高速MOSFET门极驱动电路的设计应用指南(有图完整版)

合集下载

mos管的栅极驱动电路设计

mos管的栅极驱动电路设计

mos管的栅极驱动电路设计主要包括以下几个方面:
1.增加电流供应能力:图腾柱电路和推挽输出电路都可以用来增
强驱动,从而快速完成栅极电容输入的充电过程。

2.加速MOS管的关断:在关断的瞬间,驱动电路需要提供尽可
能低阻抗的通路,使MOSFET的栅极和源极之间的电容快速放电,保证开关管可以快速关断。

这通常通过在栅极电阻上并联一个二极管和一个额外的电阻来实现,其中二极管通常采用快恢复二极管,以缩短关断时间并降低关断损耗。

3.防止电源IC损坏:并联在栅极电阻上的额外电阻还可以防止电
源IC在关断时因电流过大而损坏。

4.满足高边驱动要求:对于需要驱动高边MOS管的情况,通常
使用变压器驱动器,有时也用于安全隔离。

详细讲解MOSFET管驱动电路

详细讲解MOSFET管驱动电路

详细讲解MOSFET管驱动电路在使用MOS管设计开关电源或者马达驱动电路的时候,大部分人都会考虑MOS的导通电阻,最大电压等,最大电流等,也有很多人仅仅考虑这些因素。

这样的电路也许是可以工作的,但并不是优秀的,作为正式的产品设计也是不允许的。

下面是我对MOSFET及MOSFET驱动电路基础的一点总结,其中参考了一些资料,非全部原创。

包括MOS管的介绍,特性,驱动以及应用电路。

1,MOS管种类和结构MOSFET管是FET的一种(另一种是JFET),可以被制造成增强型或耗尽型,P沟道或N 沟道共4种类型,但实际应用的只有增强型的N沟道MOS管和增强型的P沟道MOS管,所以通常提到NMOS,或者PMOS指的就是这两种。

至于为什么不使用耗尽型的MOS管,不建议刨根问底。

对于这两种增强型MOS管,比较常用的是NMOS。

原因是导通电阻小,且容易制造。

所以开关电源和马达驱动的应用中,一般都用NMOS。

下面的介绍中,也多以NMOS为主。

MOS管的三个管脚之间有寄生电容存在,这不是我们需要的,而是由于制造工艺限制产生的。

寄生电容的存在使得在设计或选择驱动电路的时候要麻烦一些,但没有办法避免,后边再详细介绍。

在MOS管原理图上可以看到,漏极和源极之间有一个寄生二极管。

这个叫体二极管,在驱动感性负载(如马达),这个二极管很重要。

顺便说一句,体二极管只在单个的MOS管中存在,在集成电路芯片内部通常是没有的。

2,MOS管导通特性导通的意思是作为开关,相当于开关闭合。

NMOS的特性,Vgs大于一定的值就会导通,适合用于源极接地时的情况(低端驱动),只要栅极电压达到4V或10V就可以了。

PMOS的特性,Vgs小于一定的值就会导通,适合用于源极接VCC时的情况(高端驱动)。

但是,虽然PMOS可以很方便地用作高端驱动,但由于导通电阻大,价格贵,替换种类少等原因,在高端驱动中,通常还是使用NMOS。

3,MOS开关管损失不管是NMOS还是PMOS,导通后都有导通电阻存在,这样电流就会在这个电阻上消耗能量,这部分消耗的能量叫做导通损耗。

MOS管驱动电路详解

MOS管驱动电路详解

MOS管驱动电路综述连载(一)时间:2009-07-06 8756次阅读【网友评论2条我要评论】收藏在使用MOS管设计开关电源或者马达驱动电路的时候,大部分人都会考虑MOS的导通电阻,最大电压等,最大电流等,也有很多人仅仅考虑这些因素。

这样的电路也许是可以工作的,但并不是优秀的,作为正式的产品设计也是不允许的。

1、MOS管种类和结构MOSFET管是FET的一种(另一种是JFET),可以被制造成增强型或耗尽型,P 沟道或N沟道共4种类型,但实际应用的只有增强型的N沟道MOS管和增强型的P沟道MOS管,所以通常提到NMOS,或者PMOS指的就是这两种。

至于为什么不使用耗尽型的MOS管,不建议刨根问底。

对于这两种增强型MOS管,比较常用的是NMOS。

原因是导通电阻小,且容易制造。

所以开关电源和马达驱动的应用中,一般都用NMOS。

下面的介绍中,也多以NMOS为主。

MOS管的三个管脚之间有寄生电容存在,这不是我们需要的,而是由于制造工艺限制产生的。

寄生电容的存在使得在设计或选择驱动电路的时候要麻烦一些,但没有办法避免,后边再详细介绍。

在MOS管原理图上可以看到,漏极和源极之间有一个寄生二极管。

这个叫体二极管,在驱动感性负载(如马达),这个二极管很重要。

顺便说一句,体二极管只在单个的MOS管中存在,在集成电路芯片内部通常是没有的。

2、MOS管导通特性导通的意思是作为开关,相当于开关闭合。

NMOS的特性,Vgs大于一定的值就会导通,适合用于源极接地时的情况(低端驱动),只要栅极电压达到4V或10V就可以了。

PMOS的特性,Vgs小于一定的值就会导通,适合用于源极接VCC时的情况(高端驱动)。

但是,虽然PMOS可以很方便地用作高端驱动,但由于导通电阻大,价格贵,替换种类少等原因,在高端驱动中,通常还是使用NMOS。

3、MOS开关管损失不管是NMOS还是PMOS,导通后都有导通电阻存在,这样电流就会在这个电阻上消耗能量,这部分消耗的能量叫做导通损耗。

射极跟随器时的功率MOSFET的驱动

射极跟随器时的功率MOSFET的驱动

功率MOSFET的驱动当然色可使明射极跟随器。

最近,制作了很多使用功率MOSFET的高速开关电源。

观察开关电源用控制IC的数据表,就会发现作为功率MOS的常见驱动的设备。

代表性的开关电源用控制IC TL494等,如图1所示,驱动输出发射极接地,无论射极跟随器的哪种形式均可使用,将输出晶体管的集电极、发射极独立,管脚被分配排列。

虽然一般情况下射极跟随器的使用较多,但以高速驱动为目的还需仔细考虑。

图1开关电源用PWM控制器一例
图2是用晶体管射极跟随器,驱动功率MOSFET门极的例子.从电路的动作上,门极闭合很快,但门极打开时由于发射极电阻RE的放电,而变成了低速的动作。

图3是FE=1kΩ时的开关波肜.由于关闭延迟很大(时间轴变更为10μs/div达到30μs,所以不能使用。

因此,尝试变更为RE=100Ω,此时如图4所示,只能缩短到约3μs还不能说Ok。

导通很快,但关闭需要时间.
图2 由射极跟随器组成的功率MOSFET驱动
图3 由射极跟随器驱动组成的功率MOSFET的开关波形
图4 由射极跟随器组成的功率MOSFET的开关波形。

MOSFET管驱动电路的设计

MOSFET管驱动电路的设计

MOSFET管驱动电路的设计驱动电路的设计目标是提供足够的电压和电流给MOSFET的栅极,使其能够快速开关,并且保证可靠性和稳定性。

以下是一个典型的MOSFET驱动电路的设计步骤:1.选取适当的驱动电源:根据MOSFET的规格书,确定所需的驱动电压和电流。

选择一个能够提供足够电压和电流的电源。

2.添加驱动器:为了提供足够的电流给MOSFET的栅极,需要添加一个驱动器。

驱动器可以是单晶体管、场效应管或者运算放大器等。

选择适当的驱动器并配置合适的电阻和电容以确保稳定性。

驱动器应具有足够的增益和带宽以实现所需的开关速度。

3.添加隔离电路:为了避免MOSFET的开关特性对驱动器产生负面影响,需要在驱动器和MOSFET之间添加隔离电路。

隔离电路可以是光电耦合器、变压器等。

它们能够提供电气隔离并消除共模干扰。

4. 考虑反击电压:当MOSFET关闭时,由于电感元件的自感性,会产生一个反击电压。

该电压可能损坏驱动器和其他电路。

为了避免这种情况,可以添加一个反击二极管或者Zener二极管来保护电路。

5.添加保护电路:为了保护MOSFET不受过电压和过电流的损害,可以添加保护电路,如过压保护电路和过流保护电路。

这些保护电路可以使MOSFET在异常情况下自动关闭。

6.电路模拟和验证:设计完成后,通过电路模拟软件进行仿真验证以确保电路的性能和稳定性。

根据仿真结果调整电路参数直到满足设计要求。

7.PCB设计:根据电路设计结果进行PCB布局和布线。

要注意保持良好的地平面和电源平面,并分离驱动器和MOSFET的高电流回路和敏感信号线路。

8.测试和调试:制造和组装PCB后,进行测试和调试以验证电路的性能。

这包括检查驱动电源、驱动器输出和MOSFET的开关响应。

总之,MOSFET驱动电路的设计需要仔细考虑各种因素,包括驱动电源、驱动器的选择、隔离电路、反击电压和保护电路等。

通过合理的设计和仿真验证,可以实现可靠、稳定和高效的MOSFET驱动电路。

MOSFET驱动电路的设计与仿真

MOSFET驱动电路的设计与仿真

MOSFET驱动电路的设计与仿真摘要:MOSFET(金属氧化物半导体场效应晶体管)作为一种常见的功率开关元件,广泛应用于电路的开关和驱动控制中。

本文将介绍MOSFET驱动电路的设计与仿真过程,包括驱动电路的选型、电路的设计和电路的性能分析等。

一、驱动电路的选型在选择驱动电路时,需要考虑以下几个因素:1. 驱动电路的电压要能满足MOSFET的驱动要求。

通常,MOSFET的门极电压(Vgs)需要在规定的范围内才能正常工作。

2.驱动电路的电流要能满足MOSFET的驱动要求。

MOSFET的门极电流(Ig)需要足够大才能迅速充放电。

3.驱动电路的速度要能满足应用场景的需求。

驱动电路的响应速度需要足够快以确保MOSFET的正常开关操作。

4.驱动电路的成本要能够接受。

驱动电路的成本包括电路的制作、元件的购买等。

二、电路的设计根据选型的结果,可以开始设计驱动电路。

以下是驱动电路设计的几个关键步骤:1.选择适合的驱动电源。

电源的选择需要根据电路的工作电压和电流要求来确定。

一般来说,可以选择开关电源或者稳压电源。

2.选择合适的驱动电路拓扑结构。

驱动电路常见的拓扑结构包括共射极、共集极和共基极。

选择适合的拓扑结构需要考虑MOSFET的特性,如集电极功率损耗、输出电压的放大倍数等。

3.选择合适的驱动电路元件。

驱动电路元件包括电阻、电容和三极管等。

选取合适的元件需要考虑电压和电流的要求、响应速度和成本等因素。

4.进行电路的原理图设计。

根据选取的驱动电源、拓扑结构和元件,绘制驱动电路的原理图。

5.进行电路的PCB布局设计。

根据原理图,将电路元件进行布局,保证电路的稳定性和可靠性。

三、电路的仿真在完成电路设计后,可以利用电路仿真软件进行电路的性能分析和验证。

通过仿真可以评估电路的各种性能参数,如频率响应、电压和电流波形、功率损耗等。

在进行仿真前,需要建立电路的仿真模型。

根据电路的原理图和元件参数,建立仿真模型。

利用仿真软件进行电路性能分析。

两种常见的MOSFET驱动电路设计

两种常见的MOSFET驱动电路设计

两种常见的MOSFET驱动电路设计MOSFET驱动电路是一种常见的电路设计,用于控制和驱动MOSFET晶体管的工作。

MOSFET驱动电路的设计能够确保MOSFET的开关速度,其选择和设计影响到整个电路的性能和可靠性。

以下是两种常见的MOSFET驱动电路设计。

1.单级放大器驱动电路单级放大器驱动电路是一种简单而常见的MOSFET驱动电路设计。

它包含一个放大器和一个偏置电源电路。

其输入端连接到信号源,输出端连接到MOSFET的门极。

当输入信号施加到放大器时,放大器将信号放大至足够高的电压,以控制MOSFET的开关。

单级放大器驱动电路的优点是简单,易于设计和实现。

然而,它可能存在驱动能力不足的问题。

因此,在应用中通常需要考虑额外的电流放大器或放大器级联来增加驱动能力。

2.高侧驱动电路高侧驱动电路是另一种常见的MOSFET驱动电路设计。

高侧驱动电路用于控制高侧(负载连接在电源正极的一侧)MOSFET。

它需要一个额外的电源电路和驱动电路来实现。

高侧驱动电路通常包含一个电源电路,用于提供MOSFET的驱动电压。

该电源电路可以是一个开关电源或线性调节电源。

驱动电路通常由电流源、驱动变压器和栅极驱动电路组成。

电流源用于提供驱动电路所需的电流,驱动变压器用于隔离输入信号源和MOSFET,以减小信号干扰和保护信号源。

高侧驱动电路的优点是能够驱动高侧MOSFET,使其能够正常工作。

然而,高侧驱动电路的设计复杂,需要考虑保护电路和故障检测电路,以确保其可靠性和安全性。

除了以上两种常见的MOSFET驱动电路设计,还有其他一些特殊应用的驱动电路,例如三相桥式驱动电路、半桥和全桥驱动电路等。

这些电路设计根据具体应用需求和性能要求可能有所不同,但基本的驱动原理和设计方法是相似的。

总之,MOSFET驱动电路设计是一项重要而复杂的工作,旨在保证MOSFET工作的可靠性和性能。

根据具体的应用需求和性能要求,选择合适的驱动电路设计,并考虑保护措施和故障检测电路,以确保电路的可靠性和安全性。

快速开关超结MOSFET的驱动和布局设计

快速开关超结MOSFET的驱动和布局设计

为了降低噪音辐射,需要较高的寄生电容值。寄生电容 要求存在直接的冲突。根据最近的系统趋势,提高效率 是关键目标,而仅仅为了减少 EMI 而降低开关器件的 速度并不是最佳解决方案。本指南说明在设计快速开关 电源器件时,如何权衡这些考虑因素。
超级结 MOSFET 技术
通常 认为 RDS(ON) x QG ,即品质因 数 (FOM) 是开 关电源 (SMPS) MOSFET 最重要的单项性能指标。因此,已经开 发出数项提高 RDS(ON) x QG FOM 的新技术。10 年前,采 用电荷平衡理论的超级结器件就已引入到半导体行业, [3] 为高电压功率 MOSDFET 市场设定了新基准 图 1。显 示了平面型 MOSFET 和超级结 MOSFET 的垂直结构和电 场分布。平面型 MOSFET 的击穿电压取决于漂移层掺杂 度及其厚度。电场分布的斜率与漂移层掺杂度成正比。 因此,需要较厚且轻掺杂的 EPI 来支持更高的击穿电 压。高压 MOSFET 的导通电阻主要来自漂移区。因此, 导通电阻随较厚且轻掺杂的漂移层呈指数增加,从而实 现较高的击穿电压,如图 2所示。 与传统平面技术的井状结构相比,超级结技术体中有较 深的 P- 型柱状结构。柱状结构可有效限制轻掺杂 epi 区域中的电场。由于采用这种P-型柱状结构,与传统平 面结构相比, N- 型 EPI 的电阻显著减少,同时维持了 同等的击穿电压。因此,这种新技术打破了导通电阻方 面的硅限制,并且与传统平面工艺相比,实现了单位面 [4] 积的导通电阻仅为原来的 1/3 。众所周知,该技术还 提供独特的非线性寄生电容性能并能够减少开关功率损 耗。
80 70 60 50
铁氧体磁芯的影响
经追踪,主要噪声源来自开关瞬间 MOSFET 中的振荡。 通常来说,寄生振荡频率在几十到几百兆赫兹范围内。 寄生振荡可能导致栅源极电压击穿、EMI 性能恶化、较 大的开关损耗、栅极失控,甚至可能导致 MOSFET 失效 。通常在 MOSFET 栅极引线上使用铁氧体磁珠,抑制寄 生振荡,同时最大限度地降低开关损耗,从而保证稳定 运行。事实上,添加铁氧体磁珠比单独使用栅极电阻更 加有效,这是因为铁氧体磁珠的阻抗随频率变化。图 11 显示铁氧体磁珠的等效电路,图 12 显示作为频率 函数的阻抗性能。 Rbead 和 Lbead 分别为铁氧体磁珠的直 流电阻和有效电感。Cpara 和 Rpara 为与铁氧体磁珠有关的 并联电容和电阻。简单来说,铁氧体磁珠是跟频率相关 的电阻。低频时,Cpara 为开路而 Lbead 为短路,仅留 Rbead 作为铁氧体磁珠的直流电阻。随着频率增大, Lbead的阻 抗开始随频率 (jωLbead) 线性增大,而 Cpara的阻抗与 频率 (1/ jωCpara) 成反比降低,如方程式 (1) 所示:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档