初一数学上册知识点华师版
华东师大版七年级数学上册知识点总结

七年级数学重点知识记录第二章 一、有理数(一)正、负数相反意义的量 如果用正数表示某种意义的量,那么负数就表示其相反意义的量;拓展:①具有相反意义的量是成对出现的,且不要丢掉单位;正数和负数零既不是正数,也不是负数; 正数>0>负数;负数前面的“—”号,表示这个数的性质,是性质符号;正数前面的“+”号可以省略;常用的一些符号和数学语言的含义: ⑴ a>0,表明a 是正数. ⑵ a<0,表明a 是负数.⑶ a ≥0,表明a 是非负数,即a 是正数或a 为0. ⑷ a≤0,表明a 是非正数,即a 是负数或a 为0.有理数及其分类定义:整数和分数统称为有理数。
按整数、分数的关系分类 按正负分类{负分数正分数分数负整数正整数整数有理数0⎩⎨⎧⎩⎨⎧{{负分数负整数负有理数正分数正整数正有理数有理数0⎩⎨⎧ 非正整数=0+负整数; 非负整数=0+正整数; 非正分数=负分数; 非负分数=正分数;非正数=0+负数; 非负数=0+正数; 非正有理数=0+负有理数; 非负有理数=0+正有理数;π是无理数,跟π有关的都是无理数;数集把一些数放在一起,就组成一个数的集合,简称数集; 表达形式:①用圈表示;②用大括号表示;有理数组成=有理数集; 整数组成=整数集;负数组成=负数集; 正整数+0组成的=非负整数集 等等;用数集表示数时,若这个数集中有无数多个数,则要加“…”。
填数集有两种方法:一种是逐个判断给出的数;二种是逐个填写相关的数集;(二)数轴 规定了原点、正方向和单位长度的直线叫做数轴;数轴是一条直线,可以向两端无限延伸;所有有理数都可以用数轴上的点来表示;数轴上的点并不都表示有理数;在数轴上表示有理数,首先必须准确画出数轴,并标注刻度,找出对应点,并在该点正上方标注数字;在数轴上比较数的大小 在数轴上表示的两个数,右边的数总比左边的数大,简称左小右大. 正数都大于零,负数都小于零,正数大于负数.数轴上的点的移动,要注意方向(左右)和距离(单位长度个数)。
华师版七年级上册数学知识点总结

七年级上册知识点总结第1章走进数学世界1、数学伴我们成长,测量、称重、计算等都与数学有关.2、数学与现实生活密切联系,人类离不开数学.3、人人都能学好数学.第2章有理数1、相反意义的量:像向东和向西、零上和零下、收入和支出、升高和降低、买入和卖出等都表示具有相反意义的量.2、正数和负数(1)正数都大于零;(2)在正数前面加上一个“—”号的数叫做负数,负数都小于零;(3)0既不是正数也不是负数,它是正数和负数的分界点.3、有理数(4)有理数:正数和分数统称为有理数;(5)整数包括正整数、0、负整数;(6)分数包括正分数、负分数.4、有理数的分类:0和正数统称为非负数,0和负数统称为非正数.5、数轴的概念:规定了正方向、原点和单位长度的直线叫做数轴.6、有理数的大小比较(1)利用数轴:在数轴上表示两个数,右边的数总比左边的数大;(2)利用比较法则:正数都大于零,负数都小于零,正数大于负数.7、相反数的意义(1)代数意义:只有符号不同的两个数称互为相反数,零的相反数是0;(2)几何意义:在数轴上表示互为相反数的两个点分别位于原点的两侧,且与原点的距离相等.8、相反数的表示方法:数a的相反数是-a,这里的a可以表示任何一个数.9、绝对值的意义(1)几何意义:把数轴上表示数a的点与原点的距离叫做数a的绝对值,记做|a|;(2)代数意义:一个正数的绝对值等于本身,零的绝对值是0,一个负数的绝对值等于相反数.10、绝对值的非负性:对于任何有理数a,都有|a|≥0.11、两个负数的大小比较法则:两个负数,绝对值大的反而小.12、有理数大小的比较方法(1)利用数轴:在数轴上表示两个数,右边的数总比左边的数大;(2)利用比较法则:正数都大于零,负数都小于零,正数大于负数.两个正数,绝对值大的数大;两个负数绝对值大的数反而小.13、有理数的加法法则(1)同号两数相加,取加数的符号,并把绝对值相加;(2)绝对值不相等的异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减较小的绝对值;(3)互为相反数的两个数相加得0;(4)一个数同0相加仍得这个数.14、在进行有理数的加法运算时,应分两步:首先,判断符号;然后,再计算绝对值.15、有理数的加法运算律(1)交换律:两个数相加,交换加数的位置,和不变,即:a+b=b+a;(用字母表示)(2)结合律:三个数相加,先把前面两个数相加,或者先把后两个数相加,和不变,即:(a+b)+c=a+(b+c).(用字母表示)16、运用加法运算律的技巧:正负结合;凑整结合;相反数结合;同分母结合;整分结合.17、有理数减法法则:减去一个数等于加上这个数的相反数,即:a-b=a+(-b).18、加减法统一成加法:有理数的加减法运算可以通过有理数的减法法则将减法转化为加法,统一成只有加法运算的和式.19、和式的写法:在和式里,通常把各个加数的括号和它前面的加号省略不写,写成省略加号的和的形式.20、加减混合运算的方法和步骤(1)将减法统一成加法,并写成省略加号的和的形式;(2)运用加法的交换律和结合律,简化运算.21、有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与零相乘,都得0.22、有理数乘法步骤:先确定积的符号;再计算绝对值的积.23、倒数:乘积是1的两个数互为倒数.24、有理数的除法法则(1)除以一个数等于乘以这个数的倒数;(2)两数相除,同号得正,异号得负,并把绝对值相除;(3)0除以任何一个不等于零的数,都得0.25、乘方的有关概念(1)求n个相同因数的积的运算叫乘方,乘方的结果叫幂,a叫底,n叫指数,a n读作:a的n 次方(或a的n次幂).(2)正数的任何次幂都是正数;负数的奇次方幂是负数,偶次方幂是正数.26、科学计数法把一个大于10的数记成a×10n的形式,其中0≤a<10,n是正数,这种计数法叫做科学计数法.27、有理数的混合运算顺序(1)先算乘方,再算乘除,最后算加减;(2)同级运算,按照从左至右的顺序依次进行;(3)如果有括号,就先算小括号,再算中括号,然后算大括号.28、近似数:与实际很接近的数.29、精确度:反映近似数的精确程度的量.一般地,一个近似数四舍五入到某一位,就说这个近似数精确到那一位.30、计算器的组成:计算器的面板由显示器和按键组成.第3章整式的加减1、用字母表示数后,有些数量之间的关系用含有字母的式子表示,看上去更加简明,更具有普遍意义.2、用字母表示数后,字母的取值要根据实际情景来确定.3、用运算符号把数或表示数的字母连接而成的式子,称为代数式.4、单独一个数或单独一个字母也是代数式.5、列代数式的实质就是把文字语言转化为符号语言.6、列代数式的一般方法有:(1)抓住关键词,由关键词确定相应的运算符号;(2)理清运算顺序,一般是先读的先算,必要时添上括号;(3)较复杂的数量关系,可分段处理;(4)根据实际问题中的基本数量关系或公式列代数式.7、用数值代替代数式中的字母,按照代数式中的运算关系计算得出结果,叫做代数式的值.8、求代数式的值的步骤:先代入,再求值.9、数与字母的乘积所组成的代数式叫做单项式,单独的数或字母也是单项式.10、单项式中的数字因数叫做这个单项式的系数,所有字母指数之和叫做这个单项式的次数.11、几个单项式的和叫做多项式,在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.12、在多项式里,最高次项的次数就是这个多项式的次数.13、单项式和多项式统称为整式.14、把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把这个多项式按这个字母的降幂排列.15、把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把这个多项式按这个字母的升幂排列.16、所含字母相同,并且相同字母的指数也相等的项叫做同类项,所有的常数项都是同类项.17、把多项式中的同类项合并成一项,叫做合并同类项.18、合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.19、去括号法则:(1)括号前面是“+”,把括号和它前面的“+”号去掉,括号里各项不改变正负号;(2)括号前面是“—”,把括号和它前面的“—”号去掉,括号里各项改变正负号;20、添括号法则:(1)所添括号前面是“+”号,括到括号里的各项不改变正负号;(2)所添括号前面是“—”号,括到括号里的各项改变正负号;21、整式加减的一般步骤:先去括号,再合并同类项.第4章生活中的立体图形1、生活中的立体图形有很多,常见的有柱体、锥体和球体,其中柱体分为圆柱和棱柱,锥体分为圆锥和棱锥2、从正面、上面和侧面(左面或右面)三个不同的方向看一个物体,然后描绘出三幅所看到的图,即视图.3、从正面看到的图形,称为主视图;从上面看到的图形,称为俯视图;从侧面看到的图形,称为侧视图,依观看的方向不同,有左视图和右视图.4、单一的规则的立体图形的三视图,如果主视图和侧视图是三角形,一般和锥体有关,可根据俯视图是圆形或n边形,可以判断是圆锥或,n棱锥;对于主视图和侧视图是长方形的,一般和柱体有关,再观察俯视图是圆形或n边形,可以判断是圆柱或n棱柱.5、圆柱的侧面展开图是矩形(长方形或正方形),圆锥的侧面展开图是扇形.6、同一个立体图形,按不同的方式展开得到的平面展开图是不同的.7、圆是由曲面围成的封闭图形;多边形是由线段围成的封闭图形.8、在多边形中,最基本的图形是三角形.9、两点之间线段最短.10、经过两点有1条直线,并且只有1条直线,即两点确定一条直线.11、线段的长短比较有两种方法:一种是度量的方法;一种是叠合的方法.12、把一条线段分成两条相等线段的点,叫做这条线段的中点.13、角是由两条有公共端点的射线组成的图形,角也可以看做是一条射线绕着它的端点旋转而成的图形.14、角的表示方法(1)当顶点处只有一个角时,用一个大写字母表示;(2)用三个大写字母表示,注意顶点字母必须写在中间;(3)用希腊字母或阿拉伯数字表示.15、角的大小比较:(1)“形的比较”——叠合法;(2)“数的比较”——度量法.16、从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的角平分线.17、两个角的和等于90°(直角),就说这两个角互为余角;两个角的和等于180°(平角),就说这两个角互为补角.18、同角(或等角)的余角相等;同角(或等角)的补角相等.第5章相交线与平行线1、对顶角相等.2、在同一平面内,经过直线外或直线上一点,有且只有1条直线与已知直线垂直.3、直线外一点与直线上各点连接的所有线段中,垂线段最短.4、两条直线被第三条直线所截,位于截线的同侧,被截直线的同一方的两个角叫做同位角;位于截线的两侧,被截直线之间的两个角叫做内错角;位于截线的同侧,被截直线之间的两个角叫做同旁内角.5、在同一平面内不相交的两条直线叫做平行线.6、经过直线外一点,有1条直线与这条直线平行.7、如果两条直线都和第三条直线平行,那么这两条直线也互相平行.8、平行线的判定方法(1)同位角相等,两直线平行;(2)内错角相等,两直线平行;(3)同旁内角互补,两直线平行;(4)如果有两条直线与第三条直线平行,那么这两条直线也互相平行;(5)在同一平面内,垂直于同一条直线的两条直线互相平行.9、平行线的性质(1)两直线平行,同位角相等;(2)两直线平行,内错角相等;(3)两直线平行,同旁内角互补.。
华东师范大学出版社七年级上册数学知识点总结

华东师范大学出版社七年级上册数学知识点总结第1章走进数学世界数学伴我们成长,测量、称重、计算等都与数学有关.1、数学与现实生活密切联系,人类离不开数学.2、人人都能学好数学.3、第2章有理数1相反意义的量:像向东和向西、零上和零下、收入和支出、升高和降低、、买入和卖出等都表示具有相反意义的量.正数和负数、2(1)正数都大于零;(2)在正数前面加上一个“—”号的数叫做负数,负数都小于零;(3)0既不是正数也不是负数,它是正数和负数的分界点.3、有理数(4)有理数:正数和分数统称为有理数;(5)整数包括正整数、0、负整数;(6)分数包括正分数、负分数.4、有理数的分类:0和正数统称为非负数,0和负数统称为非正数.5、数轴的概念:规定了正方向、原点和单位长度的直线叫做数轴.6、有理数的大小比较(1)利用数轴:在数轴上表示两个数,右边的数总比左边的数大;(2)利用比较法则:正数都大于零,负数都小于零,正数大于负数.7、相反数的意义(1)代数意义:只有符号不同的两个数称互为相反数,零的相反数是0;(2)几何意义:在数轴上表示互为相反数的两个点分别位于原点的两侧,且与原点的距离相等.8、相反数的表示方法:数a的相反数是-a,这里的a可以表示任何一个数.9、绝对值的意义(1)几何意义:把数轴上表示数a的点与原点的距离叫做数a的绝对值,记做|a|;(2)代数意义:一个正数的绝对值等于本身,零的绝对值是0,一个负数的绝对值等于相反数.10、绝对值的非负性:对于任何有理数a,都有|a|≥0.11、两个负数的大小比较法则:两个负数,绝对值大的反而小.12、有理数大小的比较方法(1)利用数轴:在数轴上表示两个数,右边的数总比左边的数大;(2)利用比较法则:正数都大于零,负数都小于零,正数大于负数.两个正数,绝对值大的数大;两个负数绝对值大的数反而小.13、有理数的加法法则(1)同号两数相加,取加数的符号,并把绝对值相加;(2)绝对值不相等的异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减较小的绝对值;(3)互为相反数的两个数相加得0;(4)一个数同0相加仍得这个数.14、在进行有理数的加法运算时,应分两步:首先,判断符号;然后,再计算绝对值.15、有理数的加法运算律(1)交换律:两个数相加,交换加数的位置,和不变,即:a+b=b+a;(用字母表示)(2)结合律:三个数相加,先把前面两个数相加,或者先把后两个数相加,和不变,即:(a+b)+c=a+(b+c).(用字母表示)16、运用加法运算律的技巧:正负结合;凑整结合;相反数结合;同分母结合;整分结合.17、有理数减法法则:减去一个数等于加上这个数的相反数,即:a-b=a+(-b).18、加减法统一成加法:有理数的加减法运算可以通过有理数的减法法则将减法转化为加法,统一成只有加法运算的和式.19、和式的写法:在和式里,通常把各个加数的括号和它前面的加号省略不写,写成省略加号的和的形式.20、加减混合运算的方法和步骤(1)将减法统一成加法,并写成省略加号的和的形式;(2)运用加法的交换律和结合律,简化运算.21、有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与零相乘,都得0.22、有理数乘法步骤:先确定积的符号;再计算绝对值的积.23、倒数:乘积是1的两个数互为倒数.24、有理数的除法法则(1)除以一个数等于乘以这个数的倒数;(2)两数相除,同号得正,异号得负,并把绝对值相除;(3)0除以任何一个不等于零的数,都得0.25、乘方的有关概念(1)求n个相同因数的积的运算叫乘方,乘方的结果叫幂,a叫底,n叫指数,a n 读作:a的n次方(或a的n次幂).(2)正数的任何次幂都是正数;负数的奇次方幂是负数,偶次方幂是正数.26、科学计数法把一个大于10的数记成a×10n的形式,其中0≤a<10,n是正数,这种计数法叫做科学计数法.27、有理数的混合运算顺序(1)先算乘方,再算乘除,最后算加减;(2)同级运算,按照从左至右的顺序依次进行;(3)如果有括号,就先算小括号,再算中括号,然后算大括号.28、近似数:与实际很接近的数.29、精确度:反映近似数的精确程度的量.一般地,一个近似数四舍五入到某一位,就说这个近似数精确到那一位.30、计算器的组成:计算器的面板由显示器和按键组成.第3章整式的加减用字母表示数后,有些数量之间的关系用含有字母的式子表示,看上去更加1、简明,更具有普遍意义.用字母表示数后,字母的取值要根据实际情景来确定.、2用运算符号把数或表示数的字母连接而成的式子,称为代数式.、3单独一个数或单独一个字母也是代数式.、4、列代数式的实质就是把文字语言转化为符号语言.5列代数式的一般方法有:、6抓住关键词,由关键词确定相应的运算符号;)(1)理清运算顺序,一般是先读的先算,必要时添上括号;2(较复杂的数量关系,可分段处理;)3(根据实际问题中的基本数量关系或公式列代数式.)(4用数值代替代数式中的字母,按照代数式中的运算关系计算得出结果,叫做7、代数式的值.8求代数式的值的步骤:先代入,再求值.、、数与字母的乘积所组成的代数式叫做单项式,单独的数或字母也是单项式.9单项式中的数字因数叫做这个单项式的系数,所有字母指数之和叫做这、11个单项式的次数.几个单项式的和叫做多项式,在多项式中,每个单项式叫做多项式的项,11、其中不含字母的项叫做常数项.、在多项式里,最高次项的次数就是这个多项式的次数.12单项式和多项式统称为整式.、13、把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把这14个多项式按这个字母的降幂排列.把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把这15、个多项式按这个字母的升幂排列.16所含字母相同,并且相同字母的指数也相等的项叫做同类项,所有的常、数项都是同类项.把多项式中的同类项合并成一项,叫做合并同类项.、17合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字、18母的指数不变.去括号法则:19、括号前面是“+”,把括号和它前面的“+”号去掉,括号里各项不改变正)1(负号;)括号前面是“—”,把括号和它前面的“—”号去掉,括号里各项改变正2(负号;添括号法则:21、所添括号前面是“+”号,括到括号里的各项不改变正负号;)1(所添括号前面是“—”号,括到括号里的各项改变正负号;)2(整式加减的一般步骤:先去括号,再合并同类项.21、第4章生活中的立体图形生活中的立体图形有很多,常见的有柱体、锥体和球体,其中柱体分为圆柱1、和棱柱,锥体分为圆锥和棱锥2从正面、上面和侧面(左面或右面)三个不同的方向看一个物体,然后描绘、出三幅所看到的图,即视图.从正面看到的图形,称为主视图;从上面看到的图形,称为俯视图;从侧面看、3到的图形,称为侧视图,依观看的方向不同,有左视图和右视图.单一的规则的立体图形的三视图,如果主视图和侧视图是三角形,一般和锥4、体有关,可根据俯视图是圆形或n边形,可以判断是圆锥或,n棱锥;对于主视图和侧视图是长方形的,一般和柱体有关,再观察俯视图是圆形或n边形,可以判断是圆柱或n棱柱.圆柱的侧面展开图是矩形(长方形或正方形),圆锥的侧面展开图是扇形.5、同一个立体图形,按不同的方式展开得到的平面展开图是不同的.6、圆是由曲面围成的封闭图形;多边形是由线段围成的封闭图形.、7、在多边形中,最基本的图形是三角形.8两点之间线段最短.、9经过两点有1条直线,并且只有1条直线,即两点确定一条直线.、11线段的长短比较有两种方法:一种是度量的方法;一种是叠合的方法.、11、把一条线段分成两条相等线段的点,叫做这条线段的中点.12角是由两条有公共端点的射线组成的图形,角也可以看做是一条射线绕、13着它的端点旋转而成的图形.角的表示方法、14当顶点处只有一个角时,用一个大写字母表示;)(1)用三个大写字母表示,注意顶点字母必须写在中间;2()用希腊字母或阿拉伯数字表示.3(角的大小比较:15、)“形的比较”——叠合法;1(“数的比较”——度量法.)2(从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射16、线叫做这个角的角平分线.两个角的和等于90°(直角),就说这两个角互为余角;两个角的和等17、于180°(平角),就说这两个角互为补角.同角(或等角)的余角相等;同角(或等角)的补角相等.、18第5章相交线与平行线对顶角相等.、1在同一平面内,经过直线外或直线上一点,有且只有1条直线与已知直线垂2、直.直线外一点与直线上各点连接的所有线段中,垂线段最短.3、、两条直线被第三条直线所截,位于截线的同侧,被截直线的同一方的两个角4叫做同位角;位于截线的两侧,被截直线之间的两个角叫做内错角;位于截线的同侧,被截直线之间的两个角叫做同旁内角.在同一平面内不相交的两条直线叫做平行线.5、、经过直线外一点,有1条直线与这条直线平行.6如果两条直线都和第三条直线平行,那么这两条直线也互相平行.、7平行线的判定方法8、)同位角相等,两直线平行;1(内错角相等,两直线平行;)(2)同旁内角互补,两直线平行;3(如果有两条直线与第三条直线平行,那么这两条直线也互相平行;)4(在同一平面内,垂直于同一条直线的两条直线互相平行.)5(平行线的性质9、)两直线平行,同位角相等;1(两直线平行,内错角相等;)2(两直线平行,同旁内角互补.)(3。
华师大七年级上数学知识点总结

一、数与代数
1.整数的加减乘除
2.数的倍数与因数
3.一元一次方程与解
4.一元一次方程的应用
5.二元一次方程组
二、分数与百分数
1.分数的加减乘除
2.分数的化简与比较大小
3.分数与小数的转化
4.百分数的基本概念和计算
三、图形与几何
1.平面图形的分类和性质
2.三角形的分类和性质
3.三角形的周长和面积
4.正方形、长方形和平行四边形的周长和面积
5.直角三角形的勾股定理
6.圆的性质和计算
四、数据与概率
1.数据的收集与整理
2.平均数与中位数
3.图表的制作与解读
4.概率的基本概念和计算
五、函数的初步认识
1.函数的基本概念和性质
2.函数的图像与性质
六、解方程和不等式
1.一元一次方程的解法
2.一元一次不等式的解法
七、线性方程组和二次函数
1.二元一次方程组的解法
2.二次函数的图像与性质
以上是华师大七年级上数学的主要知识点总结,每个知识点都需要深入理解和掌握,才能够在数学学习中取得好成绩。
希望同学们能够认真学习数学,提高自己的数学水平。
华师大版数学七年级上册全册知识点

华师大版七年级上册全册知识点总结第二章有理数1. (4)近似数的精确度有两种形式:1)精确到哪一位,2)保留几个有效数字。
相反意义的量向东和向西,零上和零下,收入和支出,升高和下降,买进和卖出。
2. 正数和负数像+21,+12,1.3,258等大于0的数(“+”通常不写)叫正数。
像-5,-2.8,-43等在正数前面加“—”(读负)的数叫负数。
【注】0既不是正数也不是负数。
3. 有理数(1)整数:正整数、零和负整数统称为整数。
分数:正分数和负分数统称为分数。
有理数:整数和分数统称为有理数。
(2)有理数分类1)按有理数的定义分类2)按正负分类 正整数正整数整数 0 正有理数 有理数负整数有理数正分数正分数 0 负整数分数负有理数 负分数负分数【注】有限循环小数叫做分数。
(3)数集把一些数组合在一起,就组成了一个数的集合,简称数集。
所有的有理数组成的数集叫做有理数集,类似的,有整数集,正数集,负数集,所有的正整数和零组成的数集叫做自然数集或叫做非负整数集,所有负数和零组成的数集叫做非负数集。
正分数负分数正整数0负整数4. 数轴(1)规定了原点、正方向和单位长度的直线叫做数轴。
【注】1)数轴的三要素:原点、正方向、单位长度缺一不可。
2)数轴能形象地表示数,所有的有理数都可用数轴上的点表示,但数轴上的点所表示的数并不都是有理数.(2)在数轴上比较有理数的大小1)在数轴上表示的两个数,右边的数总比左边的数大。
2)由正、负数在数轴上的位置可知:正数都有大于0,负数都小于0,正数大于一切负数。
5. 相反数(1)只有符号不同的两个数称互为相反数,如-5与5互为相反数。
(2)从数轴上看,位于原点两旁,且与原点距离相等的两点所表示的两个数叫做互为相反数。
(几何意义)(3)0的相反数是0。
也只有0的相反数是它的本身。
(4)相反数是表示两个数的相互关系,不能单独存在。
(5)数a 的相反数是—a 。
(6)多重符号化简多重符号化简的结果是由“-”号的个数决定的。
华东师大版数学七年级上册知识点

华东师大版数学七年级上册知识点七年级上第二章有理数1. 相反意义的量 向东和向西,零上和零下,收入和支出,升高和下降,买进和卖出。
2. 正数和负数像+21,+12,1.3,258等大于0的数(“+”通常不写)叫正数。
像-5,-2.8,-43等在正数前面加“—”(读负)的数叫负数。
【注】0既不是正数也不是负数。
3. 有理数(1)整数:正整数、零和负整数统称为整数。
分数:正分数和负分数统称为分数。
有理数:整数和分数统称为有理数。
(2)有理数分类1)按有理数的定义分类 2)按正负分类正整数 正整数 整数 0 正有理数有理数 负整数 有理数 正分数 正分数 0 负整数分数 负有理数负分数 负分数 【注】有限循环小数叫做分数。
(3)数集 把一些数组合在一起,就组成了一个数的集合,简称数集。
所有的有理数组成的数集叫做有理数集,类似的,有整数集,正数集,负数集,所有的正整数和零组成的正分数负分数正整数0负整数数集叫做自然数集或叫做非负整数集,所有负数和零组成的数集叫做非负数集。
4. 数轴(1)规定了原点、正方向和单位长度的直线叫做数轴。
【注】1)数轴的三要素:原点、正方向、单位长度缺一不可。
2)数轴能形象地表示数,所有的有理数都可用数轴上的点表示,但数轴上的点所表示的数并不都是有理数.(2)在数轴上比较有理数的大小1)在数轴上表示的两个数,右边的数总比左边的数大。
2)由正、负数在数轴上的位置可知:正数都有大于0,负数都小于0,正数大于一切负数。
5. 相反数(1)只有符号不同的两个数称互为相反数,如-5与5互为相反数。
(2)从数轴上看,位于原点两旁,且与原点距离相等的两点所表示的两个数叫做互为相反数。
(几何意义)(3)0的相反数是0。
也只有0的相反数是它的本身。
(4)相反数是表示两个数的相互关系,不能单独存在。
(5)数a 的相反数是—a 。
(6)多重符号化简多重符号化简的结果是由“-”号的个数决定的。
2024年新华师大版数学七年级上册教学课件 1.1.1 正数和负数

新知探究 知识点 3 0的意义及用正负数表示相对基准量
情景:你能用语言表述吐鲁番盆地与海平面的高度关系吗?它的含义
是什么? 记为+8844.43米 8844.43米
珠
穆
朗
玛
峰
155米记为-155米
吐鲁番盆地
高度看作0
海平面
新知探究
思考: 0只表示没有吗? 0是正负数的分界点.它不再简简单单的只表示没有,它具有丰富的意
①必须是同类量,而且是成对出现的; ②只要求意义相反,不要求数量一定相等.
课堂训练
1.下列说法,正确的是
(C)
A.加正号的数是正数,加负号的数是负数
B.0是最小的正数
C.字母a既可是正数,也可是负数,也可是0
D.任意一个数,不是正数就是负数
2.下列各对关系中,不具有相反意义的量的是( D )
A.运进货物3吨与运出货物2吨
(4)抗洪期间,如果水位超过标准水位1.5米记作+1.5米,那么后
来记录的-0.9米表示 低于标准水位0.9米
.
课堂训练
1
4.下列各数-2,0,-2 ,-10,3.5中,是正数的有 3.5 .
5.把下列各数填入相应的括号内:
-28,20,0,5,0.23,- 3 ,- 3 1 ,-3.2%,25%,3.14,0.62.
第1章 有理数
1.1 有理数的引入
1.正数和负数
华师大版-数学-七年级上册
学习目标
1.了解正数与负数是从实际需要中产生的. 2.理解正数、负数及0的意义,掌握正数、负数的 表示方法.【重点】 3.会用正数、负数表示具有相反意义的量.【难点】
新课导入
问题 我们在小学学过哪些数?你能按照某一标准将它 们分类吗? 自然数:0、1、2、3…
华东师大版七年级上册数学各章考点总结

华东师大版七年级上册数学各章考点总结第一章:有理数1. 有理数的概念及表示方法:- 有理数是整数和分数的统称,可以用分数线有限的十进制数或整数形式表示。
- 有理数可以是正数、负数或是零。
2. 有理数的比较和大小关系:- 有理数比较时,可以根据大小关系进行比较运算。
- 正数比负数大,负数比正数小。
- 绝对值较大的有理数较大。
3. 有理数的加法和减法:- 有理数的加法满足“结合律”和“交换律”,即改变加法顺序结果不变。
- 有理数的减法可以看作加法的逆运算,减去一个数等于加上相反数。
4. 有理数的乘法和除法:- 有理数的乘法满足“结合律”和“交换律”,即改变乘法顺序结果不变。
- 有理数的除法可以看作乘法的逆运算,除以一个数等于乘以倒数。
第二章:开方与整式1. 开方的概念和符号:- 开方是指求一个数的平方根。
- 开方符号为√,表示数学上的平方根。
2. 平方根的性质:- 非负数的平方根都是实数。
- 负数的平方根是虚数。
3. 完全平方数和近似平方根:- 完全平方数是指某个数的平方根是整数的数。
- 用近似法求平方根可以得到一个近似平方根的数值。
第三章:平方与立方1. 平方的概念及运算性质:- 平方是指将一个数自乘一次。
- 平方的结果通常是一个非负数。
2. 立方的概念及运算性质:- 立方是指将一个数自乘两次。
- 立方和正负号有关,正数的立方是正数,负数的立方是负数。
3. 平方根和立方根的关系:- 平方根是指求一个数的平方的逆运算。
- 立方根是指求一个数的立方的逆运算。
第四章:数据和统计1. 统计调查和数据整理:- 统计调查是指通过收集数据来了解和研究某个对象或现象。
- 数据整理是指对统计调查所获得的数据进行整理和分类。
2. 统计图和图表的表示:- 统计图主要包括柱形图、折线图、饼图等形式,用来直观地表示数据。
3. 数据的中心趋势:- 代表性数是用来描述数据的中心趋势的。
- 代表性数主要包括平均数、中位数和众数等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一数学上册知识点华师版
一、目标与要求
1.熟悉三角形,了解三角形的意义,熟悉三角形的边、内角、顶点,能用符号语言表示三角形。
2.经受度量三角形边长的实践活动中,理解三角形三边不等的关系。
3.懂得推断三条线段可否构成一个三角形的(方法),并能运用它解决有关的问题。
4.三角形的内角和定理,能用平行线的性质推出这肯定理。
5.能应用三角形内角和定理解决一些简洁的实际问题。
二、重点
三角形内角和定理;
对三角形有关概念的了解,能用符号语言表示三条形。
三、难点
三角形内角和定理的推理的过程;
在详细的图形中不重复,且不遗漏地识别全部三角形;
用三角形三边不等关系判定三条线段可否组成三角形。
四、学问框架
五、学问点、概念(总结)
1.三角形:由不在同始终线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2.三角形的分类
3.三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。
4.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。
5.中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。
6.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
7.高线、中线、角平分线的意义和做法
8.三角形的稳定性:三角形的外形是固定的,三角形的这共性质叫三角形的稳定性。
9.三角形内角和定理:三角形三个内角的和等于180°
推论1直角三角形的两个锐角互余;
推论2三角形的一个外角等于和它不相邻的两个内角和;
推论3三角形的一个外角大于任何一个和它不相邻的内角;
三角形的内角和是外角和的一半。
10.三角形的外角:三角形的一条边与另一条边延长线的夹角,叫做
三角形的外角。
11.三角形外角的性质
(1)顶点是三角形的一个顶点,一边是三角形的一边,另一边是三角形的一边的延长线;
(2)三角形的一个外角等于与它不相邻的两个内角和;
(3)三角形的一个外角大于与它不相邻的任一内角;
(4)三角形的外角和是360°。
12.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。
13.多边形的内角:多边形相邻两边组成的角叫做它的内角。
14.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。
15.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。
16.多边形的分类:分为凸多边形及凹多边形,凸多边形又可称为平面多边形,凹多边形又称空间多边形。
多边形还可以分为正多边形和非正多边形。
正多边形各边相等且各内角相等。
17.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫做正多边形。
18.平面镶嵌:用一些不重叠摆放的多边形把平面的一局部完全掩盖,
叫做用多边形掩盖平面。
七年级下册数学辅导复习资料
1.几何图形:点、线、面、体这些可帮忙人们有效的刻画错综简单的世界,它们都称为几何图形。
从实物中抽象出的各种图形统称为几何图形。
有些几何图形的各局部不在同一平面内,叫做立体图形。
有些几何图形的各局部都在同一平面内,叫做平面图形。
虽然立体图形与平面图形是两类不同的几何图形,但它们是相互联系的。
2.几何图形的分类:几何图形一般分为立体图形和平面图形。
3.直线:几何学根本概念,是点在空间内沿一样或相反方向运动的轨迹。
从平面解析几何的角度来看,平面上的直线就是由平面直角坐标系中的一个二元一次方程所表示的图形。
求两条直线的交点,只需把这两个二元一次方程联立求解,当这个联立方程组无解时,二直线平行;有无穷多解时,二直线重合;只有一解时,二直线相交于一点。
常用直线与X轴正向的夹角(叫直线的倾斜角)或该角的正切(称直线的斜率)来表示平面上直线(对于X轴)的倾斜程度。
4.射线:在欧几里德几何学中,直线上的一点和它一旁的局部所组成的图形称为射线或半直线。
5.线段:指一个或一个以上不同线素组成一段连续的或不连续的图线,照实线的线段或由“长划、短间隔、点、短间隔、点、短间隔”组成的双点长划线的线段。
线段有如下性质:两点之间线段最短。
6. 两点间的距离:连接两点间线段的长度叫做这两点间的距离。
7. 端点:直线上两个点和它们之间的局部叫做线段,这两个点叫做线段的端点。
线段用表示它两个端点的字母或一个小写字母表示,有时这些字母也表示线段长度,记作线段AB或线段BA,线段a。
其中AB表示直线上的任意两点。
8.直线、射线、线段区分:直线没有距离。
射线也没有距离。
由于直线没有端点,射线只有一个端点,可以无限延长。
9.角:具有公共端点的两条不重合的射线组成的图形叫做角。
这个公共端点叫做角的顶点,这两条射线叫做角的两条边。
一条射线围着它的端点从一个位置旋转到另一个位置所形成的图形叫做角。
所旋转射线的端点叫做角的顶点,开头位置的射线叫做角的始边,终止位置的射线叫做角的终边。
10.角的静态定义:具有公共端点的两条不重合的射线组成的图形叫做角。
这个公共端点叫做角的顶点,这两条射线叫做角的两条边。
(七年级数学)肯定值教案
●教学内容
七年级上册课本11----12页1.2.4肯定值
●教学目标
1.学问与力量目标:借助于数轴,初步理解肯定值的概念,能求一个数的肯定值,初步学会求肯定值等于某一个正数的有理数。
2.过程与方法目标:通过从数形两个侧面理解肯定值的意义,初步了解数形结合的思想方法。
通过应用肯定值解决实际问题,体会肯定值的意义。
3.情感态度与价值观:通过应用肯定值解决实际问题,培育学生深厚的学习兴趣,使学生能乐观参加数学学习活动,对数学有奇怪心与求知欲。
●教学重点与难点
教学重点:肯定值的几何意义和代数意义,以及求一个数的肯定值。
教学难点:肯定值定义的得出、意义的理解,以及求肯定值等于某一个正数的有理数。
●教学预备
多媒体课件
●教学过程
一、创设问题情境
1、两只小狗从同一点O动身,在一条笔直的街上跑,一只向右跑10米到达A点,另一只向左跑10米到达B点。
若规定向右为正,则A处记作?__________,B处记作__________。
以O为原点,取适当的单位长度画数轴,并标出A、B的位置。
(用生动好玩的引例吸引学生,即复习了数轴和相反数,又为下文作
预备)。
2、这两只小狗在跑的过程中,有没有共同的地方?在数轴上的A、B 两点又有什么特征?(从形和数两个角度去感受肯定值)。
3、在数轴上找到-5和5的点,它们到原点的距离分别是多少?表示-和的点呢?
小结:在实际生活中,有时存在这样的状况,无需考虑数的正负性质,比方:在计算小狗所跑的路程中,与小狗跑的方向无关,这时所走的路程只需用正数,这样就必需引进一个新的概念?———肯定值。
二、建立数学模型
1、肯定值的概念
(借助于数轴这一工具,师生共同争论,引出肯定值的概念) 肯定值的几何定义:一个数在数轴上对应的点到原点的距离叫做这个数的肯定值。
比方:-5到原点的距离是5,所以-5的肯定值是5,记|-5|=5;5的肯定值是5,记做|5|=5。
留意:①与原点的关系②是个距离的概念
2..练习1:请学生举一个生活中的实际例子,说明解决有的问题只需考虑的数肯定值。
[温度上升了5度,用 +5表示的话,那么下降了5度,就用-5 表示,假如我们不去考虑它的意义(即:上升还是下降),只考虑数量(即:温度)的变化,我们可以说:温度的变化都是5度。
银行存款,假如存入100元用+100表示,那么取出100元就用-100表示,假如
我们不去考虑它的意义(即:存入还是取出),只考虑数量的多少,我们可以说:金额都是100元。
]
(通过应用肯定值解决实际问题,体会肯定值的意义与作用,感受数学在生活中的价值。
)。