勾股定理之专题—能力提升训练
2022-2023学年北师大版八年级数学上册《第1章勾股定理》解答题专题提升训练(附答案)

2022-2023学年北师大版八年级数学上册《第1章勾股定理》解答题专题提升训练(附答案)1.如图,Rt△ABC中,∠C=90°,BD平分∠ABC交AC于点D,DE⊥AB交AB于点E,已知CD=6,AD=10.(1)求线段AE的长;(2)求△ABC的面积.2.定义:如果一个三角形中有两个内角α,β满足α+2β=90°,那我们称这个三角形为“近直角三角形”.(1)若△ABC是近直角三角形,∠B>90°,∠C=50°,则∠A=.(2)在Rt△ABC中,∠BAC=90°,AB=3,AC=4,若CD是∠ACB的平分线.①求证:△BDC为近直角三角形.②求BD的长.3.如图,某住宅小区在施工过程中留下了一块空地(图中的四边形ABCD),经测量,在四边形ABCD中,AB=3m,BC=4m,AD=13m,∠B=∠ACD=90°.小区为美化环境,欲在空地上铺草坪,已知草坪每平方米100元,试问铺满这块空地共需花费多少元?4.如图,△ABC中,∠ACB=90°,AB=10,BC=6,若点P从点A出发,以每秒1个单位长度的速度沿折线A﹣C﹣B﹣A运动,设运动时间为t秒(t>0).(1)若点P在AC上,且满足P A=PB时,求此时t的值;(2)若点P恰好在∠BAC的平分线上,求t的值.5.如图,Rt△ABC中,∠B=90°,AB=12,BC=16,CD=21,AD=29,点E是AD的中点,求CE的长.6.如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=5cm,点P为CB边上一动点,当动点P沿CB从点C向点B运动时,△APC的面积发生了变化.设CP长为xcm,△APC 的面积为ycm2.(1)求y与x的关系式;(2)当点P运动到BC的中点时,△APC的面积是多少?(3)若△APC的面积为8cm2,则CP的长为多少?7.数学之美,不仅是几何图形经过排列组合后呈现的炫美图案,还包括严谨推理引发的思维律动.已超过400种勾股定理的证明方法呈现的数学之美让我们陶醉,其中一种方法是:将两个全等的Rt△ABE和Rt△DEC如图所示摆放,使点A,E,D在同一条直线上,∠A=∠D=90°中,即可借助图中几何图形的面积关系来证明a2+b2=c2.请写出证明过程.8.如图,在△ABC中,AB=AC,AD⊥BC于点D,∠CBE=45°,BE分别交AC,AD于点E、F,连接CF.(1)判断△BCF的形状,并说明理由;(2)若AF=BC,求证:BF2+EF2=AE2.9.如图,在△ABC中,D是边BC的中点,E是边AC的中点,连接AD,BE.(1)若CD=8,CE=6,AB=20,求证:∠C=90°;(2)若∠C=90°,AD=13,AE=6,求△ABC的面积.10.如图,△ABC在正方形网格中,点A、B、C均在小方格的格点上,若小方格边长为1,请判断△ABC的形状,并说明理由.11.在一条东西走向的河流一侧有一村庄C,河边原有两个取水点A,B,其中AB=AC,由于某种原因,由C到A的路现在已经不通,该村为方便村民取水,决定在河边新建一个取水点D(A、D、B在同一条直线上),并新修一条路CD,测得CB=6.5千米,CD =6千米,BD=2.5千米.(1)求证:CD⊥AB;(2)求原来的路线AC的长;12.已知,△ABC中,BC=8,AC=6,AB=10.(1)如图1,若点D是AB的中点,且∠B=40°,求∠DCA的度数;(2)如图2,若点E是AB边上的动点,求线段CE的最小值.13.在一次“探究性学习”中,老师设计了如下数表:n23456…a22﹣132﹣142﹣152﹣162﹣1…b4681012…C22+132+142+152+162+1…(1)观察上表,用含n(n>1,且n为整数)的代数式表示a,b,c,则a=,b =,c=.(2)在(1)的条件下判断:以a,b,c为边的三角形是否为直角三角形?证明你的结论.14.一棵高12m的大树被折断,折断处A距地面的距离AC=4.5m(点B为大树顶端着地处).在大树倒下的方向停着一辆小轿车,小轿车距大树底部C的距离CD为6.5m,点D 在CB的延长线上,求大树顶端着地处B到小轿车的距离BD.15.如图,已知AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且BC=CD,(1)求证:△BCE≌△DCF;(2)若AB=21,AD=9,BC=CD=10,求AC的长.16.如图是某设计师打造的一款项目的示意图,其BC段和垂直于地面的AB段均由不锈钢管材打造,两段总长度为26m,矩形CDEF是一木质平台的侧面示意图,测得CD=1m,AD=15m,求出AB段的长度.17.如图,旗绳AC自由下垂时,比旗杆AB长2米,如果将旗绳斜拉直,下端在地面上,距旗杆底部的距离BC=6米,求旗杆AB的高度.18.为了测量如图风筝的高度CE,测得如下数据:①BD的长度为8米(注:BD⊥CE);②放出的风筝线BC的长为17米;③牵线放风筝的同学身高为1.60米.(1)求风筝的高度CE.(2)若该同学想风筝沿CD方向下降9米,则他应该往回收线多少米?19.LED感应灯是一种通过感应模块自动控制光源点亮的一种新型智能照明产品.当人(或动物)移至LED灯一定距离时灯亮,人走开灯灭,给人们的生活带来了极大的方便.如图,有一个由传感器A控制的LED灯安装在门的上方,离地面高4.5m的墙壁上,当人移至距离该灯5m及5m以内时,灯就会自动点亮.请问:如果一个身高1.5m的人走到离门多远的地方,该灯刚好点亮?20.自2020年以来,安宁市建起了多个“口袋公园”,它们既美化了城市空间,又拓展了市民的公共活动场所,还体现着城市风貌和文化.如图,在某小区旁有一块四边形空地,其中∠B=90°,AB=20m,BC=15m,AD=24m,CD=7m.(1)如图,连接AC,试求AC的长;(2)安宁市委、市政府计划将其打造为“口袋公园”,经测算,每平方米的费用为2000元,请你计算将这块地打造成“口袋公园”需要多少钱.参考答案1.解:(1)∵∠C=90°,BD平分∠ABC交AC于点D,DE⊥AB交AB于点E,∴DE=CD=6,∴AE=8;(2)设BC=x,则BE=x,AB=8+x,在Rt△ABC中,AC2+BC2=AB2,即162+x2=(8+x)2,解得x=12,即BC=12,∴S=96.2.解:(1)∠B不可能是α或β,当∠A=α时,∠C=β=50°,α+2β=90°,不成立;故∠A=β,∠C=α,α+2β=90°,则β=20°,故答案为:20°;(2)①如图1,设∠ACD=∠DCB=β,∠B=α,则α+2β=90°,故△BDC是“近直角三角形”;②如图2,过点D作DM⊥BC于点M,∵CD平分∠ACB,DM⊥BC,DA⊥CA,∴AD=DM.在Rt△ACD和Rt△MCD中,,∴Rt△ACD≌Rt△MCD(HL).∴AC=CM=4.∵AB=3,AC=4,∴BC=5.∴BM=1.设AD=DM=x,∵DM2+BM2=DB2,∴x2+12=(3﹣x)2,∴x=,∴BD=AB﹣AD=3﹣=.3.解:∵∠ACD=90°,∴AC2+DC2=AD2,由勾股定理得AC=5m,∴DC=12m,这块草坪的面积=S Rt△ABC+S Rt△ACD=AB•BC+AC•DC=(3×4+5×12)=36m2.故需要的费用为36×100=3600元.答:铺满这块空地共需花费3600元.4.解:(1)如图1,P A=PB,在Rt△ACB中,AC=8设AP=t,则PC=8﹣t,在Rt△PCB中,依勾股定理得:(8﹣t)2+62=t2,解得,即此时t的值为;(2)分两种情况:①点P在BC上时,如图2所示:过点P作PE⊥AB,则PC=t﹣8,PB=14﹣t,∵AP平分∠BAC且PC⊥AC∴PE=PC在△ACP与△AEP中,,∴△ACP≌△AEP(AAS),∴AE=AC=8,∴BE=2,在Rt△PEB中,依勾股定理得:PE2+EB2=PB2即:(t﹣8)2+22=(14﹣t)2解得:;②点P又回到A点时,∵AC+BC+AB=8+6+10=24,∴t=24;综上所述,点P在∠BAC的平分线上时,t的值为秒或24秒.5.解:在Rt△ABC中,∠B=90°,∵AB=12,BC=16,∴AC=20,∵CD=21,AD=29,∵AC2+CD2=202+212=841,AD2=841,∴AC2+CD2=AD2,∴∠ACD=90°,∴△ACD是直角三角形,∵点E是AD的中点,∴CE==×29=.6.解:(1),所以y与x的关系式为y=2x;(2)当时,y=5,所以点P运动到BC的中点时,△APC的面积为5cm2;(3)当y=8时,2x=8,解得x=4,所以当△APC的面积为8cm2时,CP的长为4cm.7.证明:如图,连接BC,∵Rt△ABE≌Rt△DEC,∴∠AEB=∠DCE,BE=EC=c,∵∠D=90°,∴∠DCE+∠DEC=90°,∴∠AEB+∠DEC=90°,∴∠BEC=90°,∴△BEC是等腰直角三角形,∵S梯形ABCD=S Rt△ABE+S Rt△CDE+S Rt△BEC,∴,即∴,∴a2+b2=c2.8.(1)解:△BCF为等腰直角三角形.理由:∵AB=AC,AD⊥BC,∴BD=CD,∴AD垂直平分BC,∴BF=CF,∴∠BCF=∠CBF=45°,∴∠CFB=180°﹣45°﹣45°=90°,∴△BCF为等腰直角三角形;(2)证明:在BF上取一点H,使BH=EF,连接CH,在△CHB和△AEF中,,∴△CHB≌△AEF(SAS),∴AE=CH,∠AEF=∠BHC,∴∠CEF=∠CHE,∴CE=CH,∵BD=CD,FD⊥BC,∴CF=BF,∴∠CFD=∠BFD=45°,∴∠CFB=90°,∴EF=FH,Rt△CFH中,由勾股定理得:CF2+FH2=CH2,∴BF2+EF2=AE2.9.(1)证明:∵D是边BC的中点,E是边AC的中点,CD=8,CE=6,∴AC=2CE=12,BC=2CD=16,∵AB=20,∴AB2=AC2+BC2,∴△ABC是直角三角形,∴∠C=90°;(2)解:∵E是边AC的中点,AE=6,∴AC=2AE=12.在Rt△ACD中,∵∠C=90°,AC=12,AD=13,∴CD=5,∴BC=2CD=10,∴△ABC的面积=AC•BC=×12×10=60.10.解:△ABC是直角三角形,理由:由图可得,∵AB2+AC2=BC2,∴△ABC是直角三角形.11.(1)证明:∵CB=6.5千米,CD=6千米,BD=2.5千米,62+2.52=6.52,∴CD2+BD2=CB2,∴△CDB为直角三角形,∴CD⊥AB;(2)解:设AC=x千米,则AD=(x﹣2.5)千米.∵CD⊥AB,∠ADC=90°,∴CD2+AD2=AC2,即62+(x﹣2.5)2=x2,解得:x=8.45.答:原来的路线AC的长为8.45千米.12.解:(1)在△ABC中,BC=8,AC=6,AB=10,∴AC2+BC2=62+82=100,AB2=102=100,∴AC2+BC2=AB2,∴△ABC是直角三角形,∴∠ACB=90°,∴∠B=40°,∴∠A=90°﹣∠B=50°,∵点D是AB的中点,∴CD=DA=AB,∴∠A=∠DCA=50°,∴∠DCA的度数为50°;(2)如图:当CE⊥AB时,线段CE最小,∵△ABC的面积=AB•CE=AC•BC,∴AB•CE=AC•BC,∴10CE=6×8,∴CE=4.8,∴线段CE的最小值为4.8.13.解:(1)观察上表,用含n(n>1,且n为整数)的代数式表示a,b,c,则a=n2﹣1,b=2n,c=n2+1,故答案为:n2﹣1,2n,n2+1;(2)以a,b,c为边的三角形是直角三角形,证明:∵a=n2﹣1,b=2n,c=n2+1,∴a2=(n2﹣1)2=n4﹣2n2+1,b2=(2n)2=4n2,c2=(n2+1)2=n4+2n2+1,∴a2+b2=n4﹣2n2+1+4n2=n4+2n2+1,∴a2+b2=c2,∴以a,b,c为边的三角形是直角三角形.14.解:在Rt△ABC中,由勾股定理得,BC=6(m),∴BD=CD﹣BC=0.5(m),∴大树顶端着地处B到小轿车的距离BD为0.5米.15.(1)证明:∵AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,∴∠CFD=90°,∠CEB=90°(垂线的意义)CE=CF(角平分线的性质)∵BC=CD(已知)∴Rt△BCE≌Rt△DCF(HL)(2)解:由(1)得,Rt△BCE≌Rt△DCF∴DF=EB,设DF=EB=X∵∠CFD=90°,∠CEB=90°,CE=CF,AC=AC∴Rt△AFC≌Rt△AEC(HL)∴AF=AE即:AD+DF=AB﹣BE∵AB=21,AD=9,DF=EB=x∴9+x=21﹣x解得,x=6在Rt△DCF中,∵DF=6,CD=10∴CF=8∴Rt△AFC中,AC2=CF2+AF2=82+(9+6)2=289∴AC=17答:AC的长为17.16.解:延长FC交AB于点G,则CG⊥AB,AG=CD=1米,GC=AD=15米,设BG=x米,则BC=(26﹣1﹣x)米,在Rt△BGC中,∵BG2+CG2=CB2,∴x2+152=(26﹣1﹣x)2,解得x=8,∴BA=BG+GA=8+1=9(米),答:AB的长度长为9米.17.解:设旗杆的高度为x米,根据题意可得:(x+2)2=x2+62,解得:x=8.答:旗杆的高度为8米.18.解:(1)在Rt△CDB中,由勾股定理得,CD2=BC2﹣BD2=172﹣82=225,所以,CD=15(负值舍去),所以,CE=CD+DE=15+1.6=16.6米,答:风筝的高度CE为16.6米;(2)由题意得,CM=9,∴DM=6,∴BM=10,∴BC﹣BM=7,∴他应该往回收线7米.9.解:AE=AB﹣BE=4.5﹣1.5=3(m),AD=5m.由勾股定理,得DE2=AD2﹣AE2=52﹣32=16,所以DE=4(m).因此,当人走到离门4m的地方,该灯刚好点亮.20.解:(1)∵∠B=90°,AB=20m,BC=15m,∴AC=25(m),答:AC的长为25m;(2)∵AC2=625,CD2=49,AD2=576,∴AC2=CD2+AD2,∴△ACD是直角三角形,∠D=90°,∴“口袋公园”的面积=S△ABC+S△ACD=AB×BC+×AD×CD=+ 24×7=234(m2),234×2000=468000(元),答:将这块地打造成“口袋公园”需要468000元钱.。
《勾股定理》专项训练练习

60 120140 60BACC A BDE 1015《勾股定理》专项训练练习基础篇1、下列各组线段中,能构成直角三角形的是( )A .2,3,4B .3,4,6C .5,12,13D .4,6,7 2、在△ABC 中,∠C=90°,周长为60,斜边与一直角边比是13:5,•则这个三角形三边长分别是( )A .5,4,3 B .13,12,5 C .10,8,6 D .26,24,10 3、若等边△ABC 的边长为2cm ,那么△ABC 的面积为( ). A. 3cm2B. 32cm2C. 33cm 2D. 4cm 24. 三角形的三边为a 、b 、c ,由下列条件不能判断它是直角三角形的是( )A .a :b :c=8∶16∶17B . a 2-b 2=c 2C .a 2=(b+c)(b-c)D . a :b :c =13∶5∶12 5. 三角形的三边长为ab c b a 2)(22+=+,则这个三角形是( )A . 等边三角形B . 钝角三角形C . 直角三角形D . 锐角三角形.6.直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为( ) A .121 B .120 C .90 D .不能确定7、放学以后,小红和小颖从学校分手,分别沿东南方向和西南方向回家,若小红和小颖行走的速度都是40米/分,小红用15分钟到家,小颖20分钟到家,小红和小颖家的直线距离为( ) A .600米 B . 800米 C . 1000米 D. 不能确定8、ΔABC 中∠B=90°,两直角边AB=7,BC=24,在三角形内有一点P 到各边的距离相等,则这个距离是( )A.1B.3C.6D.非以上答案9、在△ABC 中,AB=12cm , BC=16cm , AC=20cm , 则△ABC 的面积是( )A. 96cm 2B. 120cm 2C. 160cm 2D. 200cm 210、已知如图,水厂A 和工厂B 、C 正好构成等边△ABC ,现由水厂A 和B 、C 两厂供水,要在A 、B 、C 间铺设输水管道,有如下四种设计方案,(图中实线为铺设管道路线),•其中最合理的方案是( )11、在△ABC 中,∠C=90°, AB =5,则2AB +2AC +2BC =_______.12、如图,一根树在离地面9米处断裂,树的顶部落在离底部12米处.树折断之前有______米.13、如图所示,是一个外轮廓为矩形的机器零件平面示意图,根据图中标出尺寸(单位:mm )计算两圆孔中心A 和B 的距离为 .14、已知Rt △ABC 中,∠C=90°,若a+b=14,c=10,则Rt △ABC 的面积是_____15、如图,梯子AB 靠在墙上,梯子的底端A 到墙根O 的距离为2米,梯子的顶端B 到地面的距离为7米.现将梯子的底端A 向外移动到A ’,使梯子的底端A ’到墙根O 的距离等于3米,同时梯子的顶端 B 下降至 B ’,那么 BB ’的值: ①等于1米;②大于1米5;③小于1米.其中正确结论的序号是 .16、如图,将一根25㎝长的细木棒放入长、宽、高分别为8㎝、6㎝和103㎝的长方体无盖盒子中,求细木棒露在盒外面的最短长度是多少?17、小东拿着一根长竹竿进一个宽为3米的城门,他先横着拿不进去,又竖起来拿,结果竿比城门高1米,当他把竿斜着时,两端刚好顶着城门的对角,问竿长多少米?18、如图,铁路上A 、B 两点相距25km , C 、D 为两村庄,若DA =10km ,CB =15km ,DA ⊥AB 于A ,CB ⊥AB 于B ,现要在AB 上建一个中转站E ,使得C 、D 两村到E 站的距离相等.(1)求E 应建在距A 多远处? (2)DE 和EC 垂直吗?试说明理由19、如图,在△ABC 中,∠BAC =120°,∠B =30°,AD ⊥AB ,垂足为A,CD=2cm,求AB 的长.第12题图 第13题图 第15题图A B D专题篇一、勾股定理与梯子问题1、如图1,一个梯子AB长2.5米,顶端A靠在墙上,这时梯子下端B与墙角C距离为1.5米,梯子滑动后停在DE的位置上,如图2,测得BD长为0.5米,求梯子顶端A下落了多少米.2、比较梯子沿墙壁滑行时其在墙壁和地面上滑行距离的大小关系例2如图3,梯子AB靠在墙上,梯子的底端A到墙根O的距离为2米,梯子的顶端B到地面的距离为7米.现将梯子的底端A向外移动到A′,使梯子的底端A′到墙根O的距离等于3米,同时梯子的顶端B下降至B′,那么BB①等于1米;②大于1米;③小于1米.其中正确结论的序号是________.(要求写出过程)二、勾股定理中的数学思想1、面积法.已知△ABC中,∠ACB=90°,AB=5㎝.BC=3㎝,CD⊥AB于点D,求CD的长.2、构造法.如图,已知△ABC中,∠B=30°,∠C=45°,AB=4,AC=22.求△ABC的面积.3、转化思想.如图3,已知四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13.求四边形ABCD的面积.4、分类讨论思想.已知Rt△ABC中,其中两边的长分别是3,5,求第三边的长.5、方程思想.如图4,AB为一棵大树,在树上距地面10米的D处有两只猴子,它们同时发现C处有一筐苹果,一只猴子从D往上爬到树顶A又沿滑绳AC滑到C处,另一只猴子从D滑到B,再由B跑到C.已知两只猴子所经路程都是15米.试求大树AB的高度.如图,在△ABC中,AB=15,BC=14,CA=13,求BC边上的高AD.6、逆向思维的方法如图1,在△ABC中,D为BC边上一点,已知AB=13,AD=12,AC=15,BD=5,那么DC=_____.图3DABC图4DCBAABC三、勾股定理在影响范围问题中的运用1、如图1,公路MN 和公路PQ 在点P 处交汇,且30QPN ∠=︒,点A 处有一所中学,AP =160m 。
2022-2023学年北师大版八年级数学上册《第1章勾股定理》选择题专题提升训练(附答案)

2022-2023学年北师大版八年级数学上册《第1章勾股定理》选择题专题提升训练(附答案)1.在Rt△ABC中,AB2=10,AC2=6.则BC2=()A.8B.16或64C.4D.4或162.已知在△ABC中,∠B=38°,BC2﹣AC2=AB2,则∠C的度数为()A.38°B.52°C.62°D.90°3.如图,已知四边形ABCD,AD∥BC,P为CD上的一点,且∠DAP=10°,∠CBP=80°,P A=3,PB=4.则AB的长为()A.5B.6C.7D.84.在△ABC中,AB=30,AC=25,高AD=24,则BC的长是()A.25B.18C.25或11D.25或185.如图所示,在△ABC中,AB=AC=5,BC=8,点E,F是中线AD上的两点,则图中阴影部分的面积是()A.6B.12C.24D.306.课堂上,王老师要求学生设计图形来证明勾股定理,同学们经过讨论,给出两种图形,能证明勾股定理的是()A.①行,②不行B.①不行,②行C.①,②都行D.①,②都不行7.如图,字母A所代表的正方形的面积是()A.12B.13C.25D.1948.设△ABC的三边长分别为a,b,c,满足下列条件的△ABC中,不是直角三角形的是()A.c2=a2﹣b2B.∠A+∠B=90°C.∠A:∠B:∠C=3:4:5D.a:b:c=5:12:139.如图,某海域有相距10海里的两个小岛A和C,甲船先由A岛沿北偏东70°方向走了8海里到达B岛,然后再从B岛走了6海里到达C岛,此时甲船位于B岛的()A.北偏东20°方向上B.北偏西20°方向上C.北偏西30°方向上D.北偏西40°方向上10.五根小木棒,其长度(单位:cm)分别为8,9,12,15,17,现将它们摆成两个直角三角形,其中正确的是()A.B.C.D.11.课间休息时,嘉嘉从教室窗户向外看,看到行人为从A处快速到达图书馆B处,直接从长方形草地中穿过.为保护草地,嘉嘉想在A处立一个标牌:“少走■米,踏之何忍?”如图,若AB=17米,BC=8米,则标牌上“■”处的数字是()A.6B.8C.10D.1112.如图,有一个水池,水面是一边长为8尺的正方形,在水池中央有一根芦苇,它高出水面1尺,如果把这根芦苇拉向水池的一边的中点,它的顶端恰好到达池边的水面,这根芦苇的长度是()尺.A.7.5B.8C.D.913.如图,将一根长为16cm的橡皮筋固定在笔直的木棒上,两端点分别记为A,B,然后将中点C向上竖直拉升6cm至点D处,则拉伸后橡皮筋的长为()A.20cm B.22cm C.28cm D.32cm14.一个杯子的底面半径为6cm,高为16cm,则杯内所能容下的最长木棒为()A.6cm B.12cm C.16cm D.20cm15.一艘轮船以16海里/时的速度离开A港向北偏西30°方向航行,另一艘轮船同时以12海里/时的速度离开A港向北偏东60°方向航行,经过1.5小时后它位相距()A.6海里B.25海里C.30海里D.42海里16.如图,某自动感应门的正上方A处装着一个感应器,离地面的高度AB为2.5米,一名学生站在C处时,感应门自动打开了,此时这名学生离感应门的距离BC为1.2米,头顶离感应器的距离AD为1.5米,则这名学生身高CD为()米.A.0.9B.1.3C.1.5D.1.617.如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少为()A.4米B.8米C.9米D.7米18.如图,一棵树(树干与地面垂直)高3.6米,在一次强台风中树被强风折断,倒下后的树顶C与树根A的距离为2.4米,则这棵树断裂处点B离地面的高度AB的值为()A.2.4米B.2.6米C.0.6米D.1米19.如图,“赵爽弦图”是吴国的赵爽创制的.以直角三角形的斜边为边长得到一个正方形,该正方形由4个全等的直角三角形再加上中间的小正方形组成,在一次游园活动中,数学小组制作了一面“赵爽弦图锣”,其中∠AEB=90°,AB=13cm,BE=5cm,则阴影部分的面积是()A.169cm2B.25cm2C.49cm2D.64cm220.如图,圆柱的底面周长为12cm,AB是底面圆的直径,在圆柱表面的高BC上有一点D,且BC=10cm,DC=2cm.一只蚂蚁从点A出发,沿着圆柱体的表面爬行到点D的最短路程是()cm.A.14B.12C.10D.8参考答案1.解:当∠C=90°时,BC2=AB2﹣AC2=10﹣6=4,当∠A=90°时,BC2=AB2+AC2=10+6=16,故答案为:D.2.解:∵BC2﹣AC2=AB2,∴BC2=AC2+AB2,∴∠A=90°,∵∠B=38°,∴∠C=90°﹣∠B=52°,故选:B.3.解:过点P作PQ∥AD交AB于点Q,则∠APQ=∠DAP=10°,∵AD∥BC,PQ∥AD,∴PQ∥BC,∴∠BPQ=∠CBP=80°,∴∠APB=90°,∴AB=5,故选:A.4.解:如图1,在Rt△ABD中,BD=18,在Rt△ADC中,CD=7,∴BC=BD+CD=18+7=25,如图2,BC=BD﹣CD=18﹣7=11,综上所述,BC的长为25或11,故选:C.5.解:∵AB=AC=5,BC=8,AD是△ABC的中线,∴AD⊥BC,BD=CD=4,∴AD=3,S△BEF=S△CEF,∴S阴影=S△ABD=,故选:A.6.解:由图①可得,(a+b)2=ab×4+c2,化简,得:a2+b2=c2,故图①可以证明勾股定理;根据图②中的条件,无法证明勾股定理;故选:A.7.解:由勾股定理得:字母A所代表的正方形的面积=169﹣144=25.故选:C.8.解:∵c2=a2﹣b2,∴c2+b2=a2,∴△ABC是直角三角形,故选项A不符合题意;∵∠A+∠B=90°,∠A+∠B+∠C=180°,∴∠C=90°,∴△ABC是直角三角形,故选项B不符合题意;∵∠A:∠B:∠C=3:4:5∴最大的∠C=180°×=75°,∴△ABC不是直角三角形,故选项C符合题意;∵a:b:c=5:12:13,52+122=132,∴△ABC是直角三角形,故选项D不符合题意;故选:C.9.解:如图:由题意得:∠DAB=70°,AB=8海里,BC=6海里,AC=10海里,∵AB2+BC2=82+62=100,AC2=102=100,∴AB2+BC2=AC2,∴△ABC是直角三角形,∴∠ABC=90°,∵AD∥BE,∴∠ABE=180°﹣∠DAB=110°,∴∠CBE=∠ABE﹣∠ABC=20°,∴此时甲船位于B岛的北偏西20°方向上,故选:B.10.解:∵82+152=172,92+122=152,∴用长度为8,15,17和9,12,15的小木棒能分别摆成两个直角三角形,故选:C.11.解:在Rt△ABC中,由勾股定理得,AC=15(米),∴AC+BC﹣AB=15+8﹣17=6(米),故选:A.12.解:设芦苇的长度为x尺,则AB的长为(x﹣1)尺,在Rt△ABC中,由勾股定理得:BC2=AB2+AC2,即:,解得:x=7.5,即芦苇的长度为:7.5尺,故选:A.13.解:Rt△ACD中,AC=AB=8cm,CD=6cm;根据勾股定理,得:AD=10(cm);∴AD+BD=2AD=20(cm);故拉伸后橡皮筋的长为20cm.故选:A.14.解:杯子最长对角线长为=20(cm),故选:D.15.解:如图:∵∠BOD=30°,∠DOA=60°,∴∠AOB=90°,根据题意的,OB=12×1.5=18(海里),OA=16×1.5=24(海里),根据勾股定理得,AB=30海里.故选:C.16.解:过点D作DE⊥AB于E,如图所示:则CD=BE,DE=BC=1.2米=米,在Rt△ADE中,AD=1.5米=米,由勾股定理得:AE=0.9(米),∴BE=AB﹣AE=2.5﹣0.9=1.6(米),∴CD=BE=1.6米,故选:D.17.解:由勾股定理得:楼梯的水平宽度=4(米),∵地毯铺满楼梯时其长度的和应该是楼梯的水平宽度与垂直高度的和,地毯的长度至少是3+4=7(米).故选:D.18.解:∵△ABC是直角三角形,AB+BC=3.6m,AC=2.4m,∴BC2=AB2+AC2,即(3.6﹣AB)2=AB2+2.42,解得:AB=1,故选:D.19.解:在Rt△ABE中,AE=12,∵4个直角三角形是全等的,∴AH=BE=5,∴小正方形的边长=AE﹣AH=12﹣5=7,∴阴影部分的面积=72=49(cm2),故选:C.20.解:圆柱侧面展开图如图所示,∵圆柱的底面周长为12cm,∴AB=6cm.∵BD=8cm,在Rt△ABD中,AD2=AB2+BD2,∴AD=10(cm),即蚂蚁从A点出发沿着圆柱体的表面爬行到点D的最短距离是10cm.故选:C.。
勾股定理专题训练

C勾股定理专题训练 一、选择题(每小题3分,共30分)1. 直角三角形一直角边长为12,另两条边长均为自然数,则其周长为( ). (A )30 (B )28 (C )56 (D )不能确定2. 直角三角形的斜边比一直角边长2 cm ,另一直角边长为6 cm ,则它的斜边长(A )4 cm (B )8 cm (C )10 cm(D )12 cm3. 已知一个Rt △的两边长分别为3和4,则第三边长的平方是( ) (A )25(B )14(C )7(D )7或254. 等腰三角形的腰长为10,底长为12,则其底边上的高为( ) (A )13 (B )8 (C )25 (D )645. 五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的是( )72425207152024257252024257202415(A)(B)(C)(D)6. 将直角三角形的三条边长同时扩大同一倍数, 得到的三角形是( )(A ) 钝角三角形 (B ) 锐角三角形 (C ) 直角三角形 (D ) 等腰三角形. 7.如图小方格都是边长为1的正方形,则四边形ABCD 的面积是 ( ) (A ) 25 (B )12.5 (C ) 9 (D ) 8.5 8. 三角形的三边长为ab c b a 2)(22+=+,则这个三角形是( )(A ) 等边三角形(B ) 钝角三角形 (C ) 直角三角形(D ) 锐角三角形.9.△ABC 是某市在拆除违章建筑后的一块三角形空地.已知∠C=90°,AC=30米,AB=50米,如果要在这块空地上种植草皮,按每平方米草皮a 元计算,那么共需要资金( ).(A )50a 元 (B )600a 元 (C )1200a 元 (D )1500a 元10.如图,A B ⊥CD 于B ,△ABD 和△BCE 都是等腰直角三角形,如果CD=17,BE=5,那么AC 的长为( ). (A )12 (B )7 (C )5 (D )13米(第10题)(第11题)(第14题)二、填空题(每小题3分,24分)11. 如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少需要____________米.12. 在直角三角形ABC 中,斜边AB =2,则222AB AC BC ++=______.13.直角三角形的三边长为连续偶数,则其周长为.14. 如图,在△ABC 中,∠C=90°,BC=3,AC=4.以斜边AB 为直径作半圆,则这个半圆的面积是____________.(第15题)(第16题)(第17题)15. 如图,校园内有两棵树,相距12米,一棵树高13米,另一棵树高8米,一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞___________米.16. 如图,△ABC 中,∠C =90°,AB 垂直平分线交BC 于D 若BC =8,AD =5,则AC 等于______________.17. 如图,四边形ABCD 是正方形,AE 垂直于BE ,且AE =3,BE =4,阴影部分的面积是______.18. 如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边和长为7cm,则正方形A ,B ,C ,D 的面积之和为___________cm 2. 三、解答题(每小题8分,共40分)19. 11世纪的一位阿拉伯数学家曾提出一个“鸟儿捉鱼”的问题:“小溪边长着两棵棕榈树,恰好隔岸相望.一棵树高是30肘尺(肘尺是古代的长度单位),另外一棵高20肘尺;两棵棕榈树的树干间的距离是50肘尺.每棵树的树顶上都停着一只鸟.忽然,两只鸟同时看见棕榈树间的水面上游出一条鱼,它们立刻飞去抓鱼,并且同时到达目标.问这条鱼出现的地方离开比较高的棕榈树的树跟有多远?20. 如图,已知一等腰三角形的周长是16,底边上的高是4.求这个三角形各边的长.21. 如图,A 、B 两个小集镇在河流CD 的同侧,分别到河的距离为AC=10千米,BD=30千米,且CD=30千米,现在要在河边建一自来水厂,向A 、B 两镇供水,铺设水管的费用为每千米3万,请你在河流CD 上选择水厂的位置M ,使铺设水管的费用最节省,并求出总费用是多少?22. 如图所示的一块地,∠ADC=90°,AD=12m ,CD=9m ,39m ,BC=36m ,求这块地的面积。
人教版数学八年级下第17章《勾股定理》章节能力提升测试题

人教版数学八年级下第17章《勾股定理》章节能力提升测试题一、 选择题(每题3分,共30分)1. 如图,边长为x 的边等于5的有( )A .1个B .2个C .3个D .4个2. 在Rt △ABC 中,∠C =90°,已知a ∶b =3∶4,c =10,其中a 、b 、c 分别为∠A 、∠B 、∠C 的对边,则△ABC 的面积为( ) A .24 B .12 C .28 D .303. 若三角形ABC 中,∠A ∶∠B ∶∠C=2∶1∶1,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,则下列等式中,成立的是( )A .222c b a =+B .222c a =C .222a c =D .222b c =4. 下列命题的逆命题成立的是 ( )A .若a >b >0,则2a >2bB .如果两个角都是直角,那么它们相等C .如果天上下大雨,那么地上一定湿D .如果一个三角形的三边满足2a +2b =2c ,那么这个三角形是直角三角形 5. 如图,台阶(都是直角)下端点B 到上端点A 的最短距离是( )A .8B .15C .17D .25第5题 第6题6. 如图,直线l 上有三个正方形a b c ,,,若a c ,的边长分别为6和8,则b 的面积为( ) A .4 B .25 C .55 D .100 7. 下列说法错误的是( )A .△ABC 中,若∠B =∠C -∠A ,则△ABC 是直角三角形B .△ABC 中,若()()c b c b a -+=2,则△ABC 是直角三角形C .△ABC 中,若∠A ∶∠B ∶∠C =3∶4∶5,则△ABC 是直角三角形3x x x A B2 43 536D .△ABC 中,若c b a ::=5∶4∶3,则△ABC 是直角三角形( ) 8. 直角三角形中一直角边的长为9,另两边长为连续自然数,则此直角三角形的周长为( ).A. 121B. 120C. 90D. 不能确定9. 如图,在△ABC 中,∠ACB =90°,AC =12,BC =5,AM =AC ,BN =BC ,则MN 的长为( ).A. 2B. 2.6C. 3D. 4(第8题)10. 如图是一块长、宽、高分别是6cm,4cm 和3cm 的长方体木块.一只蚂蚁要从长方体木块的一个顶点A 处,沿着长方体的表面到长方体上和A 相对的顶点B 处吃食物,那么它需要爬行的最短路径的长是( ).A. 85cmB. 97cmC. 109cmD. 9cmA. 2+10B. 2+210C. 12D. 18二、 填空题(每题3分,共30分)11. 在△ABC 中,∠C =90°.(1)已知a =2.4,b =3.2,则c =________;(2)已知∠A =45°,c =18,则a =________.12. 在Rt △ABC 中,∠C =90°,a ∶b =5∶12,c =39,则a +b =________.13. 在△ABC 中,AB =2,AC =2,∠B =30°,则∠BAC 的度数是________. 14. 把命题“如果直角三角形的两直角边长分别为a 、b ,斜边长为c ,那么222a b c +=”的逆命题改写成“如果……,那么……”的形式: 15. 如图,在△ABC 中,∠C =90°,BC =60cm ,CA =80cm ,一只蜗牛从点C 出发,以每分钟20cm 的速度沿CA →AB →BC 的路径再回到点C ,需要________min.(第15题)16. 如图 ,正方形网格中的每个小正方形边长为1,△ABC 的三个顶点在格点上,则△ABC 中AB 边上的高为17. 长为4m 的梯子搭在墙上与地面成45°角,作业时调整为60°角(如图所示),则梯子的顶端沿墙面升高了________m.(第17题)18. 如图,在ABC V 中,90C ∠=︒,22.5B ∠=︒,DE 垂直平分AB ,E 为垂足,交BC 于点D,若BD =,则AC 的长为______cm .19. 如图,AD 是△ABC 的中线,∠ADC =45°,把△ABC 沿AD 对折,点C 落在点C ′的位置,若BC =2,则BC ′=________.20. 以直角三角形的三边a ,b ,c (c 为斜边)为直径分别向三角形外作半圆,若以a 为直径的半圆的面积为258π,以c 为直径的半圆的面积为1698π,那么以b 为直径的半圆的面积为________.ABCED三、解答题(第21~24题每题6分,第25、26题每题8分,共40分)21. 已知a、b、c是三角形的三边长,a=2n2+2n,b=2n+1,c=2n2+2n+1(n为大于1的自然数),试说明△ABC为直角三角形.22. 如图所示是一个三级台阶,它的每一级的长、宽、高分别等于55cm、10cm、6cm,A 和B是这两个台阶的两个相对的端点,则一只蚂蚁从点A出发经过台阶爬到点B的最短路线有多长?(第22题)23. 如图所示是由边长为1的小正方形组成的网格.(1)求四边形ABCD的面积;(2)你能判断AD与CD的位置关系吗?说出你的理由.(第23题)24. 如图,铁路上A、B两点相距25km, C、D为两村庄,若DA=10km,CB=15km,DA⊥AB于A,CB⊥AB于B,现要在AB上建一个中转站E,使得C、D两村到E站的距离相等.求E应建在距A多远处?25. 一个直立的火柴盒在桌面上倒下,启迪人们发现了勾股定理的一种新的证明方法.如图,火柴盒的一个侧面ABCD 倒下到AB C D '''的位置,连结CC ', 设,,AB a BC b AC c ===,请利用四边形BCC D ''的面积证明勾股定理:222a b c +=.26. 如图,A 、B 是公路l (l 为东西走向)两旁的两个村庄,A 村到公路l 的距离AC =1km ,B 村到公路l 的距离BD =2km ,B 村在A 村的南偏东45°方向上. (1)求出A 、B 两村之间的距离; (2)为方便村民出行,计划在公路边新建一个公共汽车站P ,要求该站到两村的距离相等,请用尺规在图中作出点P 的位置.(保留清晰的作图痕迹,并简要写明作法)(第26题)参考答案:1. B 解析:第1个图和第4个图中x 的值为5.2. B 解析:设a =3x ,b =4x ,根据勾股定理可知c =5x ,所以5x =10,解得x =2,所以aD 'AB 'DC 'AA BC b ca =6,b =8,所以△ABC 的面积为12ab =12.3. B 解析:这是一个等腰直角三角形,∠A =90°,所以a b c . 4. D 解析:D 项是勾股定理及其逆定理.5. C 解析:构造一个直角三角形,使得AB 是斜边,两条直角边分别长8和15. 6. D7. C 解析:若∠A ∶∠B ∶∠C =3∶4∶5,则△ABC 是锐角三角形.8. C 解析:设另外两边长分别为a ,a +1,根据勾股定理有(a +1)2-a 2=81,解得a =40,所以这个直角三角形的三边长分别为9,40,41.9. D 解析:先利用勾股定理求出AB 长为13,所以MN =AM +BN -AB =4. 10. A 解析:先设法将这个长方体展开,运用勾股定理求出最短路线. 11. (1)4 (2)9 212. 51 解析:设a =5k ,b =12k ,则c =13k ,解得a =15,b =36. 13. 105°或15°14. 解析:如果三角形三边长a ,b ,c ,满足222a b c +=,那么这个三角形是直角三角形15. 12 解析:先由勾股定理得出AB 的长为100cm.16. 由勾股定理得:1323222=+=AC ,211222=+=BC1323222=+=AB 所以BC 边上的高为222⎪⎭⎫ ⎝⎛-BC AB =2113-=225 设AB 边上的高为h ,在由三角形面积公式的:2252211321⨯⨯=⨯⨯=∆h S ABC 所以,可以解得13135=h 17. 2(3-2) 18. 2419. 2 解析:可先证明△BC ′D 是等腰直角三角形. 20. 18π21.证222c b a =+,用勾股定理逆定理得∠C=90°(第22题)22. 如图所示,将这个台阶展开成一个平面图形,则最短路线就是AB 的长.在Rt △ABC 中,BC =48,AC =55,由勾股定理,得AB 2=BC 2+AC 2=482+552=5329=732,所以AB =73,所以蚂蚁由点A 出发经过台阶爬到点B 的最短路线长为73cm.23. (1)12.5(2)连接AC ,在△ADC 中,由于AD 2=12+22=5,CD 2=22+42=20,AC 2=52=25,所以AD 2+CD 2=AC 2,即△ADC 是直角三角形,所以AD ⊥CD .24. 15km 25. 证明:Q 四边形BCC D ''为直角梯形,21()()22BCC D a b S BC C D BD ''+'''∴=+⋅=梯形 Q Rt ABC △≌ Rt AB C ''△,BAC BAC '∴∠=∠.90CAC CAB B AC CAB BAC '''''∴∠=∠+∠=∠+∠=︒.ABC CAC D AC BCC D S S S S '''''∴=+△△△梯形+2211122222c ab ab c ab +=++=. 22222()2.22a b c aba b c ++∴=∴+=.26. (1)设AB 与CD 的交点为O ,根据题意可得∠A =∠B =45°. ∴ △ACO 和△BDO 都是等腰直角三角形.∴ AO =2,BO =2 2.∴ A 、B 两村的距离为AB =AO +BO =2+22=32(km).(2)(第26题)作法:①分别以点A 、B 为圆心,以大于12AB 的长为半径作弧,两弧交于两点M 、N ,作直线MN ;②直线MN 交l 于点P ,点P 即为所求.。
勾股定理专题训练及含答案

勾股定理专题训练一、解答题(每空?分,共?分)1、如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点称为格点,请以图中的格点为顶点画一个边长为3、、的三角形.所画的三角形是直角三角形吗?说明理由.2、如图,在ΔABC中,AB=AC=10,BC=8.用尺规作图作BC边上的中线AD(保留作图痕迹,不要求写作法、证明),并求AD的长.3、已知a、b、c为△ABC的三边,且满足,试判断△ABC的形状.解:因为,(A)所以(B)所以(C)所以△ABC是直角三角形.问:(1)上述解题过程,从哪一步开始出现错误?请写出该步骤的代号:_________;(2)错误的原因为:______________________________________;(3)请写出本题正确的解答过程及结论.4、大家都折过纸玩吗?如图所示,把矩形纸片ABCD沿BF折叠,使点C恰好落在处,已AB=9cm,BC=15cm,求FC的长。
5、如图,把矩形纸片沿折叠,使点落在边上的点处,点落在点处。
(1)求证:;(2)设,试猜想之间的一种关系,并给予证明.6、华罗庚爷爷说:数学是我国人民所擅长的学科.请同学们求解《九章算术》中的一个古代问题:“今有木长二丈,围之三尺,葛生其下,缠木七周,上与木齐.问葛长几何?” 白话译文:如图,有圆柱形木棍直立地面,高20尺,圆柱底面周长3尺.葛藤生于圆柱底部A点,等距离缠绕圆柱七周,恰好子长到圆柱上底面的B点.问葛藤的长度是多少尺?7、如图,将一个长、宽分别为8、4的长方形纸片ABCD折叠,使C点与A点重合,则折痕EF的长是多少?二、选择题(每空?分,共?分)8、在三边分别为下列长度的三角形中,不是直角三角形的是( )A.5,13,12 B.2,3,C.4,7,5 D.1,,9、如图,在Rt△ABC内有边长分别为的三个正方形,则满足的关系式是()A.B.C.D.(第9题)(第10题)10、如图所示,在Rt△ABC中,AB=8,AC=6,∠CAB=90°,AD⊥BC,那么AD的长为()A.1 B.2 C.3 D.4.811、现有两根木棒的长度分别是40cm和41cm,若要钉成一个直角三角形架,则所需要的另一根木棒的长可以为()A.7cm B.9cm C.11cm D.13cm12、如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是()A.7,24,25 B.,,C.3,4,5 D.4,,13、如图所示,AB=BC=CD=DE=1,AB⊥BC、AC⊥CD,AD⊥DE,则AE等于()A.1 B.C.D.2(第13题)(第14题)(第15题)14、如图,有两棵树,一棵高10米,另一棵高4米,两树相距8米。
勾股定理专题训练试题精选三附答案

勾股定理专题训练试题精选(三) 一.选择题(共30小题) 1.如图,甲是第七届国际数学教育大会(简称ICME~7)的会徽,会徽的主体图案是由如图乙的一连串直角三角形演化而成的其中OA1=A1A2=A2A3=…=A7A8=1,如果把图乙中的直角三角形继续作下去,那么OA1,OA2,…OA25
这些线段中有多少条线段的长度为正整数( )
A. 3 B. 4 C. 5 D. 6 2.己知,如图,在Rt△ABC中,∠C=90°,以Rt△ABC的三边为斜边分别向外作三个等腰直角三角形,其中∠H、∠E、∠F是直角,若斜边AB=3,则图中阴影部分的面积为( )
A. 1 B. 2 C. D. 3.如图,在四边形ABCD中,AB=AD=8,∠A=60°,∠D=150°,已知四边形的周长为32,那么四边形ABCD的面积为( )
A. 16+24 B. 16 C. 24 D. 32+24
4.直角三角形的斜边长是20cm,两直角边长的比是3:4,则两直角边的长分别是( ) A. 6cm,8cm B. 3cm,4cm C. 12cm,16cm D. 24cm,32cm
5.在△ABC中,∠A是钝角,AB=6,AC=8,则BC的长可能是( )
A. 9 B. 10 C. 11 D. 14 6.如图,在△ABC中,∠C=90°,AC=BC,AD平分∠BAC,且CD=1,则△ABD的面积为( ) 2
A. B. C. D. 7.若△ABC的三边长分别为a,b,c,且满足(a﹣b)•(a2+b2﹣c2)=0,则△ABC是( ) A. 直角三角形 B. 等腰三角形 C. 等腰直角三角形 D. 等腰三角形或直角三角形
8.适合下列条件的△ABC中,直角三角形的个数为( ) ①a=6,b=8,c=10;②a=3,b=4,c=6;③∠A=32°,∠B=58°; ④a=7,b=24,c=25;⑤a:b:c=5:12:13;⑥a=1 b=2 c=. A. 3个 B. 4个 C. 5个 D. 6个
勾股定理专题训练试题精选四附答案

勾股定理专题训练试题精选(四)一.选择题(共27小题)1.在三角形ABC中,D是边BC上的一点,已知AC=5,AD=6,BD=10,CD=5,那么三角形ABC的面积是()2.如图,四边形ABCD中∠A=60°,∠B=∠D=90°,AD=8,AB=7,则BC+CD等于().3.在直线l上依次摆放着三个正方形(如图所示).已知斜放置的正方形的面积是1,正放置的两个正方形的面积依次是s1,s2.则s1,s2,1之间的关系()4.在△ABC中,∠A=30°,AB=4,BC=,则∠B为()6.长方形台球桌ABCD上,一球从AB边上某处P击出,分别撞击球桌的边BC、DA各1次后,又回到出发点P 处,每次球撞击桌边时,撞击前后的路线与桌边所成的角相等(例如图∠α=∠β)若AB=3,BC=4,则此球所走路线的总长度(不计球的大小)为()7.如图,用硬纸片剪一个长为16cm、宽为12cm的长方形,再沿对角线把它分成两个三角形,用这两个三角形可拼出各种三角形和四边形来,其中周长最大的是()cm,周长最小的是()cm.C9.在四边形ABCD中,AB=1,BC=,CD=,DA=2,S△ABD=1,S△BCD=,则∠ABC+∠CDA等于()10.如图,在△ABC中,AD⊥AB,且AB=AD=1,则BD的长是().C D.11.如图,P为正方形ABCD内一点,PA=PB=10,并且P点到CD边的距离也等于10,那么,正方形ABCD的面积是().15.如图是由5个正方形和5个等腰直角三角形组成的图形,已知③号正方形的面积是1,那么①号正方形的面积是()16.同一平面内有A、B、C三点,A、B两点相距5cm,点C到直线AB的距离为2cm,且△ABC为直角三角形,.C D.20.如图,已知△ABC中,∠ABC=90°,AB=BC,,三个顶点C,A,B依次在相互平行的三条直线l1,l2,l3上,且l2,l3之间的距离为7,那么l1,l2之间的距离为()21.如图,是由16个边长为1的小正方形拼成的,连接这些小正方形的若干个顶点,得到五条线段CA、CB、CD、CE、CF,其中长度是有理数的有().C D.24.如图,在△ABC中,D、E分别是BC、AC的中点.已知∠ACB=90°,BE=4,AD=7,则AB的长为()25.如图,在△ABC中,AB=AC=4,点P是BC边上异于B、C的点,则AP2+BP•PC的值是()26.如图△ABC是等腰三角形,AB=AC,∠BAC=120°,点D在BC边上,且BD<DC,以AD为边作正三角形ADE,当△ABC的面积是25,△ADE的面积是7时,BD与DC的比值是()27.如图,正方形ABCD边长为2,从各边往外作等边三角形ABE、BCF、CDG、DAH,则四边形AFGD的周长为()+2+2+2+4二.填空题(共3小题)28.(2014•山西)如图,在△ABC中,∠BAC=30°,AB=AC,AD是BC边上的中线,∠ACE=∠BAC,CE交AB于点E,交AD于点F.若BC=2,则EF的长为_________.29.(2012•鄞州区模拟)如图1是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若AC=12,BC=10,将四个直角三角形中边长为12的直角边分别向外延长一倍,得到图2所示的“数学风车”,则这个风车的外围周长是_________.30.(2012•邯郸一模)如图,将一副三角板如图所示叠放在一起,若AB=8cm,则阴影部分的面积是_________ cm2.勾股定理专题训练试题精选(四)参考答案与试题解析一.选择题(共27小题)1.在三角形ABC中,D是边BC上的一点,已知AC=5,AD=6,BD=10,CD=5,那么三角形ABC的面积是()的面积为×S=CE=CE==的面积为×2.如图,四边形ABCD中∠A=60°,∠B=∠D=90°,AD=8,AB=7,则BC+CD等于().,,CE=6CE=23.在直线l上依次摆放着三个正方形(如图所示).已知斜放置的正方形的面积是1,正放置的两个正方形的面积依次是s1,s2.则s1,s2,1之间的关系()4.在△ABC中,∠A=30°,AB=4,BC=,则∠B为()AC=AC=6.长方形台球桌ABCD上,一球从AB边上某处P击出,分别撞击球桌的边BC、DA各1次后,又回到出发点P 处,每次球撞击桌边时,撞击前后的路线与桌边所成的角相等(例如图∠α=∠β)若AB=3,BC=4,则此球所走路线的总长度(不计球的大小)为()=,,+=1=57.如图,用硬纸片剪一个长为16cm、宽为12cm的长方形,再沿对角线把它分成两个三角形,用这两个三角形可拼出各种三角形和四边形来,其中周长最大的是()cm,周长最小的是()cm.=20=208.四边形ABCD中,AB∥CD,AD=BD=CD=3,BC=4,则对角线AC的长是()CCD===29.在四边形ABCD中,AB=1,BC=,CD=,DA=2,S△ABD=1,S△BCD=,则∠ABC+∠CDA等于()AD•,,,可知10.如图,在△ABC中,AD⊥AB,且AB=AD=1,则BD的长是().C D.==.11.如图,P为正方形ABCD内一点,PA=PB=10,并且P点到CD边的距离也等于10,那么,正方形ABCD的面积是()AB=(+[(.15.如图是由5个正方形和5个等腰直角三角形组成的图形,已知③号正方形的面积是1,那么①号正方形的面积是()号正方形的边长为=,16.同一平面内有A、B、C三点,A、B两点相距5cm,点C到直线AB的距离为2cm,且△ABC为直角三角形,AC==10.C D.BC=1AD=,EF==,面积为:AD=×,面积为:××=的面积为﹣=20.如图,已知△ABC中,∠ABC=90°,AB=BC,,三个顶点C,A,B依次在相互平行的三条直线l1,l2,l3上,且l2,l3之间的距离为7,那么l1,l2之间的距离为(),∴21.如图,是由16个边长为1的小正方形拼成的,连接这些小正方形的若干个顶点,得到五条线段CA、CB、CD、CE、CF,其中长度是有理数的有()==,==5CE==2,.C D.bPA=AEBE=b+AE=.24.如图,在△ABC中,D、E分别是BC、AC的中点.已知∠ACB=90°,BE=4,AD=7,则AB的长为().,==225.如图,在△ABC中,AB=AC=4,点P是BC边上异于B、C的点,则AP2+BP•PC的值是()26.如图△ABC是等腰三角形,AB=AC,∠BAC=120°,点D在BC边上,且BD<DC,以AD为边作正三角形ADE,当△ABC的面积是25,△ADE的面积是7时,BD与DC的比值是()的面积为AF=25,S=AD==7x=,,27.如图,正方形ABCD边长为2,从各边往外作等边三角形ABE、BCF、CDG、DAH,则四边形AFGD的周长为()+2+2+2+4KG=2+,由勾股定理得AG=+)+2.二.填空题(共3小题)28.(2014•山西)如图,在△ABC中,∠BAC=30°,AB=AC,AD是BC边上的中线,∠ACE=∠BAC,CE交AB于点E,交AD于点F.若BC=2,则EF的长为﹣1.,EF=﹣BC=1CAD=ACE==2,)2)EF=故答案为:29.(2012•鄞州区模拟)如图1是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若AC=12,BC=10,将四个直角三角形中边长为12的直角边分别向外延长一倍,得到图2所示的“数学风车”,则这个风车的外围周长是152.=2630.(2012•邯郸一模)如图,将一副三角板如图所示叠放在一起,若AB=8cm,则阴影部分的面积是8cm2.×。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
勾股定理
要点一、勾股定理
直角三角形两直角边的平方和等于斜边的平方.如果直角三角形的两直角边长分别为a b ,,斜边长为
c ,那么222a b c +=.
要点诠释:(1)勾股定理揭示了一个直角三角形三边之间的数量关系.
(2)利用勾股定理,当设定一条直角边长为未知数后,根据题目已知的线段长可以建立方
程求解,这样就将数与形有机地结合起来,达到了解决问题的目的.
(3)理解勾股定理的一些变式:222a c b =-,222
b c a =-, ()2
22c a b ab =+-.
要点二、勾股定理的证明
方法一:将四个全等的直角三角形拼成如图(1)所示的正方形. 图(1)中
,所以
.
方法二:将四个全等的直角三角形拼成如图(2)所示的正方形. 图(2)中
,所以
.
方法三:如图(3)所示,将两个直角三角形拼成直角梯形.
,所以.
要点三、勾股定理的作用
1. 已知直角三角形的任意两条边长,求第三边;
2. 用于解决带有平方关系的证明问题;
3. 利用勾股定理,作出长为
的线段.
类型一、勾股定理的应用
例1、如图所示,在多边形ABCD中,AB=2,CD=1,∠A=45°,∠B=∠D=90°,求多边形ABCD的面积.
AB=,求BC的长.
【变式】如图所示,在△ABC中,∠A=45°,AC=,1
例2、已知直角三角形斜边长为2,周长为2
例3、如图,矩形纸片ABCD中,已知AD=8,折叠纸片使AB边与对角线AC重合,点B落在点F 处,折痕为AE,且EF=3,则AB的长为()
A.3 B.4 C.5 D.6
类型二、利用勾股定理解决实际问题
例4、如图所示,在一棵树的10m高的B处有两只猴子,一只爬下树走到离树20m处的池塘A处,另外一只爬到树顶D后直接跃到A处,距离的直线计算,如果两只猴子所经过的距离相等,试问这棵树有多高?
【变式】如图①,有一个圆柱,它的高等于12cm ,底面半径等于3cm ,在圆柱的底面A 点有一只蚂蚁,它想吃到上底面上与A 点相对的B 点的食物,需要爬行的最短路程是多少?(π取3)
练习:
一.选择题
1.如图,数轴上点A 所表示的数为a ,则a 的值是( )
A 1
B .1
C 1 D
2.若直角三角形的三边长分别为3,4,x ,则x 的值为( )
A.5
D.7
3. 如图所示,折叠矩形ABCD 一边,点D 落在BC 边的点F 处,若AB =8cm ,BC =10cm ,EC 的长为( ). A .3 B .4 C .5 D .6
(第3题) (第4题)
4.如图,矩形AOBC 中,点A 的坐标为(0,8),点D 的纵坐标为3,若将矩形沿直线AD 折叠,则顶点C 恰好落在边OB 上E 处,那么图中阴影部分的面积为( ) A. 30 B .32 C .34 D .16
5.如图,已知△ABC 中,∠ABC =90°,AB =BC ,三角形的顶点在相互平行的三条直线1l ,2l ,3l 上,且1l ,
2l 之间的距离为2 , 2l ,3l 之间的距离为3 ,则AC 的长是( )
A .172
B .52
C .24
D .7
6.在△ABC 中,AB =15,AC =13,高AD =12则, △ABC 的周长为( ) A.42 B.32 C.42或32 D.37或33
二.填空题
7.若一个直角三角形的两边长分别为12和5,则此三角形的第三边长为______.
8. 如图,将长8cm ,宽4cm 的矩形纸片ABCD 折叠,使点A 与C 重合,则折痕EF 的长为__________cm .
(第8题) (第9题)
9.如图,在55⨯的正方形网格中,以AB 为边画直角△ABC ,使点C 在格点上,这样的点C 共 个. 10.如图,每个小正方形的边长为1,在△ABC 中,点D 为AB 的中点,则线段CD 的长为__________.
(第10题) (第11题)
11. 已知长方形ABCD ,AB =3cm ,AD =4cm ,过对角线BD 的中点O 做BD 的垂直平分线EF ,分别交AD 、
BC 于点E 、F ,则AE 的长为_______________.
12.在直线上依次摆着7个正方形(如图),已知倾斜放置的3个正方形的面积分别为1,2,3,水平放置
的4个正方形的面积是
1234S S S S ,,,,则1234S S S S +++=______.
三.解答题
13. 如图,Rt △ABC 中,∠C =90º,AD 、BE 分别是BC 、AC 边上 的中线,AD =210,BE =5,求AB 的长.
15. 将一副三角尺如图拼接:含30°角的三角尺(△ABC )的长直角边与含45°角的三角尺(△ACD )的斜边恰好重合.已知AB =2,P 是AC 上的一个动点. (1)当点P 在∠ABC 的平分线上时,求DP 的长; (2)当点PD =BC 时,求此时∠PDA 的度数.
勾股定理专题训练
一、填空题(每小题3分,24分)
1. 如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少需_______米.
5米
3米
2. 如图,在△ABC 中,∠C=90°,BC=3,AC=4.以斜边AB 为直径作半圆,则这个半圆的面积是
____________.
(第3题) (第4题) (第5题)
3. 如图,校园内有两棵树,相距12米,一棵树高13米,另一棵树高8米,一只小鸟从一棵树的顶端飞
到另一棵树的顶端,小鸟至少要飞___________米.
4. 如图,△ABC 中,∠C =90°,AB 垂直平分线交BC 于D 若BC =8,AD =5,则AC 等于______________.
5. 如图,四边形ABCD 是正方形,AE 垂直于BE ,且AE =3,BE =4,阴影部分的面积是______.
6. 如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边和长为7cm,则正方形A ,B ,C ,D 的面积之和为___________cm 2
. 三、解答题(每小题8分,共40分)
7. 11世纪的一位阿拉伯数学家曾提出一个“鸟儿捉鱼”的问题: “小溪边长着两棵棕榈树,恰好隔岸相望.一棵树高是30肘尺
(肘尺是古代的长度单位),另外一棵高20肘尺;两棵棕榈树的 树干间的距离是50肘尺.每棵树的树顶上都停着一只鸟.忽然, 两只鸟同时看见棕榈树间的水面上游出一条鱼,它们立刻飞去 抓鱼,并且同时到达目标.问这条鱼出现的地方离开比较高的 棕榈树的树跟有多远?
8. 如图,A 、B 两个小集镇在河流CD 的同侧,分别到河的距离为AC=10千米,BD=30千米,且CD=30千米,现在要在河边建一自来水厂,向A 、B 两镇供水,铺设水管的费用为每千米3万,请你在河流CD 上选择水厂的位置M ,使铺设水管的费用最节省,并求出总费用是多少?
9. 如图所示的一块地,∠ADC=90°,AD=12m ,CD=9m ,AB=39m ,BC=36m ,求这块地的面积。
10.(12分)如图,某沿海开放城市A 接到台风警报,在该市正南方向100km 的B 处有一台风中心,沿BC 方向以20km/h 的速度向D 移动,已知城市A 到BC 的距离AD=60km ,那么台风中心经过多长时间从B 点移到D 点?如果在距台风中心30km 的圆形区域内都将有受到台风的破坏的危险,正在D 点休闲的游人在接到台风警报后的几小时内撤离才可脱离危险?
25.(14分)△ABC 中,BC a =,AC b =,AB c =,若∠C=90°,如图(1),根据勾股定理,则222c b a =+,若△ABC 不是直角三角形,如图(2)和图(3),请你类比勾股定理,试猜想22b a +与2c 的关系,并证明你的结论
.
A B
C
D
L
第21题图 A
B
C
D
第24题。