观察该几何体,得到的形状图是()A .B .C .D .5. (2分)下列是某同学在一次测验中解答的填空题,其中填错了的是()A . -2的相反数是2B . |-2|=2C . ∠α=32.7°,∠β=32°42′,则∠α-∠β=0°D . 函数y=的自变量的取值范围是x<16. (2分)如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交DB于点F,则△DEF的面积与△BAF的面积之比为()A . 1:3B . 3:4C . 1:9D . 9:167. (2分)若x1 , x2是一元二次方程x2﹣5x+6=0的两个根,则x1+x2的值是()A . 1B . 5C . ﹣5D . 68. (2分)(2012·盘锦) 一把大遮阳伞,伞面撑开时可以近似地看成圆锥,当伞面撑开最大位置时,母线长3米,底面直径4米,则做这把遮阳伞需用布料的面积是()A . 6πm2B . 3πm2C . 12πm2D . 5πm29. (2分) (2019八下·越城期末) 如图,在正方形中,,点,分别在、上,,,相交于点,若图中阴影部分的面积与正方形的面积之比为,则的周长为()A .B .C .D .10. (2分) (2018九上·内乡期末) 在同一直角坐标系中y=ax2+b与y=ax+b(a≠0,b≠0)图象大致为()A .B .C .D .11. (2分)(2020·沈阳模拟) 如图,在△ABC中,∠ACB=90º,AC=BC=1,E、F为线段AB上两动点,且∠ECF=45°,过点E、F分别作BC、AC的垂线相交于点M,垂足分别为H、G.现有以下结论:①AB= ;②当点E与点B重合时,MH= ;③AF2+BE2=EF2;④MG•MH= ,其中正确结论的个数是()A . 1B . 2C . 3D . 412. (2分)(2020·云南) 按一定规律排列的单项式:a,,,,,,…,第n个单项式是()A .B .C .D .二、填空题 (共6题;共6分)13. (1分)(2017·姜堰模拟) 分解因式:2x2﹣18=________.14. (1分)(2017·埇桥模拟) 方程 = 的解是________.15. (1分) P(x,y)点在第三象限,且P点到x轴的距离为3,到y轴的距离为2,则P点的坐标为________.16. (1分)如图为一个电路图,在该电路图上有四个开关S1 , S2 , S3 , S4和一个灯泡⊗,闭合开关S1或同时闭合开关S2 , S3 , S4都能够使灯泡发光,现在任意闭合其中两个开关,灯泡能够发光的概率为________.17. (1分)(2020·广元) 如图所示,均为等边三角形,边长分别为,B、C、D三点在同一条直线上,则下列结论正确的________.(填序号)① ② ③ 为等边三角形④ ⑤CM平分18. (1分)(2018·平房模拟) 如图,在△ABC中,AC=BC,D为AB的中点,F为BC边上一点,连接CD、AF交干点E.若∠FAC=90°-3∠BAF,BF:AC=2:5,EF=2,则AB长为________.三、解答题 (共7题;共83分)19. (5分) (2019七下·闵行开学考) 阅读下面的解题过程:已知:,求的值.解:由知x≠0,所以,即x+ =3.所以 =x2+ =(x+ )2﹣2=32﹣2=7.故的值为.该题的解法叫做“倒数法”,请你利用“倒数法”解决下面的题目:已知:,求的值.20. (13分)(2019·汕头模拟) 某校对600名学生进行了一次“心理健康”知识测试,从中抽取了部分学生成绩(得分取正整数,满分为100分)作为样本,绘制了下面尚未完成的表格和频数分布直方图(住:无50.5以下成绩)分组频数频率50.5~60.520.0460.5~70.580.1670.5~80.510CA~90.5B0.3290.5~100.5140.28合计(1)频数分布表中A=________,B=________,C=________;(2)补全频数分布直方图;(3)若成绩在90分以上(不含90分)为优秀,试估计该校成绩优秀的有多少人?21. (10分)(2014·资阳) 某商家计划从厂家采购空调和冰箱两种产品共20台,空调的采购单价y1(元/台)与采购数量x1(台)满足y1=﹣20x1+1500(0<x1≤20,x1为整数);冰箱的采购单价y2(元/台)与采购数量x2(台)满足y2=﹣10x2+1300(0<x2≤20,x2为整数).(1)经商家与厂家协商,采购空调的数量不少于冰箱数量的,且空调采购单价不低于1200元,问该商家共有几种进货方案?(2)该商家分别以1760元/台和1700元/台的销售单价售出空调和冰箱,且全部售完.在(1)的条件下,问采购空调多少台时总利润最大?并求最大利润.22. (10分)(2017·黄冈模拟) 如图,正方形AOCB的边长为4,反比例函数y= (k≠0,且k为常数)的图象过点E,且S△AOE=3S△OBE .(1)求k的值;(2)反比例函数图象与线段BC交于点D,直线y= x+b过点D与线段AB交于点F,延长OF交反比例函数y= (x<0)的图象于点N,求N点坐标.23. (15分)(2018·奉贤模拟) 如图,在平面直角坐标系xOy中,已知抛物线y= 与x轴交于点A(﹣2,0)和点B,与y轴交于点C(0,﹣3),经过点A的射线AM与y轴相交于点E,与抛物线的另一个交点为F,且 .(1)求这条抛物线的表达式,并写出它的对称轴;(2)求∠FAB的余切值;(3)点D是点C关于抛物线对称轴的对称点,点P是y轴上一点,且∠AFP=∠DAB,求点P的坐标.24. (15分) (2017九上·柳江期中) 已知:二次函数y=x2+bx+c的图象与x轴交于A,B两点,其中A点坐标为(﹣3,0),与y轴交于点C,点D(﹣2,﹣3)在抛物线上.(1)求抛物线的解析式;(2)抛物线的对称轴上有一动点P,求出PA+PD的最小值;(3)若抛物线上有一动点P,使三角形ABP的面积为6,求P点坐标.25. (15分)(2020·广东模拟) 如图,在△ABC中,AB=AC,以AB为直径作⊙O,分别交BC于点D,交CA 的延长线于点E,过点D作DH⊥AC于点H,连接DE交线段OA于点F。
2024年内蒙古赤峰市中考数学试题+答案详解

2024年内蒙古赤峰市中考数学试题+答案详解(试题部分)温馨提示:1.本试卷卷面分值150分,共8页,考试时间120分钟.2.答题前,考生务必将姓名、座位号、考生号填写在答题卡的相应位置上,并仔细阅读答题卡上的“注意事项”.3.答题时,请将答案填涂在答题卡上,写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.一、选择题(每小题给出的选项中只有一个符合题意,请将符合题意的选项序号,在答题卡的对应位置上按要求涂黑.每小题3分,共42分)1. 在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是( )A. B. C. D. 2. 央视新闻2024年5月31日报道,世界最大清洁能源走廊今年一季度累计发电超52000000000度,为我国经济社会绿色发展提供了强劲动能.将数据52000000000用科学记数法表示为( )A. 95.210⨯B. 110.5210⨯C. 95210⨯D. 105.210⨯ 3. 将一副三角尺如图摆放,使有刻度的两条边互相平行,则1∠的大小为( )A. 100︒B. 105︒C. 115︒D. 120︒ 4. 下列计算正确的是( )A. 235a a a +=B. 222()a b a b +=+C. 632a a a ÷=D. ()236a a = 5. 在数据收集、整理、描述的过程中,下列说法错误..的是( ) A. 为了解1000只灯泡的使用寿命,从中抽取50只进行检测,此次抽样的样本容量是50B. 了解某校一个班级学生的身高情况,适合全面调查C. 了解商场的平均日营业额,选在周末进行调查,这种调查不具有代表性D. 甲、乙二人10次测试的平均分都是96分,且方差2 2.5S =甲,22.3S =乙,则发挥稳定的是甲6. 解不等式组()322211x x x x −<⎧⎪⎨+≥−⎪⎩①②时,不等式①和不等式②的解集在数轴上表示正确的是( ) A. B.C. D.7. 如图,是正n 边形纸片的一部分,其中l m ,是正n 边形两条边的一部分,若l m ,所在的直线相交形成的锐角为60︒,则n 的值是( )A. 5B. 6C. 8D. 108. 某市为了解初中学生的视力情况,随机抽取200名初中学生进行调查,整理样本数据如下表.根据抽样调查结果,估计该市16000名初中学生中,视力不低于4.8的人数是( )A. 120B. 200C. 6960D. 9600 9. 等腰三角形的两边长分别是方程210210x x −+=的两个根,则这个三角形的周长为( )A. 17或13B. 13或21C. 17D. 13 10. 如图,AD 是O 的直径,AB 是O 的弦,半径OC AB ⊥,连接CD ,交OB于点E,42BOC∠=︒,则OED ∠的度数是( )A. 61︒B. 63︒C. 65︒D. 67︒11. 用1块A 型钢板可制成3块C 型钢板和4块D 型钢板;用1块B 型钢板可制成5块C 型钢板和2块D 型钢板.现在需要58块C 型钢板、40块D 型钢板,问恰好用A 型钢板、B 型钢板各多少块?如果设用A 型钢板x 块,用B 型钢板y 块,则可列方程组为( )A. 32404558x y x y +=⎧⎨+=⎩B. 35404258x y x y +=⎧⎨+=⎩C. 35584240x y x y +=⎧⎨+=⎩D. 34585240x y x y +=⎧⎨+=⎩12. 如图,ABC 中,1AB BC ==,72C ∠=︒.将ABC 绕点A 顺时针旋转得到AB C ''△,点B'与点B 是对应点,点C '与点C 是对应点.若点C '恰好落在BC 边上,下列结论:①点B 在旋转过程中经过的路径长是15π;②B B A C '∥;③BD C D '=;④AB B B AC BD'=.其中正确的结论是( )A. ①②③④B. ①②③C. ①③④D. ②④13. 如图,数轴上点A ,M ,B 分别表示数aa b b +,,,若AM BM >,则下列运算结果一定是正数的是( )A. a b +B. a b −C. abD. a b −14. 如图,正方形ABCD 的顶点A ,C 在抛物线24y x =−+上,点D 在y 轴上.若A C ,两点的横坐标分别为m n ,(0m n >>),下列结论正确的是( )A. 1m n +=B. 1m n −=C. 1mn =D. 1m n= 二、填空题(请把答案填写在答题卡对应的横线上.每小题3分,共12分)15. _____________16. 因式分解:233am a −=______.17. 综合实践课上,航模小组用无人机测量古树AB 的高度.如图,点C 处与古树底部A 处在同一水平面上,且10AC =米,无人机从C 处竖直上升到达D 处,测得古树顶部B 的俯角为45︒,古树底部A 的俯角为65︒,则古树AB 的高度约为________米(结果精确到0.1米;参考数据:sin 650.906︒≈,cos650.423︒≈,tan 65 2.145︒≈).18. 编号为A ,B ,C ,D ,E 的五台收割机,若同时启动其中两台收割机,收割面积相同的田地所需时间如下表:则收割最快的一台收割机编号是________.三、解答题(在答题卡上解答,答在本试卷上无效,解答时要写出必要的文字说明、证明过程或演算步骤.共8题,满分96分)19. (1()0π12sin 602+++︒+;(2)已知230a a −−=,求代数式2(2)(1)(3)a a a −+−+的值.20. 如图,在ABC 中,D 是AB 中点.(1)求作:AC 的垂直平分线l (要求:尺规作图,不写作法,保留作图痕迹);(2)若l 交AC 于点E ,连接DE 并延长至点F ,使2EF DE =,连接BE CF ,.补全图形,并证明四边形BCFE 是平行四边形.21. 某校田径队为了调动队员体育训练的积极性,计划根据成绩情况对队员进行奖励.为确定一个适当的成绩目标,进行了体育成绩测试,统计了每个队员的成绩,数据如下:整理、描述数据分析数据样本数据的平均数、众数、中位数如下表:解决问题(1)表格中的=a ______;b =______;c =______;(2)分析平均数、众数、中位数这三个数据,如果想让一半左右的队员都能达到成绩目标,你认为成绩目标应定为______分,如果想确定一个较高的成绩目标,这个成绩目标应定为______分;(3)学校要从91分的A ,B ,C ,D 四名队员中,随机抽取两名队员去市里参加系统培训.请利用画树状图法或列表法,求A ,B 两名队员恰好同时被选中的概率. 22. 一段高速公路需要修复,现有甲、乙两个工程队参与施工,已知乙队平均每天修复公路比甲队平均每天修复公路多3千米,且甲队单独修复60千米公路所需要的时间与乙队单独修复90千米公路所需要的时间相等.(1)求甲、乙两队平均每天修复公路分别是多少千米;(2)为了保证交通安全,两队不能同时施工,要求甲队的工作时间不少于乙队工作时间的2倍,那么15天的工期,两队最多能修复公路多少千米?23. 在平面直角坐标系中,对于点()11,M x y ,给出如下定义:当点()22,N x y ,满足1212x x y y +=+时,称点N 是点M 的等和点.(1)已知点()1,3M ,在()14,2N ,()23,1N −,()30,2N −中,是点M 等和点的有_____;(2)若点()3,2M −的等和点N 在直线y x b =+上,求b 的值;(3)已知,双曲线1k y x=和直线22y x =−,满足12y y <的x 取值范围是4x >或20x −<<.若点P 在双曲线1k y x=上,点P 的等和点Q 在直线22y x =−上,求点P 的坐标. 24. 如图,ABC 中,90ACB ∠=︒,AC BC =,O 经过B ,C 两点,与斜边AB 交于点E ,连接CO 并延长交AB 于点M ,交O 于点D ,过点E 作EF CD ∥,交AC 于点F .(1)求证:EF是O的切线;(2)若BM=,1tan2BCD∠=,求OM的长.25. 如图,是某公园的一种水上娱乐项目.数学兴趣小组对该项目中的数学问题进行了深入研究.下面是该小组绘制的水滑道截面图,如图1,人从点A处沿水滑道下滑至点B处腾空飞出后落入水池.以地面所在的水平线为x轴,过腾空点B与x轴垂直的直线为y轴,O为坐标原点,建立平面直角坐标系.他们把水滑道和人腾空飞出后经过的路径都近似看作是抛物线的一部分.根据测量和调查得到的数据和信息,设计了以下三个问题,请你解决.(1)如图1,点B与地面的距离为2米,水滑道最低点C与地面的距离为78米,点C到点B的水平距离为3米,则水滑道ACB所在抛物线的解析式为______;(2)如图1,腾空点B与对面水池边缘的水平距离12OE=米,人腾空后的落点D与水池边缘的安全距离DE不少于3米.若某人腾空后的路径形成的抛物线BD恰好与抛物线ACB关于点B成中心对称.①请直接写出此人腾空后的最大高度和抛物线BD的解析式;②此人腾空飞出后的落点D是否在安全范围内?请说明理由(水面与地面之间的高度差忽略不计);(3)为消除安全隐患,公园计划对水滑道进行加固.如图2,水滑道已经有两条加固钢架,一条是水滑道距地面4米的点M处竖直支撑的钢架MN,另一条是点M与点B之间连接支撑的钢架BM.现在需要在水滑道下方加固一条支撑钢架,为了美观,要求这条钢架与BM 平行,且与水滑道有唯一公共点,一端固定在钢架MN 上,另一端固定在地面上.请你计算出这条钢架的长度(结果保留根号).26. 数学课上,老师给出以下条件,请同学们经过小组讨论,提出探究问题.如图1,在ABC 中,AB AC =,点D 是AC 上的一个动点,过点D 作DE BC ⊥于点E ,延长ED 交BA 延长线于点F .请你解决下面各组提出的问题:(1)求证:AD AF =;(2)探究DF DE 与AD DC的关系; 某小组探究发现,当13AD DC =时,23DF DE =;当45AD DC =时,85DF DE =. 请你继续探究: ①当76AD DC =时,直接写出DF DE的值; ②当AD m DC n =时,猜想DF DE 的值(用含m ,n 的式子表示),并证明; (3)拓展应用:在图1中,过点F 作FP AC ⊥,垂足为点P ,连接CF ,得到图2,当点D 运动到使ACF ACB ∠=∠时,若AD m DC n =,直接写出AP AD的值(用含m ,n 的式子表示).2024年内蒙古赤峰市中考数学试题+答案详解(答案详解)温馨提示:1.本试卷卷面分值150分,共8页,考试时间120分钟.2.答题前,考生务必将姓名、座位号、考生号填写在答题卡的相应位置上,并仔细阅读答题卡上的“注意事项”.3.答题时,请将答案填涂在答题卡上,写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.一、选择题(每小题给出的选项中只有一个符合题意,请将符合题意的选项序号,在答题卡的对应位置上按要求涂黑.每小题3分,共42分)1. 在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A. B. C. D.【答案】A【解析】【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【详解】A.是轴对称图形,故A符合题意;B.不是轴对称图形,故B不符合题意;C.不是轴对称图形,故C不符合题意;D.不是轴对称图形,故D不符合题意.故选:A.【点睛】本题主要考查轴对称图形的知识点.确定轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2. 央视新闻2024年5月31日报道,世界最大清洁能源走廊今年一季度累计发电超52000000000度,为我国经济社会绿色发展提供了强劲动能.将数据52000000000用科学记数法表示为()A. 9⨯ D. 105.210⨯5.2105210⨯ C. 9⨯ B. 110.5210【答案】D【解析】【分析】本题考查了科学记数法,根据科学记数法:10n a ⨯(110a ≤<,n 为正整数),先确定a 的值,再根据小数点移动的数位确定n 的值即可解答,根据科学记数法确定a 和n 的值是解题的关键.【详解】解:1052000000000 5.210=⨯,故选:D .3. 将一副三角尺如图摆放,使有刻度的两条边互相平行,则1∠的大小为( )A. 100︒B. 105︒C. 115︒D. 120︒【答案】B【解析】 【分析】本题考查了三角板中角度计算问题,由题意得3230∠=∠=︒,根据1180345∠=︒−∠−︒即可求解.【详解】解:如图所示:由题意得:3230∠=∠=︒∴1180345105∠=︒−∠−︒=︒故选:B .4. 下列计算正确的是( )A. 235a a a +=B. 222()a b a b +=+C. 632a a a ÷=D. ()236a a =【答案】D【解析】【分析】此题考查了同底数幂的除法,完全平方公式,合并同类项,幂的乘方.根据同底数幂的除法法则,完全平方公式,合并同类项,幂的乘方的运算法则,可得答案.【详解】解:A 、2a 与3a 不是同类项,不能合并,故此选项不符合题意;B 、()222222a b a ab b a b +=++≠+,故此选项不符合题意;C 、6332a a a a ÷=≠,故此选项不符合题意;D 、()236a a =,故此选项符合题意.故选:D .5. 在数据收集、整理、描述的过程中,下列说法错误..的是( ) A. 为了解1000只灯泡的使用寿命,从中抽取50只进行检测,此次抽样的样本容量是50B. 了解某校一个班级学生的身高情况,适合全面调查C. 了解商场的平均日营业额,选在周末进行调查,这种调查不具有代表性D. 甲、乙二人10次测试的平均分都是96分,且方差2 2.5S =甲,2 2.3S =乙,则发挥稳定的是甲【答案】D【解析】【分析】本题考查了全面调查与抽样调查、判断事件发生的可能性、根据方差判断稳定性,根据全面调查与抽样调查的定义、方差的意义逐项判断即可得出答案.【详解】解:A 、为了解1000只灯泡的使用寿命,从中抽取50只进行检测,此次抽样的样本容量是50,说法正确,本选项不符合题意;B 、了解某校一个班级学生的身高情况,适合全面调查,说法正确,本选项不符合题意;C 、了解商场的平均日营业额,选在周末进行调查,这种调查不具有代表性,说法正确,本选项不符合题意;D 、甲、乙二人10次测试的平均分都是96分,且方差2 2.5S =甲,22.3S =乙,则发挥稳定的是乙,故原说法错误,符合题意;故选:D . 6. 解不等式组()322211x x x x −<⎧⎪⎨+≥−⎪⎩①②时,不等式①和不等式②的解集在数轴上表示正确的是( ) A. B.C.D.【答案】C【解析】 【分析】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,先求出不等式组的解集,再在数轴上表示出不等式组的解集即可.【详解】解:()322211x x x x −<⎧⎪⎨+≥−⎪⎩①② 解不等式①得,2x <,解不等式②得,3x ≥−,所以,不等式组的解集为:32x −≤<,在数轴上表示为:故选:C .7. 如图,是正n 边形纸片的一部分,其中l m ,是正n 边形两条边的一部分,若l m ,所在的直线相交形成的锐角为60︒,则n 的值是( )A. 5B. 6C. 8D. 10【答案】B【解析】 【分析】本题考查了正多边形,求出正多边形的每个外角度数,再用外角和360︒除以外角度数即可求解,掌握正多边形的性质是解题的关键.【详解】解:如图,直线l m 、相交于点A ,则60A ∠=︒,∵正多边形的每个内角相等,∴正多边形的每个外角也相等, ∴1806012602︒−︒∠=∠==︒, ∴360660n ︒==︒, 故选:B .8. 某市为了解初中学生的视力情况,随机抽取200名初中学生进行调查,整理样本数据如下表.根据抽样调查结果,估计该市16000名初中学生中,视力不低于4.8的人数是( )A. 120B. 200C. 6960D. 9600 【答案】D【解析】【分析】本题考查的是统计表,用样本估计总体,求出不低于4.8的人数所占的百分比是解决此题的关键.求出不低于4.8的人数所占的百分比再乘16000即可求出结论.【详解】解:334047160009600200++⨯=, ∴视力不低于4.8的人数是9600,故选:D .9. 等腰三角形的两边长分别是方程210210x x −+=的两个根,则这个三角形的周长为( )A. 17或13B. 13或21C. 17D. 13 【答案】C【解析】【分析】本题考查了解一元二次方程,等腰三角形的定义,三角形的三边关系及周长,由方程可得13x =,27x =,根据三角形的三边关系可得等腰三角形的底边长为3,腰长为7,进而即可求出三角形的周长,掌握等腰三角形的定义及三角形的三边关系是解题的关键.【详解】解:由方程210210x x −+=得,13x =,27x =,∵337+<,∴等腰三角形的底边长为3,腰长为7,∴这个三角形的周长为37717++=,故选:C .10. 如图,AD 是O 的直径,AB 是O 的弦,半径OC AB ⊥,连接CD ,交OB 于点E ,42BOC ∠=︒,则OED ∠的度数是( )A. 61︒B. 63︒C. 65︒D. 67︒【答案】B【解析】 【分析】本题考查了垂径定理,圆周角定理以及三角形的外角性质.先根据垂径定理,求得42AOC BOC ∠=∠=︒,利用圆周角定理求得1212D AOC ∠=∠=︒,再利用三角形的外角性质即可求解. 【详解】解:∵半径OC AB ⊥,∴AC BC =,∴42AOC BOC ∠=∠=︒,84AOB ∠=︒,∵AC AC =, ∴1212D AOC ∠=∠=︒, ∴63OED AOB D ∠=∠−∠=︒,故选:B .11. 用1块A 型钢板可制成3块C 型钢板和4块D 型钢板;用1块B 型钢板可制成5块C 型钢板和2块D 型钢板.现在需要58块C 型钢板、40块D 型钢板,问恰好用A 型钢板、B 型钢板各多少块?如果设用A 型钢板x 块,用B 型钢板y 块,则可列方程组为( )A. 32404558x y x y +=⎧⎨+=⎩B. 35404258x y x y +=⎧⎨+=⎩C. 35584240x y x y +=⎧⎨+=⎩D. 34585240x y x y +=⎧⎨+=⎩【答案】C【解析】 【分析】此题主要考查了二元一次方程组的应用.根据题意设用A 型钢板x 块,用B 型钢板y 块,再利用现需要58块C 型钢板、40块D 型钢板分别得出方程组即可.【详解】解:设用A 型钢板x 块,用B 型钢板y 块,由题意得:35584240x y x y +=⎧⎨+=⎩, 故选:C .12. 如图,ABC 中,1AB BC ==,72C ∠=︒.将ABC 绕点A 顺时针旋转得到AB C ''△,点B'与点B 是对应点,点C '与点C 是对应点.若点C '恰好落在BC 边上,下列结论:①点B 在旋转过程中经过的路径长是15π;②B B A C '∥;③BD C D '=;④AB B B AC BD'=.其中正确的结论是( )A. ①②③④B. ①②③C. ①③④D. ②④【答案】A【解析】 【分析】本题考查了相似三角形的判定和性质,旋转的性质,弧长公式,等腰三角形的判定和性质,三角形内角和定理.根据旋转的性质结合等腰三角形的性质求得各角的度数,再逐一判断各项,即可求解.【详解】解:∵AB BC =,72C ∠=︒,∴72BAC C ∠=∠=︒,180236ABC C ∠︒=︒−∠=,由旋转的性质得36AB C ABC ︒'∠=∠=,72B AC BAC ︒''∠=∠=,72AC B C ''∠︒=∠=,72AC B ADC ︒''∠=∠=,AC AC '=,∴72AC C C '∠=∠=︒,∴36CAC '∠=︒,∴36CAC BAC ''∠=∠=︒,∴723636B AB '∠=︒−︒=︒,由旋转的性质得AB AB '=, ∴()118036722ABB AB B ''∠=∠=︒−︒=︒,①点B 在旋转过程中经过的路径长是36111805ππ⋅=;①说法正确; ②∵36B AB ABC '∠=∠=︒,∴B B A C '∥;②说法正确;③∵18027236DC B '∠=︒−⨯︒=︒,∴36DC B ABC '∠=∠=︒,∴BD C D '=;③说法正确;④∵36BB D ABC '∠=∠=︒,72B BD BAC '∠=∠=︒,∴B BD BAC '∽△△, ∴AB B B AC BD'=.④说法正确; 综上,①②③④都是正确的,故选:A .13. 如图,数轴上点A ,M ,B 分别表示数aa b b +,,,若AM BM >,则下列运算结果一定是正数的是( )A. a b +B. a b −C. abD. a b −【答案】A【解析】【分析】本题主要考查了列代数式、数轴、正数和负数、绝对值等知识点,得到a<0,0b >且a b <是解题的关键. 数轴上点A ,M ,B 分别表示数aa b b +,,,则AM a b a b =+−=、()BM b a b a =−+=−,由AM BM >可得原点在A 、M 之间,由它们的位置可得a<0,0a b +>,0b >且a b <,再根据整式的加减乘法运算的计算法则逐项判断即可.【详解】解:数轴上点A ,M ,B 分别表示数aa b b +,,, ∴AM a b a b =+−=、()BM b a b a =−+=−,∵AM BM >,∴原点在A ,M 之间,由它们的位置可得a<0,0b >且a b <,∴0a b +>,0a b −<,00ab a b <−<,, 故运算结果一定是正数的是a b +.故选:A .14. 如图,正方形ABCD 的顶点A ,C 在抛物线24y x =−+上,点D 在y 轴上.若A C ,两点的横坐标分别为m n ,(0m n >>),下列结论正确的是( )A. 1m n +=B. 1m n −=C. 1mn =D. 1m n= 【答案】B【解析】 【分析】本题主要考查了二次函数的图象与性质、正方形的性质、全等三角形的判定与性质,解题时要熟练掌握并能灵活运用是关键.依据题意,连接AC 、BD 交于点E ,过点A 作MN y ⊥轴于点M ,过点B 作BN MN ⊥于点N ,先证明(AAS)ANB DMA ≌.可得AM NB =,DM AN =.点A 、C 的横坐标分别为m 、n ,可得2()4,A m m −+,2()4,C n n −+.(2m n E +,22)82m n −+−,2(0,)4M m +−,设(0,)D b ,则22(,)8B m n m n b ++−−−,2()4,N m n m ++−,24BN n b =−+−,AM m =,AN n =,24DM m b =−+.再由AM NB =,DM AN =进而可以求解判断即可.【详解】解:如图,连接AC 、BD 交于点E ,过点A 作MN y ⊥轴于点M ,过点B 作BN MN ⊥于点N ,四边形ABCD 是正方形,AC ∴、BD 互相平分,AB AD =,90BAD ∠=︒,90BAN DAM ∴∠+∠=︒,90DAM ADM ∠+∠=︒,BAN ADM ∴∠=∠.90BNA AMD ∠=∠=︒,BA AD =,(AAS)ANB DMA ∴≌.AM NB ∴=,DM AN =.点A 、C 的横坐标分别为m 、n ,24(,)A m m ∴+−,2()4,C n n −+.(2m n E +∴,22)82m n −+−,2(0,)4M m +−, 设(0,)D b ,则22(,)8B m n m n b ++−−−,2()4,N m n m ++−,24BN n b ∴=−+−,AM m =,AN n =,24DM m b =−+.又AM NB =,DM AN =,24n m b +−−∴=,24n m b =−+.24b n m ∴=−−+.2244n m n m ∴=−−−+.∴()()m n m n m n +−=+.点A 、C 在y 轴的同侧,且点A 在点C 的右侧,0m n ∴+≠.1m n ∴−=.故选:B .二、填空题(请把答案填写在答题卡对应的横线上.每小题3分,共12分)15. _____________【答案】1(或2)【解析】243=<<=,满足条件的数为小于或等于2的整数均可.考点:本题考查的是无理数的估算点评:解答本题的关键是熟知用“夹逼法”估算无理数是常用的估算无理数的方法.16. 因式分解:233am a −=______.【答案】()()311a m m +−【解析】【分析】先提取公因式3a ,再利用平方差公式分解因式.【详解】解:()()()223331311am a a m a m m −=−=+−,故答案为:()()311a m m +−.【点睛】此题考查了综合利用提公因式法和公式法分解因式,正确掌握因式分解的方法:提公因式法和公式法(平方差公式和完全平方公式)是解题的关键.17. 综合实践课上,航模小组用无人机测量古树AB 的高度.如图,点C 处与古树底部A 处在同一水平面上,且10AC =米,无人机从C 处竖直上升到达D 处,测得古树顶部B 的俯角为45︒,古树底部A 的俯角为65︒,则古树AB 的高度约为________米(结果精确到0.1米;参考数据:sin 650.906︒≈,cos650.423︒≈,tan 65 2.145︒≈).【答案】11.5【解析】【分析】本题考查了解直角三角形的应用.过点D 作DM AB ⊥,由题意知:10DM AC ==米,45BDM ∠=︒,65ADM ∠=︒,推出BDM 是等腰直角三角形,在Rt ADM △中,利用正切函数求出AM 的值,根据AB AM BM =−计算求解可得AB 的值.【详解】解:如图,过点D 作DM AB ⊥,交AB 的延长线于点M ,∴四边形ACDM 是矩形,∴10DM AC ==米,∵45BDM ∠=︒,65ADM ∠=︒,90M ∠=︒,∴BDM 是等腰直角三角形,∴10BM DM ==米,在Rt ADM △中,tan 10tan 6510 2.14521.45AM DM ADM =⋅∠=⋅︒≈⨯≈(米),∴21.451011.4511.5AB AM BM =−=−=≈(米),∴古树AB 的高度约为11.5米.故答案为:11.5.18. 编号为A ,B ,C ,D ,E 的五台收割机,若同时启动其中两台收割机,收割面积相同的田地所需时间如下表:则收割最快的一台收割机编号是________.【答案】C【解析】【分析】本题考查推理能力.利用同时启动其中的两台收割机,收割面积相同的田地所需时间分析对比,能求出结果.【详解】解:同时启动A ,B 两台收割机,所需的时间为23小时,同时启动B ,C 两台收割机,所需的时间为19小时, 得到C 比A 快;同时启动B ,C 两台收割机,所需的时间为19小时,同时启动C ,D 两台收割机,所需的时间为20小时,得到B 比D 快;同时启动A 、B 两台收割机,所需的时间为23小时,同时启动A ,E 两台收割机,所需的时间为18小时,得到E 比B 快;同时启动C ,D 两台收割机,所需的时间为20小时,同时启动D ,E 两台收割机,所需的时间为22小时,得到C 比E 快.综上,收割最快的一台收割机编号是C .故答案为:C .三、解答题(在答题卡上解答,答在本试卷上无效,解答时要写出必要的文字说明、证明过程或演算步骤.共8题,满分96分)19. (1()0π12sin 602+++︒+;(2)已知230a a −−=,求代数式2(2)(1)(3)a a a −+−+的值.【答案】(1)6;(2)7.【解析】【分析】(1)利用算术平方根、零指数幂、特殊角的三角函数值、绝对值的性质分别运算,再合并即可求解;(2)由230a a −−=得23a a −=,化简代数式可得()()()()2221321a a a a a −+−+=−+,代入计算即可求解;本题考查了实数的混合运算,代数式化简求值,掌握实数和整式的运算法则是解题的关键.【详解】解:(1)原式3122=+++42=+,6=;(2)∵230a a −−=,∴23a a −=,∴()()()2213a a a −+−+ 224423a a a a =−+++−,2221a a =−+,()221a a =−+, 231=⨯+,7=.20. 如图,在ABC 中,D 是AB 中点.(1)求作:AC 的垂直平分线l (要求:尺规作图,不写作法,保留作图痕迹);(2)若l 交AC 于点E ,连接DE 并延长至点F ,使2EF DE =,连接BE CF ,.补全图形,并证明四边形BCFE 是平行四边形.【答案】(1)见解析 (2)见解析【解析】【分析】本题考查了尺规作图,中位线的性质,平行四边形的判定.(1)利用尺规作图作出线段AC 的垂直平分线l 即可;(2)由D ,E 分别为AB ,AC 的中点,根据中位线的性质,得到DE BC ∥,12DE BC =,结合2EF DE =,得到EF BC =,即可证明结论成立.【小问1详解】解:直线l 如图所示, ;【小问2详解】证明:补全图形,如图,由(1)作图知,E 为AC 的中点,∵D ,E 分别为AB ,AC 的中点,∴DE BC ∥,12DE BC =, ∵2EF DE =,即:12DE EF =, ∴EF BC =,∵EF BC ∥, ∴ 四边形BCFE 是平行四边形.21. 某校田径队为了调动队员体育训练的积极性,计划根据成绩情况对队员进行奖励.为确定一个适当的成绩目标,进行了体育成绩测试,统计了每个队员的成绩,数据如下:整理、描述数据分析数据样本数据的平均数、众数、中位数如下表:解决问题(1)表格中的=a ______;b =______;c =______;(2)分析平均数、众数、中位数这三个数据,如果想让一半左右的队员都能达到成绩目标,你认为成绩目标应定为______分,如果想确定一个较高的成绩目标,这个成绩目标应定为______分;(3)学校要从91分的A ,B ,C ,D 四名队员中,随机抽取两名队员去市里参加系统培训.请利用画树状图法或列表法,求A ,B 两名队员恰好同时被选中的概率.【答案】(1)5;2;75(2)78;80 (3)A ,B 两名队员恰好同时被选中的概率为16.【解析】【分析】本题主要考查画树状图或列表法求随机事件的概率,统计表,众数和中位数的意义.(1)根据统计表直接写出a 和b 的值,根据众数的意义可求解c 的值;(2)根据中位数和平均数的意义即可求解;(3)画树状图或列表法把所有等可能结果表示出来,再运用概率公式即可求解.【小问1详解】解:根据收集的数据知5a =;2b =;出现最多的是75分,有5人,众数为75分,则75c =;故答案为:5;2;75;【小问2详解】解:∵由统计图可知中位数为78分,∴如果想让一半左右的队员都能达到成绩目标,成绩目标应定为78分,如果想确定一个较高的目标,成绩目标应定为80分,因为在样本的众数,中位数和平均数中,平均数最大,可以估计,如果成绩目标定为80分,努力一下都能达到成绩目标.故答案为:78;80;【小问3详解】解:画树状图表示所有等可能结果如图所示,共有12种等可能结果,A ,B 两名队员恰好同时被选中的情况有2种,∴A ,B 两名队员恰好同时被选中的概率为21126==, 答:A ,B 两名队员恰好同时被选中的概率为16. 22. 一段高速公路需要修复,现有甲、乙两个工程队参与施工,已知乙队平均每天修复公路比甲队平均每天修复公路多3千米,且甲队单独修复60千米公路所需要的时间与乙队单独修复90千米公路所需要的时间相等.(1)求甲、乙两队平均每天修复公路分别是多少千米;(2)为了保证交通安全,两队不能同时施工,要求甲队的工作时间不少于乙队工作时间的2倍,那么15天的工期,两队最多能修复公路多少千米?【答案】(1)甲队平均每天修复公路6千米,则乙队平均每天修复公路9千米;(2)15天的工期,两队最多能修复公路105千米.【解析】【分析】本题考查了分式方程的应用,一元一次不等式的应用,一次函数的应用.(1)设甲队平均每天修复公路x 千米,则乙队平均每天修复公路()3x +千米,根据“甲队单独修复60千米公路所需要的时间与乙队单独修复90千米公路所需要的时间相等”列分式方程求解即可;(2)设甲队的工作时间为m 天,则乙队的工作时间为()15m −天,15天的工期,两队能修复公路w 千米,求得w 关于m 的一次函数,再利用“甲队的工作时间不少于乙队工作时间的2倍”求得m 的范围,利用一次函数的性质求解即可.【小问1详解】解:设甲队平均每天修复公路x 千米,则乙队平均每天修复公路()3x +千米, 由题意得60903x x =+, 解得6x =,经检验,6x =是原方程的解,且符合题意,39x +=,答:甲队平均每天修复公路6千米,则乙队平均每天修复公路9千米;【小问2详解】解:设甲队的工作时间为m 天,则乙队的工作时间为()15m −天,15天的工期,两队能修复公路w 千米,由题意得()69153135w m m m =+−=−+,()215m m ≥−,解得10m ≥,∵30−<,∴w 随m 的增加而减少,∴当10m =时,w 有最大值,最大值为310135105w =−⨯+=,答:15天的工期,两队最多能修复公路105千米.23. 在平面直角坐标系中,对于点()11,M x y ,给出如下定义:当点()22,N x y ,满足1212x x y y +=+时,称点N 是点M 的等和点.(1)已知点()1,3M ,在()14,2N ,()23,1N −,()30,2N −中,是点M 等和点的有_____;(2)若点()3,2M −的等和点N 在直线y x b =+上,求b 的值;(3)已知,双曲线1k y x=和直线22y x =−,满足12y y <的x 取值范围是4x >或20x −<<.若点P 在双曲线1k y x=上,点P 的等和点Q 在直线22y x =−上,求点P 的坐标. 【答案】(1)()14,2N 和()30,2N −;。
赤峰中考数学试题及答案中考.doc

:2016年赤峰中考数学试题及答案-中考总结:话题作文与学期梳理课程特色:以写作问题为纲,以解决中高考语文写作问题和讲授踩分词为主,每节课仍会讲解2—3篇阅读题,作为对应练习和提高。
学习时,要求学生熟记理解每一讲的”地图内容”,以便考试时融会运用。
适合学员想扎实写作基础,稳固提高作文水平的初中生赠送《中学语文知识地图—中学必考文学常识一本通》第十五章:学期课程融汇与升华课程特色:以解决阅读问题为纲,融会踩分词和阅读答题要求,进行专题训练,侧重点分为两个方面,一是结合《中学语文知识地图踩分词》进行阅读答题运用,二是答题结构与题型,每节课中以阅读概括能力、理解表述能力、判定分析能力和鉴赏能力题为引导进行学习。
适合学员现代文阅读答题技巧掌握不够全面,想稳固提高的初中生赠送《中学语文知识地图—中学文言文必考140字》课程特色:全面地检测与分析学生考试丢分的问题,让学生清楚自己问题在哪,并且怎样改,通过思维训练,加以解决,重点教会学生如何凭借一张知识地图,去解决所有的语文阅读写作问题。
适合学员想夯实语文基础知识,成绩稳步提高的初中生赠送《学生优秀作品及点评指导(2.0版)》第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。
适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。
适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)第二节:说明文专题课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。
该课程两个重心:一是各类题型答题方法和技巧的分析,特别是易错点的点评;另一个方面是对概括能力、理解能力,表述能力的训练。
适合学员阅读能力迅速提升的5—7级学生赠送《语文阅读得高分策略与技巧》(小学版)第二节:说明文专题课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。
2009年赤峰市初中毕业升学统一考试试卷

2009年赤峰市初中毕业升学统一考试试卷化学注意事项:本试卷满分90分,考试时间为70分钟可能用到的相对原子质量:H-1 C-12 O-16 Na-23 Cl-35.5 Ca-40一、选择题(每小题有四个选项,只有一个选项符合题意,请将正确选项的序号填入相应题后的括号内,多选不得分。
每小题2分,共32分)1、空气中含量最多的气体是()A、O2B、N2C、CO2D、Ar2、下列过程中,属于物理变化的是()3、下列物质中属于化合物的是()A、臭氧(O3)B、天然气C、纯碱D、黄铜4、为了防止坏血病,提高人体抵抗力,应补充()A、碘B、锌C、钙D、维生素C5、下列药品中不需要密封保存的是()A、浓硫酸B、氯化钠C、氧化钙D、氢氧化钠6、下列服装中属于合成材料制作的是()A、塑料雨衣B、棉布内衣C、羊绒大衣D、真丝旗袍7、下列实验操作,正确的是()8、下列措施,有力与环境保护的是()A、将废弃塑料袋集中焚烧B、将生活垃圾倾倒海中C、开发利用新能源,减少化石燃料使用D、大量使用化肥,以提高粮食产量9、有机物中的乙烯(C2H4)、丙烯(C3H6)、丁烯(C4H8)等,它们的组成和结构都很相似,这类有机物被称作为烯烃。
据此推断碳原子数为n的烯烃的化学式为()A、C n H2nB、C n H2n+2C、C n H2n-2D、C n H n10、小刚的笔记有对化学实验“目的—操作—现象—结论”的描述,其中不正确的是()11、对右图所示实验的叙述,不正确的是()A、浓盐酸和浓氨水都具有挥发性B、产生的白烟是氯化铵固体颗粒C、浓硫酸和浓氨水都具有刺激性气味和腐蚀作用,实验时要注意安全和通风D、NH3+NCl====NH4Cl反应中,氢原子发生了改变12、向装有一定量Ba(OH)2溶液的小烧杯中,不断慢慢滴入稀H2SO4至过量,有关溶液pH和滴入稀H2SO4体积的变化情况如下图所示,其中正确的是()13、下图是M、N两种物质的溶解度曲线,在t1℃时,往盛有100g水的烧杯中,先后加入agM和bgN(两种物质溶解时互不影响,且溶质仍是M、N),并充分搅拌。
2009年赤峰市初中毕业升学统一考试试题

2009年赤峰市初中毕业升学统一考试试题物 理注意事项:本卷试题共8页,满分110分,考试时间70分钟一、选择题(每小题给出的选项中只有一个正确,请将正确选项的标号填入题后括号内。
每小题3分,共30分) 1、清晨,英林同学背书包骑自行车行驶在上学的路上,我们说他静止是以下列的哪种物体为参照物的( ) A 、路边的树 B 、迎面走来的人 C 、背着的书包 D 、路面疾驰而去的汽车 2、如图1所示的四幅图中,没有发生动能与势能相互转化的是( )3、关于电磁波,下列说法正确的是( )A 、在真空中电磁波的传播速度不等于光速B 、红外线是一种电磁波,紫外线也是C 、超声波是一种电磁波,能在真空中传播D 、电磁波只能传播声音和图像,不能传递能量4、凸透镜甲的焦距为10cm ,凸透镜乙的焦距为20cm ,爸同一个物体分别放在甲、乙前25cm 处,则通过两个凸透镜都能在光屏上成清晰的像,下列说法正确的是( ) A 、甲透镜成像较大 B 、乙透镜成像较大C 、甲乙透镜成像一样大D 、甲、乙透镜成像大小无法比较 5、如图2所示的四幅图中,不能产生声音的是( )6、下列物态变化过程中,属于吸热的是( )A 、水烧开后水壶嘴喷出“热气”B 、秋天早晨,小草上霜的形成C 、冬天,室外飘起雪花D 、热天,从冰箱中拿出的冰,过一段时间变成了水 7、关于能源和信息,下列说法中正确的是( ) A 、化石能、水能、风能均是可再生能源B 、目前的核电站都是利用核聚变释放的能量来发电的C 、光纤通信是利用激光通过光导纤维来传递信息的D 、卫星通信是通过通信卫星利用微波或中波传递信息的8、中考试卷库大门控制电路的两把钥匙分别有两名工作人员保管,单把钥匙无法打开,如图3所示电路中符合要求的是( )9、如图4所示,甲、乙两个小球分别放在两个装有不同液体的容器中处于静止状态,此时容器中液体深度不同,但液体对容器底部的压强相同,则( ) A 、甲球的密度大于乙球的密度 B 、甲球的密度等大于乙球的密度 C 、甲球的密度大小乙球的密度匀速行驶的汽车 A 上升的滚摆 B 从高处滚下的小球 C向近地点运动的卫星D远地点 近地点 卫星 敲击水瓶琴A真空罩中响铃的闹钟B 关闭的立体声收音机C 吹着的哨子DD 、甲球、乙球的密度关系无法判断10、如图5所示电路,电源电压不变,当开关S 闭合、S 1、S 2断开时,电流表的示数为I 1,电压表的示数为U 1;当开关S 、S 1、S 2都闭合时,电流表的示数为I 2,电压表的示数为U 2。
内蒙古赤峰市中考真题
注意事项:本试卷共 150 分,考试时间 120 分钟. 一、选择题(每小题给出的四个选项中,只有一个正确选项,请将正确选项的标号填入题 后的括号内.每小题 3 分,共 30 分) 1.如果 a a ,下列成立的是( A. a 0
2
1
x 1
x2
22. (本题满分 12 分) 天骄超市和金帝超市以同样的价格出售同样的商品, 为了吸引顾客, 两家超市都实行会员卡 制度:在天骄超市累计购买 500 元商品后,发给天骄会员卡,再购买的商品按原价的 85% 收费;在金帝超市购买 300 元的商品后,发给金帝会员卡,再购买的商品按原价的 90%收 费.讨论顾客怎样选择商店购物能获得最大优惠?
12.足球联赛得分规定如图,大地足球队在足球联赛的 5 场比赛中得 8 分,则这个队比赛的胜、平、负的情况是 . 13.星期天小华去书店买书时,从镜子内看到背后墙上普通时钟的时针 (粗)与分针(细)的位置如图所示,此时时针表示的时间 是 . (按 12 小时制填写) 14.已知一次函数的图象过点 (0, 与 (2, ,则这个一次函数 y 随 x 的 3) 1) 第 12 题图
1 ,参加艺术活动的比参加科 6
科技 艺术
技活动的多 3 人,其他同学参加体育活动.则在扇形图中表示参加 体育活动人数的扇形的圆心角是 度.
读书 体育
三、解答题(本大题共 7 个题,满分 88 分,解答时应写出文字说明、证明过程或演算步骤) 19. (本题满分 16 分) (1)解分式方程:
2x 1 1 2x 3 2x 3
的半径 r3 3 ,则 △O1O2O3 是(
) O2 O3
A.锐角三角形 B.直角三角形 C.钝角三角形 D.锐角三角形或钝角三角形 8.如图是光明中学乒乓球队队员年龄分布的条形图. 这些年龄的众数、中位数依次分别是( ) 人数 10 8 6 4 2 0
2013-2018年内蒙古赤峰市中考数学试题汇编(含参考答案与解析)
【中考数学试题汇编】2013—2018年内蒙古赤峰市中考数学试题汇编(含参考答案与解析)1、2013年内蒙古赤峰市中考数学试题及参考答案与解析 (2)2、2014年内蒙古赤峰市中考数学试题及参考答案与解析 (21)3、2015年内蒙古赤峰市中考数学试题及参考答案与解析 (45)4、2016年内蒙古赤峰市中考数学试题及参考答案与解析 (69)5、2017年内蒙古赤峰市中考数学试题及参考答案与解析 (89)6、2018年内蒙古赤峰市中考数学试题及参考答案与解析 (112)2013年内蒙古赤峰市中考数学试题及参考答案与解析一.选择题:(每小题给出的四个选项中,只有一个正确选项。
每小题3分,共24分)1.0是( )A B .1 C D .﹣1 2.下列等式成立的是( )A .1||1a a ÷=B a =C .22a a a b b b÷= D .a ﹣2a=﹣a 3.如图,4×4的方格中每个小正方形的边长都是1,则S 四边形ABCD 与S 四边形ECDF 的大小关系是( )A .S 四边形ABCD =S 四边形ECDFB .S 四边形ABCD <S 四边形ECDFC .S 四边形ABCD =S 四边形ECDF +1 D .S 四边形ABCD =S 四边形ECDF +24.如图所示,几何体的俯视图是( )A .B .C .D .5.学校教学楼从每层楼到它上一层楼都要经过20级台阶,小明从一楼到五楼要经过的台阶数是( )A .100B .80C .50D .1206.目前,我国大约有1.3亿高血压病患者,占15岁以上总人口数的10%﹣15%,预防高血压不容忽视.“千帕kpa”和“毫米汞柱mmHg”都是表示血压的单位,前者是法定的国际计量单位,而后者则是过去一直广泛使用的惯用单位.请你根据下表所提供的信息,判断下列各组换算正确的是( )A .13kpa=100mmHgB .21kpa=150mmHgC .8kpa=60mmHgD .22kpa=160mmHg7.从某校九年级中随机抽取若干名学生进行体能测试,成绩记为1分,2分,3分,4分,5分.将测量的结果制成如图所示的扇形统计图和条形统计图,根据图中提供的信息,这些学生分数的中位数是( )A .1B .2C .3D .48.如图,ABCD 是平行四边形,AB 是⊙O 的直径,点D 在⊙O 上AD=OA=1,则图中阴影部分的面积为(A .4B .46π+C .26π-D 二、填空题(每小题3分,共计24分)9.一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳之间的平均距离,即1.496×108千米,以亿千米为单位表示这个数是 亿千米.10.请你写出一个大于0而小于1的无理数 .11.一艘轮船顺水航行的速度是20海里/小时,逆水航行的速度是16海里/小时,则水流的速度是 海里/小时.12.样本数据3,2,5,a ,4的平均数是3,则a= .13.已知圆锥底面半径为5cm ,高为12cm ,则它的侧面展开图的面积是 cm 2.14.如图,矩形ABCD 中,E 是BC 的中点,矩形ABCD 的周长是20cm ,AE=5cm ,则AB 的长 cm .15.如图,在平面直角坐标系中,⊙O 的半径为1,∠BOA=45°,则过A 点的双曲线解析式是 .16.在等腰三角形中,马彪同学做了如下研究:已知一个角是60°,则另两个角是唯一确定的(60°,60°),已知一个角是90°,则另两个角也是唯一确定的(45°,45°),已知一个角是120°,则另两个角也是唯一确定的(30°,30°).由此马彪同学得出结论:在等腰三角形中,已知一个角的度数,则另两个角的度数也是唯一确定的.马彪同学的结论是的.(填“正确”或“错误”)三、解答题(解答时要写出必要的文字说明、证明过程或演算步骤,共9个题,满分102分)17.(12分)(1)计算:11sin60|12-⎛⎫︒-+ ⎪⎝⎭;(2)化简:(a+3)2﹣(a﹣3)2.18.(10分)如图,在平面直角坐标系中,已知点A(0,3),B(2,4),C(4,0),D(2,﹣3),E(0,﹣4).写出D,C,B关于y轴对称点F,G,H的坐标,并画出F,G,H点.顺次而平滑地连接A,B,C,D,E,F,G,H,A各点.观察你画出的图形说明它具有怎样的性质,它象我们熟知的什么图形?19.(10分)如图,数学实习小组在高300米的山腰(即PH=300米)P处进行测量,测得对面山坡上A处的俯角为30°,对面山脚B处的俯角60°.已知tan∠P,H,B,C,A在同一个平面上,点H,B,C在同一条直线上,且PH⊥HC.(1)求∠ABP的度数;(2)求A,B两点间的距离.20.(10分)甲、乙两位同学玩摸球游戏,准备了甲、乙两个口袋,其中甲口袋中放有标号为1,2,3,4,5的5个球,乙口袋中放有标号为1,2,3,4的4个球.游戏规则:甲从甲口袋摸一球,乙从乙口袋摸一球,摸出的两球所标数字之差(甲数字﹣乙数字)大于0时甲胜,小于0时乙胜,等于0时平局.你认为这个游戏规则对双方公平吗?请说明理由.若不公平,请你对本游戏设计一个对双方都公平的游戏规则.21.(10分)如图,直线L经过点A(0,﹣1),且与双曲线c:myx交于点B(2,1).(1)求双曲线c及直线L的解析式;(2)已知P(a﹣1,a)在双曲线c上,求P点的坐标.22.(12分)某校家长委员会计划在九年级毕业生中实施“读万卷书,行万里路,了解赤峰,热爱家乡”主题活动,决定组织部分毕业生代表走遍赤峰全市12个旗、县、区考察我市创建文明城市成果,远航旅行社对学生实行九折优惠,吉祥旅行社对20人以内(含20人)学生旅行团不优惠,超过20人超出的部分每人按八折优惠.两家旅行社报价都是2000元/人.服务项目、旅行路线相同.请你帮助家长委员会策划一下怎样选择旅行社更省钱.23.(12分)如图,已知MN是⊙O的直径,直线PQ与⊙O相切于P点,NP平分∠MNQ.(1)求证:NQ⊥PQ;(2)若⊙O的半径R=3,NP=NQ的长.24.(12分)如图,已知△OAB的顶点A(﹣6,0),B(0,2),O是坐标原点,将△OAB绕点O 按顺时针旋转90°,得到△ODC.(1)写出C,D两点的坐标;(2)求过A,D,C三点的抛物线的解析式,并求此抛物线顶点E的坐标;(3)证明AB⊥BE.25.(14分)如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由.参考答案与解析一.选择题:(每小题给出的四个选项中,只有一个正确选项。
内蒙古赤峰市中考数学试卷
内蒙古赤峰市中考数学试卷一、选择题(每小题给出的选项中只有一个符合题意,请将符合题意的选项序号,在答题卡的对应位置上按要求涂黑.每小题3分,共计36分)1.(3分)|(﹣3)﹣5|等于()A.﹣8 B.﹣2 C.2 D.82.(3分)下列图形中既是轴对称图形又是中心对称图形的是()A.B.C. D.3.(3分)风景秀美的赤峰有“草原明珠”的美称,赤峰市全域总面积为90021平方公里.90021用科学记数法表示为()A.9.0021×105 B.9.0021×104 C.90.021×103 D.900.21×1024.(3分)下列运算正确的是()A.3x+2y=5(x+y)B.x+x3=x4C.x2•x3=x6D.(x2)3=x65.(3分)直线a∥b,Rt△ABC的直角顶点C在直线a上,若∠1=35°,则∠2等于()A.65°B.50°C.55°D.60°6.(3分)能使式子+成立的x的取值范围是()A.x≥1 B.x≥2 C.1≤x≤2 D.x≤27.(3分)小明向如图所示的正方形ABCD区域内投掷飞镖,点E是以AB为直径的半圆与对角线AC的交点.如果小明投掷飞镖一次,则飞镖落在阴影部分的概率为()A.B.C.D.8.(3分)下面几何体的主视图为()A.B.C.D.9.(3分)点A(1,y1)、B(3,y2)是反比例函数y=图象上的两点,则y1、y2的大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能确定10.(3分)如图,将边长为4的菱形ABCD纸片折叠,使点A恰好落在对角线的交点O处,若折痕EF=2,则∠A=()A.120°B.100°C.60°D.30°11.(3分)将一次函数y=2x﹣3的图象沿y轴向上平移8个单位长度,所得直线的解析式为()A.y=2x﹣5 B.y=2x+5 C.y=2x+8 D.y=2x﹣812.(3分)正整数x、y满足(2x﹣5)(2y﹣5)=25,则x+y等于()A.18或10 B.18 C.10 D.26二、填空题(请把答案填写在答题卡相应的横线上,每小题3分,共12分)13.(3分)分解因式:xy2+8xy+16x=.14.(3分)如果关于x的方程x2﹣4x+2m=0有两个不相等的实数根,则m的取值范围是.15.(3分)数据5,6,5,4,10的众数、中位数、平均数的和是.16.(3分)在平面直角坐标系中,点P(x,y)经过某种变换后得到点P'(﹣y+1,x+2),我们把点P'(﹣y+1,x+2)叫做点P(x,y)的终结点.已知点P1的终结点为P2,点P2的终结点为P3,点P3的终结点为P4,这样依次得到P1、P2、P3、P4、…P n、…,若点P1的坐标为(2,0),则点P2017的坐标为.三、解答题(在答题卡上解答,答在本试卷上无效,解答时要写出必要的文字说明、证明过程或演算步骤,共10题,满分102分)17.(6分)(﹣)÷,其中a=2017°+(﹣)﹣1+tan30°.18.(6分)已知平行四边形ABCD.(1)尺规作图:作∠BAD的平分线交直线BC于点E,交DC延长线于点F(要求:尺规作图,保留作图痕迹,不写作法);(2)在(1)的条件下,求证:CE=CF.19.(10分)为了增强中学生的体质,某校食堂每天都为学生提供一定数量的水果,学校李老师为了了解学生喜欢吃哪种水果,进行了抽样调查,调查分为五种类型:A喜欢吃苹果的学生;B喜欢吃桔子的学生;C.喜欢吃梨的学生;D.喜欢吃香蕉的学生;E喜欢吃西瓜的学生,并将调查结果绘制成图1和图2 的统计图(不完整).请根据图中提供的数据解答下列问题:(1)求此次抽查的学生人数;(2)将图2补充完整,并求图1中的x;(3)现有5名学生,其中A类型3名,B类型2名,从中任选2名学生参加体能测试,求这两名学生为同一类型的概率(用列表法或树状图法)20.(10分)王浩同学用木板制作一个带有卡槽的三角形手机架,如图1所示.已知AC=20cm,BC=18cm,∠ACB=50°,王浩的手机长度为17cm,宽为8cm,王浩同学能否将手机放入卡槽AB内?请说明你的理由.(提示:sin50°≈0.8,cos50°≈0.6,tan50°≈1.2)21.(10分)如图,一次函数y=﹣x+1的图象与x轴、y轴分别交于点A、B,以线段AB为边在第一象限作等边△ABC.(1)若点C在反比例函数y=的图象上,求该反比例函数的解析式;(2)点P(2,m)在第一象限,过点P作x轴的垂线,垂足为D,当△PAD 与△OAB相似时,P点是否在(1)中反比例函数图象上?如果在,求出P点坐标;如果不在,请加以说明.22.(10分)为了尽快实施“脱贫致富奔小康”宏伟意图,某县扶贫工作队为朝阳沟村购买了一批苹果树苗和梨树苗,已知一棵苹果树苗比一棵梨树苗贵2元,购买苹果树苗的费用和购买梨树苗的费用分别是3500元和2500元.(1)若两种树苗购买的棵数一样多,求梨树苗的单价;(2)若两种树苗共购买1100棵,且购买两种树苗的总费用不超过6000元,根据(1)中两种树苗的单价,求梨树苗至少购买多少棵.23.(12分)如图,点A是直线AM与⊙O的交点,点B在⊙O上,BD⊥AM垂足为D,BD与⊙O交于点C,OC平分∠AOB,∠B=60°.(1)求证:AM是⊙O的切线;(2)若DC=2,求图中阴影部分的面积(结果保留π和根号).24.(12分)如图1,在△ABC中,设∠A、∠B、∠C的对边分别为a,b,c,过点A作AD⊥BC,垂足为D,会有sin∠C=,则S△ABC=BC×AD=×BC×ACsin∠C=absin∠C,=absin∠C即S△ABC同理S=bcsin∠A△ABCS△ABC=acsin∠B通过推理还可以得到另一个表达三角形边角关系的定理﹣余弦定理:如图2,在△ABC中,若∠A、∠B、∠C的对边分别为a,b,c,则a2=b2+c2﹣2bccos∠Ab2=a2+c2﹣2accos∠Bc2=a2+b2﹣2abcos∠C用上面的三角形面积公式和余弦定理解决问题:(1)如图3,在△DEF中,∠F=60°,∠D、∠E的对边分别是3和8.求S△DEF和DE2.=EF×DFsin∠F=;解:S△DEFDE2=EF2+DF2﹣2EF×DFcos∠F=.(2)如图4,在△ABC中,已知AC>BC,∠C=60°,△ABC'、△BCA'、△ACB'分别是以AB、BC、AC为边长的等边三角形,设△ABC、△ABC'、△BCA'、△ACB'的面积分别为S1、S2、S3、S4,求证:S1+S2=S3+S4.25.(12分)△OPA和△OQB分别是以OP、OQ为直角边的等腰直角三角形,点C、D、E分别是OA、OB、AB的中点.(1)当∠AOB=90°时如图1,连接PE、QE,直接写出EP与EQ的大小关系;(2)将△OQB绕点O逆时针方向旋转,当∠AOB是锐角时如图2,(1)中的结论是否成立?若成立,请给出证明;若不成立,请加以说明.(3)仍将△OQB绕点O旋转,当∠AOB为钝角时,延长PC、QD交于点G,使△ABG为等边三角形如图3,求∠AOB的度数.26.(14分)如图,二次函数y=ax2+bx+c(a≠0)的图象交x轴于A、B两点,交y轴于点D,点B的坐标为(3,0),顶点C的坐标为(1,4).(1)求二次函数的解析式和直线BD的解析式;(2)点P是直线BD上的一个动点,过点P作x轴的垂线,交抛物线于点M,当点P在第一象限时,求线段PM长度的最大值;(3)在抛物线上是否存在异于B、D的点Q,使△BDQ中BD边上的高为2?若存在求出点Q的坐标;若不存在请说明理由.内蒙古赤峰市中考数学试卷参考答案与试题解析一、选择题(每小题给出的选项中只有一个符合题意,请将符合题意的选项序号,在答题卡的对应位置上按要求涂黑.每小题3分,共计36分)1.(3分)(2017•赤峰)|(﹣3)﹣5|等于()A.﹣8 B.﹣2 C.2 D.8【分析】根据分式的减法和绝对值可以解答本题.【解答】解:|(﹣3)﹣5|=|﹣3﹣5|=|﹣8|=8,故选D.【点评】本题考查有理数的减法和绝对值,解答本题的关键是明确有理数减法的计算方法.2.(3分)(2017•赤峰)下列图形中既是轴对称图形又是中心对称图形的是()A.B.C. D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,不合题意;B、不是轴对称图形,是中心对称图形,不合题意;C、是轴对称图形,也是中心对称图形,符合题意;D、是轴对称图形,不是中心对称图形,不合题意.故选:C.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.(3分)(2017•赤峰)风景秀美的赤峰有“草原明珠”的美称,赤峰市全域总面积为90021平方公里.90021用科学记数法表示为()A.9.0021×105 B.9.0021×104 C.90.021×103 D.900.21×102【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:90021用科学记数法表示为9.0021×104.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2017•赤峰)下列运算正确的是()A.3x+2y=5(x+y)B.x+x3=x4C.x2•x3=x6D.(x2)3=x6【分析】根据合并同类项、同底数幂的乘法、幂的乘方的计算法则计算,对各选项分析判断后利用排除法求解.【解答】解:A、不是同类项不能合并,故A错误;B、不是同类项不能合并,故B错误;C、x2•x3=x5,故C错误;D、(x2)3=x6,故D正确.故选:D.【点评】本题考查合并同类项、同底数幂的乘法、幂的乘方,熟练掌握运算性质和法则是解题的关键.5.(3分)(2017•赤峰)直线a∥b,Rt△ABC的直角顶点C在直线a上,若∠1=35°,则∠2等于()A.65°B.50°C.55°D.60°【分析】先根据直角为90°,即可得到∠3的度数,再根据平行线的性质,即可得出∠2的度数.【解答】解:∵Rt△ABC的直角顶点C在直线a上,∠1=35°,∴∠3=90°﹣35°=55°,又∵a∥b,∴∠2=∠3=55°,故选:C.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行同位角相等.6.(3分)(2017•赤峰)能使式子+成立的x的取值范围是()A.x≥1 B.x≥2 C.1≤x≤2 D.x≤2【分析】根据二次根式的意义:被开方数大于等于0,就可以求解.【解答】解:根据题意得:,解得:1≤x≤2.故选:C.【点评】本题考查了函数自变量的取值范围,涉及的知识点为:二次根式的被开方数是非负数.7.(3分)(2017•赤峰)小明向如图所示的正方形ABCD区域内投掷飞镖,点E是以AB为直径的半圆与对角线AC的交点.如果小明投掷飞镖一次,则飞镖落在阴影部分的概率为()A.B.C.D.,进而得【分析】直接利用正方形的性质结合转化思想得出阴影部分面积=S△CEB出答案.【解答】解:如图所示:连接BE,可得,AE=BE,∠AEB=90°,=S△BEC=S正方形ABCD,且阴影部分面积=S△CEB故小明投掷飞镖一次,则飞镖落在阴影部分的概率为:.故选:B.【点评】此题主要考查了几何概率,正确利用正方形性质得出阴影部分面积=S△是解题关键.CEB8.(3分)(2017•赤峰)下面几何体的主视图为()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看,故选:C.【点评】本题考查了简单主题的三视图,从正面看得到的图形是主视图.9.(3分)(2017•赤峰)点A(1,y1)、B(3,y2)是反比例函数y=图象上的两点,则y1、y2的大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能确定【分析】根据反比例函数图象的增减性进行填空.【解答】解:∵反比例函数y=中的9>0,∴经过第一、三象限,且在每一象限内y随x的增大而减小,又∵A(1,y1)、B(3,y2)都位于第一象限,且1<3,∴y1>y2,故选A.【点评】本题考查了反比例函数图象上点的坐标特征,熟记反比例函数图象与系数的关系以及函数图象的性质是解题的关键.10.(3分)(2017•赤峰)如图,将边长为4的菱形ABCD纸片折叠,使点A恰好落在对角线的交点O处,若折痕EF=2,则∠A=()A.120°B.100°C.60°D.30°【分析】连接AC,根据菱形的性质得出AC⊥BD,根据折叠得出EF⊥AC,EF平分AO,得出EF∥BD,得出EF为△ABD的中位线,根据三角形中位线定理求出BD的长,进而可得到BO的长,由勾股定理可求出AO的长,则∠ABO可求出,继而∠BAO的度数也可求出,再由菱形的性质可得∠A=2∠BAO.【解答】解:连接AC,∵四边形ABCD是菱形,∴AC⊥BD,∵A沿EF折叠与O重合,∴EF⊥AC,EF平分AO,∵AC⊥BD,∴EF∥BD,∴E、F分别为AB、AD的中点,∴EF为△ABD的中位线,∴EF=BD,∴BD=2EF=4,∴BO=2,∴AO==2,∴AO=AB,∴∠ABO=30°,∴∠BAO=60°,∴∠BAD=120°.故选A.【点评】本题考查了折叠的性质、菱形的性质、三角形中位线定理以及勾股定理的运用;熟练掌握菱形的性质和翻折变换的性质,并能进行推理论证与计算是解决问题的关键.11.(3分)(2017•赤峰)将一次函数y=2x﹣3的图象沿y轴向上平移8个单位长度,所得直线的解析式为()A.y=2x﹣5 B.y=2x+5 C.y=2x+8 D.y=2x﹣8【分析】根据函数图象上加下减,可得答案.【解答】解:由题意,得y=2x﹣3+8,即y=2x+5,故选:B.【点评】本题考查了一次函数图象与几何变换,利用函数图象的平移规律是解题关键.12.(3分)(2017•赤峰)正整数x、y满足(2x﹣5)(2y﹣5)=25,则x+y等于()A.18或10 B.18 C.10 D.26【分析】易得(2x﹣5)、(2y﹣5)均为整数,分类讨论即可求得x、y的值即可解题.【解答】解:∵x、y是正整数,且最小的正整数为1,∴2x﹣5是整数且最小整数为﹣3,2y﹣5是整数且最小的整数为﹣3∵25=1×25,或25=5×5,∴存在两种情况:①2x﹣5=1,2y﹣5=25,解得:x=3,y=15,;②2x﹣5=2y﹣5=5,解得:x=y=5;∴x+y=18或10,故选A.【点评】本题考查了整数的乘法,本题中根据25=1×25或25=5×5分类讨论是解题的关键.二、填空题(请把答案填写在答题卡相应的横线上,每小题3分,共12分)13.(3分)(2017•赤峰)分解因式:xy2+8xy+16x=x(y+4)2.【分析】此多项式有公因式,应先提取公因式,再对余下的多项式进行观察,有3项,可采用完全平方公式继续分解.【解答】解:xy2+8xy+16x=x(y2+8y+16)=x(y+4)2.故答案为:x(y+4)2.【点评】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.14.(3分)(2017•赤峰)如果关于x的方程x2﹣4x+2m=0有两个不相等的实数根,则m的取值范围是m<2.【分析】根据方程的系数结合根的判别式,即可得出△=16﹣8m>0,解之即可得出m的取值范围.【解答】解:∵关于x的方程x2﹣4x+2m=0有两个不相等的实数根,∴△=(﹣4)2﹣4×2m=16﹣8m>0,解得:m<2.故答案为:m<2.【点评】本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.15.(3分)(2017•赤峰)数据5,6,5,4,10的众数、中位数、平均数的和是16.【分析】根据众数、中位数和平均数的概念分别求出这组数据的众数、中位数和平均数,再相加即可.【解答】解:数据5出现了2次,次数最多,所以众数是5;数据按从小到大排列为4,5,5,6,10,中位数为5;平均数=(5+6+5+4+10)÷5=6;5+5+6=16.故答案为16.【点评】本题考查了平均数,中位数,众数的意义.平均数是指在一组数据中所有数据之和再除以数据的个数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数);众数是一组数据中出现次数最多的数据,注意众数可以不止一个.16.(3分)(2017•赤峰)在平面直角坐标系中,点P(x,y)经过某种变换后得到点P'(﹣y+1,x+2),我们把点P'(﹣y+1,x+2)叫做点P(x,y)的终结点.已知点P1的终结点为P2,点P2的终结点为P3,点P3的终结点为P4,这样依次得到P1、P2、P3、P4、…P n、…,若点P1的坐标为(2,0),则点P2017的坐标为(2,0).【分析】求得点P2、P3、P4、P5的值,即可发现其中规律,即可解题.【解答】解:P1坐标为(2,0),则P2坐标为(1,4),P3坐标为(﹣3,3),P4坐标为(﹣2,﹣1),P5坐标为(2,0),∴P n的坐标为(2,0),(1,4),(﹣3,3),(﹣2,﹣1)循环,∵2017=2016+1=4×504+1,∴P2017坐标与P1点重合,故答案为(2,0).【点评】本题考查了学生发现点的规律的能力,本题中找到P n坐标得规律是解题的关键.三、解答题(在答题卡上解答,答在本试卷上无效,解答时要写出必要的文字说明、证明过程或演算步骤,共10题,满分102分)17.(6分)(2017•赤峰)(﹣)÷,其中a=2017°+(﹣)﹣1+tan30°.【分析】先化简分式,然后再化简a的值,从而可求出原式的值.【解答】解:原式=×﹣×=﹣=由于a=2017°+(﹣)﹣1+tan30°,∴a=1﹣5+3=﹣1∴原式=﹣=﹣2【点评】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.18.(6分)(2017•赤峰)已知平行四边形ABCD.(1)尺规作图:作∠BAD的平分线交直线BC于点E,交DC延长线于点F(要求:尺规作图,保留作图痕迹,不写作法);(2)在(1)的条件下,求证:CE=CF.【分析】(1)作∠BAD的平分线交直线BC于点E,交DC延长线于点F即可;(2)先根据平行四边形的性质得出AB∥DC,AD∥BC,故∠1=∠2,∠3=∠4.再由AF平分∠BAD得出∠1=∠3,故可得出∠2=∠4,据此可得出结论.【解答】解:(1)如图所示,AF即为所求;(2)∵四边形ABCD是平行四边形,∴AB∥DC,AD∥BC,∴∠1=∠2,∠3=∠4.∵AF平分∠BAD,∴∠1=∠3,∴∠2=∠4,∴CE=CF.【点评】本题考查的是作图﹣基本作图,熟知角平分线的作法和性质是解答此题的关键.19.(10分)(2017•赤峰)为了增强中学生的体质,某校食堂每天都为学生提供一定数量的水果,学校李老师为了了解学生喜欢吃哪种水果,进行了抽样调查,调查分为五种类型:A喜欢吃苹果的学生;B喜欢吃桔子的学生;C.喜欢吃梨的学生;D.喜欢吃香蕉的学生;E喜欢吃西瓜的学生,并将调查结果绘制成图1和图2 的统计图(不完整).请根据图中提供的数据解答下列问题:(1)求此次抽查的学生人数;(2)将图2补充完整,并求图1中的x;(3)现有5名学生,其中A类型3名,B类型2名,从中任选2名学生参加体能测试,求这两名学生为同一类型的概率(用列表法或树状图法)【分析】(1)根据百分比=计算即可;(2)求出B、C的人数画出条形图即可;(3)利用树状图,即可解决问题;【解答】解:(1)此次抽查的学生人数为16÷40%=40人.(2)C占40×10%=4人,B占20%,有40×20%=8人,条形图如图所示,(3)由树状图可知:两名学生为同一类型的概率为=.【点评】本题考查列表法、树状图法、扇形统计图、条形统计图等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.20.(10分)(2017•赤峰)王浩同学用木板制作一个带有卡槽的三角形手机架,如图1所示.已知AC=20cm,BC=18cm,∠ACB=50°,王浩的手机长度为17cm,宽为8cm,王浩同学能否将手机放入卡槽AB内?请说明你的理由.(提示:sin50°≈0.8,cos50°≈0.6,tan50°≈1.2)【分析】根据题意作出合适的辅助线,可以求得AD和CD的长,进而可以求得DB的长,然后根据勾股定理即可得到AB的长,然后与17比较大小,即可解答本题.【解答】解:王浩同学能将手机放入卡槽AB内.理由:作AD⊥BC于点D,∵∠C=50°,AC=20cm,∴AD=AC•sin50°=20×0.8=16cm,CD=AC•cos50°=20×0.6=12cm,∵BC=18cm,∴DB=BC﹣CD=18﹣12=6cm,∴AB==,∵17=<,∴王浩同学能将手机放入卡槽AB内.【点评】本题考查解直角三角形的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用直角三角形的相关知识解答.21.(10分)(2017•赤峰)如图,一次函数y=﹣x+1的图象与x轴、y轴分别交于点A、B,以线段AB为边在第一象限作等边△ABC.(1)若点C在反比例函数y=的图象上,求该反比例函数的解析式;(2)点P(2,m)在第一象限,过点P作x轴的垂线,垂足为D,当△PAD 与△OAB相似时,P点是否在(1)中反比例函数图象上?如果在,求出P点坐标;如果不在,请加以说明.【分析】(1)由直线解析式可求得A、B坐标,在Rt△AOB中,利用三角函数定义可求得∠BAO=30°,且可求得AB的长,从而可求得CA⊥OA,则可求得C点坐标,利用待定系数法可求得反比例函数解析式;(2)分△PAD∽△ABO和△PAD∽△BAO两种情况,分别利用相似三角形的性质可求得m的值,可求得P点坐标,代入反比例函数解析式进行验证即可.【解答】解:(1)在y=﹣x+1中,令y=0可解得x=,令x=0可得y=1,∴A(,0),B(0,1),∴tan∠BAO===,∴∠BAO=30°,∵△ABC是等边三角形,∴∠BAC=60°,∴∠CAO=90°,在Rt△BOA中,由勾股定理可得AB=2,∴AC=2,∴C(,2),∵点C在反比例函数y=的图象上,∴k=2×=2,∴反比例函数解析式为y=;(2)∵P(2,m)在第一象限,∴AD=OD﹣OA=2﹣=,PD=m,当△ADP∽△AOB时,则有=,即=,解得m=1,此时P点坐标为(2,1);当△PDA∽△AOB时,则有=,即=,解得m=3,此时P点坐标为(2,3);把P(2,3)代入y=可得3≠,∴P(2,3)不在反比例函数图象上,把P(2,1)代入反比例函数解析式得1=,∴P(2,1)在反比例函数图象上;综上可知P点坐标为(2,1).【点评】本题为反比例函数的综合应用,涉及待定系数法、等边三角形的性质、三角函数、勾股定理、相似三角形的性质及分类讨论思想等知识.在(1)中求得C点坐标是解题的关键,在(2)中利用相似三角形的性质得到m的方程是解题的关键,注意分两种情况.本题考查知识点较多,综合性较强,难度适中.22.(10分)(2017•赤峰)为了尽快实施“脱贫致富奔小康”宏伟意图,某县扶贫工作队为朝阳沟村购买了一批苹果树苗和梨树苗,已知一棵苹果树苗比一棵梨树苗贵2元,购买苹果树苗的费用和购买梨树苗的费用分别是3500元和2500元.(1)若两种树苗购买的棵数一样多,求梨树苗的单价;(2)若两种树苗共购买1100棵,且购买两种树苗的总费用不超过6000元,根据(1)中两种树苗的单价,求梨树苗至少购买多少棵.【分析】(1)设梨树苗的单价为x元,则苹果树苗的单价为(x+2)元,根据两种树苗购买的棵树一样多列出方程求出其解即可;(2)设购买梨树苗种树苗a棵,苹果树苗则购买(1100﹣a)棵,根据购买两种树苗的总费用不超过6000元建立不等式求出其解即可.【解答】解:(1)设梨树苗的单价为x元,则苹果树苗的单价为(x+2)元,依题意得:=,解得x=5.经检验x=5是原方程的解,且符合题意.答:梨树苗的单价是5元;(2)设购买梨树苗种树苗a棵,苹果树苗则购买(1100﹣a)棵,依题意得:(5+2)(1100﹣a)+5a≤6000,解得a≥850.答:梨树苗至少购买850棵.【点评】本题考查了列分式方程解实际问题的运用,一元一次不等式解实际问题的运用,解答时由方程求出两种树苗的单价是关键.23.(12分)(2017•赤峰)如图,点A是直线AM与⊙O的交点,点B在⊙O上,BD⊥AM垂足为D,BD与⊙O交于点C,OC平分∠AOB,∠B=60°.(1)求证:AM是⊙O的切线;(2)若DC=2,求图中阴影部分的面积(结果保留π和根号).【分析】(1)由已知条件得到△BOC是等边三角形,根据等边三角形的性质得到∠1=∠2=60°,由角平分线的性质得到∠1=∠3,根据平行线的性质得到∠OAM=90°,于是得到结论;(2)根据等边三角形的性质得到∠OAC=60°,根据三角形的内角和得到∠CAD=30°,根据勾股定理得到AD=2,于是得到结论.【解答】解:(1)∵∠B=60°,∴△BOC是等边三角形,∴∠1=∠2=60°,∵OC平分∠AOB,∴∠1=∠3,∴∠2=∠3,∴OA∥BD,∴∠BDM=90°,∴∠OAM=90°,∴AM是⊙O的切线;(2)∵∠3=60°,OA=OC,∴△AOC是等边三角形,∴∠OAC=60°,∵∠OAM=90°,∴∠CAD=30°,∵CD=2,∴AC=2CD=4,∴AD=2,∴S阴影=S梯形OADC﹣S扇形OAC=(4+2)×2﹣=6﹣.【点评】本题考查了切线的判定和性质,等边三角形的性质和判定,平行线的性质,正确的作出辅助线是解题的关键.24.(12分)(2017•赤峰)如图1,在△ABC中,设∠A、∠B、∠C的对边分别为a,b,c,过点A作AD⊥BC,垂足为D,会有sin∠C=,则S△ABC=BC×AD=×BC×ACsin∠C=absin∠C,即S=absin∠C△ABC=bcsin∠A同理S△ABCS△ABC=acsin∠B通过推理还可以得到另一个表达三角形边角关系的定理﹣余弦定理:如图2,在△ABC中,若∠A、∠B、∠C的对边分别为a,b,c,则a2=b2+c2﹣2bccos∠Ab2=a2+c2﹣2accos∠Bc2=a2+b2﹣2abcos∠C用上面的三角形面积公式和余弦定理解决问题:(1)如图3,在△DEF中,∠F=60°,∠D、∠E的对边分别是3和8.求S△DEF 和DE2.解:S=EF×DFsin∠F=6;△DEFDE2=EF2+DF2﹣2EF×DFcos∠F=49.(2)如图4,在△ABC中,已知AC>BC,∠C=60°,△ABC'、△BCA'、△ACB'分别是以AB、BC、AC为边长的等边三角形,设△ABC、△ABC'、△BCA'、△ACB'的面积分别为S1、S2、S3、S4,求证:S1+S2=S3+S4.【分析】(1)直接利用正弦定理和余弦定理即可得出结论;(2)方法1、利用正弦定理得出三角形的面积公式,再利用等边三角形的性质即可得出结论;方法2、先用正弦定理得出S1,S2,S3,S4,最后用余弦定理即可得出结论.【解答】解:(1)在△DEF中,∠F=60°,∠D、∠E的对边分别是3和8,∴EF=3,DF=8,=EF×DFsin∠F=×3×8×sin60°=6,∴S△DEFDE2=EF2+DF2﹣2EF×DFcos∠F=32+82﹣2×3×8×cos60°=49,故答案为:6,49;(2)证明:方法1,∵∠ACB=60°,∴AB2=AC2+BC2﹣2AC•BCcos60°=AC2+BC2﹣AC•BC,两边同时乘以sin60°得,AB2sin60°=AC2sin60°+BC2sin60°﹣AC•BCsin60°,∵△ABC',△BCA',△ACB'是等边三角形,∴S1=AC•BCsin60°,S2=AB2sin60°,S3=BC2sin60°,S4=AC2sin60°,∴S2=S4+S3﹣S1,∴S1+S2=S3+S4,方法2、令∠A,∠B,∠C的对边分别为a,b,c,∴S1=absin∠C=absin60°=ab∵△ABC',△BCA',△ACB'是等边三角形,∴S2=c•c•sin60°=c2,S3=a•a•sin60°=a2,S4=b•b•sin60°=b2,∴S1+S2=(ab+c2),S3+S4=(a2+b2),∵c2=a2+b2﹣2ab•cos∠C=a2+b2﹣2ab•cos60°,∴a2+b2=c2+ab,∴S1+S2=S3+S4.【点评】此题是三角形综合题,主要考查了新定义的理解和应用,解本题的关键是理解新定义,会用新定义解决问题.25.(12分)(2017•赤峰)△OPA和△OQB分别是以OP、OQ为直角边的等腰直角三角形,点C、D、E分别是OA、OB、AB的中点.(1)当∠AOB=90°时如图1,连接PE、QE,直接写出EP与EQ的大小关系;(2)将△OQB绕点O逆时针方向旋转,当∠AOB是锐角时如图2,(1)中的结论是否成立?若成立,请给出证明;若不成立,请加以说明.(3)仍将△OQB绕点O旋转,当∠AOB为钝角时,延长PC、QD交于点G,使△ABG为等边三角形如图3,求∠AOB的度数.【分析】(1)先判断出点P,O,Q在同一条直线上,再判断出△APE≌△BFE,最后用直角三角形的斜边的中线等于斜边的一半即可得出结论;(2)先判断出CE=DQ,PC=DE,进而判断出△EPC≌△QED即可得出结论;(3)先判断出CQ,GP分别是OB,OA的垂直平分线,进而得出∠GBO=∠GOB,∠GOA=∠GAO,即可得出结论.【解答】解:(1)如图1,延长PE,QB交于点F,∵△APO和△BQO是等腰直角三角形,∴∠APO=∠BQO=90°,∠AOP=∠BOQ=45°,∵∠AOB=90°,∴∠AOP+∠AOB+∠BOQ=180°,∴点P,O,Q在同一条直线上,∵∠APO=∠BQO=90°,∴AP∥BQ,∴∠PAE=∠FBE,∵点E是AB中点,∴AE=BE,∵∠AEP=∠BEF,∴△APE≌△BFE,∴PE=EF,∴点E是Rt△PQF的斜边PF的中点,∴EP=EQ;(2)成立,证明:∵点C,E分别是OA,AB的中点,∴CE∥OB,CE=OB,∴∠DOC=∠ECA,∵点D是Rt△OQB斜边中点,∴DQ=OB,∴CE=DQ,同理:PC=DE,∠DOC=∠BDE,∴∠ECA=∠BDE,∵∠PCE=∠EDQ,∴△EPC≌△QED,∴EP=EQ;(3)如图2连接GO,∵点D,C分别是OB,OA的中点,△APO与△QBO都是等腰直角三角形,∴CQ,GP分别是OB,OA的垂直平分线,∴GB=GO=GA,∴∠GBO=∠GOB,∠GOA=∠GAO,设∠GOB=x,∠GOA=y,∴x+x+y+y+60°=360°∴x+y=150°,∴∠AOB=150°.【点评】此题是几何变换综合题,主要考查了等腰直角三角形的性质,全等三角形的判定和性质,直角三角形的性质,线段的垂直平分线的性质,解(1)的关键是构造全等三角形,解(2)的关键是判断出CE=DQ,解(3)的关键是判断出CQ,GP分别是OB,OA的垂直平分线,是一道中等难度的题目.26.(14分)(2017•赤峰)如图,二次函数y=ax2+bx+c(a≠0)的图象交x轴于A、B两点,交y轴于点D,点B的坐标为(3,0),顶点C的坐标为(1,4).(1)求二次函数的解析式和直线BD的解析式;(2)点P是直线BD上的一个动点,过点P作x轴的垂线,交抛物线于点M,当点P在第一象限时,求线段PM长度的最大值;(3)在抛物线上是否存在异于B、D的点Q,使△BDQ中BD边上的高为2?若存在求出点Q的坐标;若不存在请说明理由.【分析】(1)可设抛物线解析式为顶点式,由B点坐标可求得抛物线的解析式,则可求得D点坐标,利用待定系数法可求得直线BD解析式;(2)设出P点坐标,从而可表示出PM的长度,利用二次函数的性质可求得其最大值;(3)过Q作QG∥y轴,交BD于点G,过Q和QH⊥BD于H,可设出Q点坐标,表示出QG的长度,由条件可证得△DHG为等腰直角三角形,则可得到关于Q 点坐标的方程,可求得Q点坐标.【解答】解:(1)∵抛物线的顶点C的坐标为(1,4),∴可设抛物线解析式为y=a(x﹣1)2+4,∵点B(3,0)在该抛物线的图象上,∴0=a(3﹣1)2+4,解得a=﹣1,∴抛物线解析式为y=﹣(x﹣1)2+4,即y=﹣x2+2x+3,∵点D在y轴上,令x=0可得y=3,∴D点坐标为(0,3),∴可设直线BD解析式为y=kx+3,把B点坐标代入可得3k+3=0,解得k=﹣1,∴直线BD解析式为y=﹣x+3;(2)设P点横坐标为m(m>0),则P(m,﹣m+3),M(m,﹣m2+2m+3),∴PM=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m=﹣(m﹣)2+,∴当m=时,PM有最大值;(3)如图,过Q作QG∥y轴交BD于点G,交x轴于点E,作QH⊥BD于H,设Q(x,﹣x2+2x+3),则G(x,﹣x+3),∴QG=|﹣x2+2x+3﹣(﹣x+3)|=|﹣x2+3x|,∵△BOD是等腰直角三角形,∴∠DBO=45°,∴∠HGQ=∠BGE=45°,当△BDQ中BD边上的高为2时,即QH=HG=2,∴QG=×2=4,∴|﹣x2+3x|=4,当﹣x2+3x=4时,△=9﹣16<0,方程无实数根,当﹣x2+3x=﹣4时,解得x=﹣1或x=4,∴Q(﹣1,0)或(4,﹣5),综上可知存在满足条件的点Q,其坐标为(﹣1,0)或(4,﹣5).【点评】本题为二次函数的综合应用,涉及待定系数法、二次函数的性质、等腰直角三角形的性质及方程思想等知识.在(1)中主要是待定系数法的考查,注意抛物线顶点式的应用,在(2)中用P点坐标表示出PM的长是解题的关键,在(3)中构造等腰直角三角形求得QG的长是解题的关键.本题考查知识点较多,综合性较强,难度适中.。
2009年赤峰市中考数学试卷及答案
2009年赤峰市初中毕业、升学统一考试试卷数学注意事项:本试卷共150分,考试时间120分钟一、选择题(每小题只有一个正确答案,请将正确答案的标号填入括号内,每小题3分,共24分)1、(-3)3等于( )A、-9B、9C、-27D、272、景色秀美的宁城县打虎石水库,总库容量为119600000立方米,用科学计数法表示为( )A、1.196×108立方米B、1.196×107立方米C、11.96×107立方米D、0.1196×109立方米3、下面的图形中,不是中心对称的是( )4、若两圆的直径分别是2cm和10cm,圆心距为8cm,则这两个圆的位置关系是( )A、内切B、相交C、外切D、外离5、下列运算正确的是( )A、a2·a=3a B.a6÷a2=a4 C.a+a=a2 D.(a2)3=a56、如图PA、PB是⊙O的切点,AC是⊙O的直径,∠P=40°,则∠BAC得度数是 ( )A、10°B、20°C、30°D、40°7、李刚同学拿一个矩形木框在阳光下摆弄,矩形木框在地面上形成的投影不可能的是( )·A B C D8、将一张三角形纸片沿中位线剪开,拼成一个新的图形,这个新的图形可能是( )A、三角形B、平行四边形C、矩形D、正方形二、填空题(本大题共8个小题,每小题3分,共24分,请把正确答案填在题中横线上)9、135°角的补角等于度.10、菱形的对角线长分别是16cm、12cm,周长是 .11、分解因式:3x3-6x2+3x= .12、如图,将点A(-√5 ,0)沿x轴正方向平移1个单位长度得到点P,连接PO,再将PO绕点O按顺时针方向旋转120°,则PO在旋转过程中扫过的扇形的面积为 (结果保留π)13、已知关于x的方程x2-3x+2k=0的一个根是1,则k=14、如右图,是由四个直角边分别是3和4的全等的直角三角形拼成的“赵爽弦图”,小亮随机的往大正方形区域内投针一次,则针扎在阴影部分的概率是.15、若右图是由几个相同的小正方形搭成的几何体的主视图和和俯视图,则搭成这个几何体的小正方形的个数最少是AOBPCABDCE14题图15题图个.16、如图,正方形ABCD 内接于⊙O,⊙O 的半径为2,若分别以AB 、BC 、CD 、⌒ ⌒ ⌒ ⌒ DA 为折痕,将劣弧AB 、BC 、CD 、DA 向内对折,则图中阴影部分的面积为 (结果保留π)三、解答题(本大题共9个小题,满分102分,解答时应写出必要的文字说明、证明过程或演算步骤)17、(本题每小题6分,满分12分) (1)计算: -2cos30°+(2009-π)0-(1/5)-1 (2)解分式方程:18、(本题满分8分)某工厂今年3月份的产值为100万元,由于受国际金融风暴的影响,5月份的产值下降到81万元,求平均每月产值下降的百分率.19、(10分)一副斜边相等的直角三角形(∠DAC=45°,∠BAC=30°),按如图所示的方式在平面内拼成一个四边形.(1)A 、B 、C 、D 四点在同一个圆上吗?如果在,请写出证明过程;如果不在,请说明理由.(2)过点D 作直线ι∥AC,求证:ι是这个圆的切线20、(10分)公园里有一块形如四边形ABCD 的草地,测得BC=CD=10米,∠B=∠C=120°,∠A=45°. 请你求出这块草地的面积21、(12分)实施素质教育以来,某中学立足于学生的终身发展,大力开发课程资源,在初一年级设立了六个课外学习小组,下面是初一学生参加留个学习小组的统计表和扇形统计图,请你根据图表提供的信息回答下列问题:学习小组体育 美术 科技 音乐 写作 奥数 人数 72 36 54 18(1)初一年级共有学生 人.311-x 122-x x - =1 A B D l C l A B D C(2)在表格中的空格内填上相应的数字.(3)表格中所提供的六个数据的中位数是,众数是.(4)求“从该校初一年级中人选一名学生,是参加音、体、美三个小组学生的”概率22、(10分)如图,在四边形ABCD中,AB=BC,BF是∠ABC的平分线,AF∥DC,连接AC、CF,求证:CA是∠DCF的平分线.23、(12分)“教师节”快要到了,张爷爷用120元钱,为“光明”幼儿园购买价格分别为8元、6元和5元的图书20册,(1)若设8元的图书购买x册,6元的图书购买y册,求y与x之间的函数关系式.(2)若每册图书至少要购买2册,求张爷爷有几种购买方案?并写出y取最大值和y取最小值时的购买方案.24、(14分)如图,一次函数y=ax+b的图象与反比例函数y=k/x的图象交于A、B、两点,与x轴交于点C,与y轴交于点D,已知OA= ,tan∠AOC=1/3,点B的坐标为(m,-2).10(1)求反比例函数的解析式(2)求一次函数的解析式(3)在y轴上存在一点P,是的△PD C与△ODC相似,请你求出P点的坐标.25、(14分)如图,R t△ABC的顶点坐标分别为A(0, ),B(-1/2, ),C(1,0),∠ABC=90°,BC与y轴的交点为D,D点坐标为(0, ),以点D为顶点、y轴为对称轴的抛物线过点B. (1)求该抛物线的解析式(2)将△ABC沿AC折叠后得到点B的对应点B1,求证四边形AOC B1是矩形,冰判断点B1是否在(1)的抛物线上.(3)延长BA交抛物线于点E,在线段BE上取一点P,过P点作x轴的垂线,交抛物线于点F,是否存在这样的点P,使四边形PADF是平行四边形?若存在,求出点P的坐标,若不存在,说明理由.32333。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2009年赤峰市初中毕业、升学统一考试试卷 数学
注意事项:本试卷共150分,考试时间120分钟
一、选择题(每小题只有一个正确答案,请将正确答案的标号填入括号内,每小题3分,共24分) 1、(-3)3等于 ( ) A 、-9 B 、9 C 、-27 D 、27
2、景色秀美的宁城县打虎石水库,总库容量为119600000立方米,用科学计数法表示为 ( ) A 、1.196×108立方米 B 、1.196×107立方米 C 、11.96×107立方米 D 、0.1196×109立方米
3、下面的图形中,不是中心对称的是 ( )
4、若两圆的直径分别是2cm 和10cm ,圆心距为8cm ,则这两个圆的位置关系是 ( ) A 、内切 B 、相交 C 、外切 D 、外离
5、下列运算正确的是
( ) A 、a 2·a=3a
B.a 6÷a 2=a
4 C.a+a=a 2 D.(a 2)3=a
5 6、如图PA 、PB 是⊙O 的切点,AC 是⊙O 的直径,∠P=40°, 则∠BAC 得度数是 ( ) A 、10° B 、20° C 、30° D 、40° 7、李刚同学拿一个矩形木框在阳光下摆弄,矩形木框在地面上形成的投影不可能的是 ( )
·
A B C D
8、将一张三角形纸片沿中位线剪开,拼成一个新的图形,这个新的图形可能是 A 、三角形 B 、平行四边形 C 、矩形 D 、正方形
二、填空题(本大题共8个小题,每小题3分,共24分,请把正确答案填
在题中横线上)
9、135°角的补角等于 度。
10、菱形的对角线长分别是16cm 、12cm ,周长是 。
11、分解因式:3x 3-6x 2+3x= .
12、如图,将点A (-√5 ,0)沿x 轴正方向平移1个单位长度 得到点P ,连接PO ,再将PO 绕点O 按顺时针方向旋转120°, 则PO 在旋转过程中扫过的扇形的面积为 (结果 保留π)
13、已知关于x 的方程x 2-3x+2k=0的一个根是1, 则k=
14、如右图,是由四个直角边分别是3和4的全等的直角三角形 拼成的“赵爽弦图”,小亮随机的往大正方形区域内投针一次, 则针扎在阴影部分的概率是 。
15、若右图是由几个相同的小正方形搭成的几何体的主视图和 和俯视图,则搭成这个几何体的小正方形的个数最少是
A O B
P C 14题图
15题图
个。
16、如图,正方形ABCD 内接于⊙O ,⊙O 的半径为2,若分别以AB 、BC 、CD 、 ⌒ ⌒ ⌒ ⌒
DA 为折痕,将劣弧AB 、BC 、CD 、DA 向内对折,则图中阴影部分的面积
为 (结果保留π)
三、解答题(本大题共9个小题,满分102分,解答时应写出必要的文字说明、 证明过程或演算步骤) 17、(本题每小题6分,满分12分)
(1)计算:
-2cos30°+(2009-π)0-(1/5
)-1 (2)解分式方程:
18、(本题满分8分)某工厂今年3月份的产值为100万元,由于受国际金融风暴的影响,5月份的产值下
降到81万元,求平均每月产值下降的百分率。
19、(10分)一副斜边相等的直角三角形(∠DAC=45
°,∠BAC=30°)
,按如图所示的方式在平面内拼成一个四边形。
(1)A 、B 、C 、D 四点在同一个圆上吗?如果在,请写出证明过程;如果不在,请说明理由。
(2)过点D 作直线ι∥AC ,求证:ι是这个圆的切线
20、(10分)公园里有一块形如四边形ABCD 的草地,测得BC=CD=10米,∠B=∠C=120°,∠A=45°。
请你求出这块草地的面积
21、(12分)实施素质教育以来,某中学立足于学生的终身发展,大力开发课程资源,在初一年级设立了六个课外学习小组,下面是初一学生参加留个学习小组的统计表和扇形统计图,请你根据图表提供的信 (1)初一年级共有学生 人。
3=1 l C
(2)在表格中的空格内填上相应的数字。
(3)表格中所提供的六个数据的中位数是 ,众数是 。
(4)求“从该校初一年级中人选一名学生,是参加音、体、美三个小组学生的”概率 22、(10分)如图,在四边形ABCD 中,AB=BC ,BF 是∠ABC 的平分线,AF ∥DC ,连接AC 、CF ,求证:CA 是∠DCF 的平分线。
23、(12分)
“教师节”快要到了,张爷爷用120元钱,为“光明”幼儿园购买价格分别为8元、6元和5元的图书20册,
(1)若设8元的图书购买x 册,6元的图书购买y 册,求y 与x 之间的函数关系式。
(2)若每册图书至少要购买2册,求张爷爷有几种购买方案?并写出y 取最大值和y 取最小值时的购买方案。
24、(14分)如图,一次函数y=ax+b 的图象与反比例函数y=k/x 的图象交于A 、B 、两点,与x 轴交于点C ,与y 轴交于点D ,已知
OA=
,tan ∠AOC=1/3,点B 的坐标为(m ,-2)。
(1)求反比例函数的解析式 (2)求一次函数的解析式
(3)在y 轴上存在一点P ,是的△PD C 与△ODC 相似, 请你求出P 点的坐标。
10
25、(14分)如图,R t △ABC 的顶点坐标分别为A (0, )
,B (-1/2, ),C (1,0
)
,∠ABC=90
°,
BC
与y 轴的交点为D ,D 点坐标为(0, ),以点D 为顶点、y 轴为对称轴的抛物线过点B 。
(1) 求该抛物线的解析式
(2) 将△ABC 沿AC 折叠后得到点B 的对应点B 1,求证
四边形AOC B 1是矩形,冰判断点B 1是否在(1)的抛物线上。
(3)延长BA 交抛物线于点E ,在线段BE 上取一点P ,过P 点作
x 轴的垂线,交抛物线于点F ,是否存在这样的点P ,使四边形PADF 是平行四边形?若存在,求出点P 的坐标,若不存在,说明理由。
32333。