人脸识别技术研究解读
基于人工智能的人脸识别技术研究及应用

基于人工智能的人脸识别技术研究及应用前言随着科技的发展,越来越多的人工智能技术被广泛应用于各个领域中。
其中,人脸识别技术是一项热门的应用之一。
它的重要性在于,它可以为许多日常生活和工作场景提供便利。
本文将介绍基于人工智能的人脸识别技术的研究进展和应用。
一、人脸识别技术的介绍人脸识别技术是一种基于人工智能的模式识别技术,它旨在将人脸中的主要特征提取出来并进行识别。
在实际应用中,人脸识别技术可以用于识别和验证人员身份、智能监控、刑侦和安全防范等方面。
二、人脸识别技术的研究进展1. 人脸识别技术的发展历程人脸识别技术的发展历程可以追溯到上个世纪50年代,并在1988年开始被商业化。
随着计算机处理速度的提高和机器学习算法的不断改进,人脸识别技术已经取得了重大进展。
2. 人脸识别技术的主要算法目前,人脸识别技术主要采用的算法包括人工神经网络算法、决策树算法和支持向量机算法等。
其中,深度学习算法是目前最火热的一种算法。
它可以处理大量复杂的数据,并通过多层神经网络对数据进行分类和识别。
3. 人脸识别技术的关键技术在实际应用中,人脸识别技术需要面对许多技术难题,如光照、姿态、表情、年龄、人种等方面的干扰。
因此,如何解决这些技术问题,成为了人脸识别技术研究的关键之一。
现在,许多新型的人脸识别技术正在被开发出来,以解决这些问题。
三、人脸识别技术的应用1. 人脸识别技术在安防领域中的应用人脸识别技术已经被广泛应用于安防领域中,如智能门禁、刑侦和巡逻等。
使用人脸识别技术可以使安全检查更加高效和准确,同时也可以防止身份欺骗和非法入侵。
2. 人脸识别技术在社会生活中的应用人脸识别技术不仅可以被应用于安防领域,还可以被应用于社会生活中。
比如,在人脸支付、出入校园和自动签到等方面。
这种技术可以给社会生活带来重大的便利和效率提高。
3. 人脸识别技术在医疗领域中的应用人脸识别技术还可以被应用于医疗领域中,如在病人识别、个性化治疗和健康评估等方面。
人脸识别技术研究及其应用

人脸识别技术研究及其应用随着技术的不断发展,人类已经进入了信息化时代,各种智能设备和应用也随之出现。
在这方面,人脸识别技术是一种比较新的技术,它可以通过对人脸图像的采集、分析、处理等一系列技术手段来识别出人物身份。
人脸识别技术不仅具有高精准度、高效率、易操作等优点,而且在各个领域有广泛的应用。
一、人脸识别技术的研究人脸识别技术的研究可以追溯到上世纪六七十年代,但当时技术水平相对较低,只能对一些简单的人脸图像进行处理,实现人脸的自动识别还有一定的困难。
随着计算机技术的不断发展,人脸识别技术也得到了快速的发展和应用。
在研究方法上,人脸识别技术主要是采用数字图像处理技术、模式识别技术、人工智能技术等手段进行研究。
数字图像处理技术可以对图像进行预处理,增强图像的质量和信息量。
模式识别技术可以对图像进行分类和识别,从而达到人脸识别的目的。
人工智能技术可以模拟人类的思维和认知过程,更加精准地进行识别。
二、人脸识别技术的应用人脸识别技术在各个领域都得到了广泛应用。
下面就一些典型的应用进行介绍:1. 安防领域在安防领域,人脸识别技术可以用于门禁系统、监控系统等。
门禁系统可以通过人脸识别技术自动辨识员工,并记录工作考勤时间等信息。
监控系统则可以通过人脸识别技术识别出重点人员,并及时采取措施,保护重要场所的安全。
2. 社会管理人脸识别技术在社会管理领域也有广泛应用。
例如,在警务系统中,可以将犯罪嫌疑人的照片通过人脸识别技术快速匹配到人口系统中的信息,从而加快犯罪的侦查速度。
在人口普查中,人脸识别技术可以对人口数据进行核验和更新。
3. 金融领域人脸识别技术在金融领域也有广泛应用,尤其是在ATM机、网银等领域。
通过人脸识别技术可以对用户进行身份验证,进一步保证用户财产的安全。
4. 医疗领域在医疗领域,人脸识别技术可以用于病人的身份验证和医生的考勤系统中。
通过人脸识别技术可以避免医疗事故和病人身份混淆。
三、人脸识别技术存在的问题随着人脸识别技术的广泛应用,也暴露出了一些问题,例如:1. 精度问题人脸识别技术存在识别精度不够高的问题。
人脸识别技术原理解析

人脸识别技术原理解析人脸识别技术是一种基于人脸生物特征进行身份识别的技术。
通过对人脸图像进行采集、处理和分析,可以实现个人身份的自动识别。
本文将对人脸识别技术的原理进行解析,从图像采集、特征提取和特征匹配三个方面进行论述。
一、图像采集人脸识别技术的第一步是图像的采集。
通常,这一过程需要使用摄像机或者其他图像采集设备对目标人脸进行拍摄,获得人脸图像。
为了保证识别的准确性,图像采集需要满足以下几个条件:1. 光照条件:良好的光线条件有助于获得清晰明亮的人脸图像,提高识别的准确率。
同时,应考虑不同环境下的光线变化对采集结果的影响,确保系统的鲁棒性。
2. 距离和角度:采集设备与目标人脸的距离、角度应适当,保证人脸图像的清晰度和完整性。
过远或过近、过倾斜的角度都会影响人脸特征的提取和匹配。
3. 遮挡情况:采集过程中,需要尽量避免目标人脸被物体或其他人脸部位所遮挡,确保采集到完整的人脸图像。
二、特征提取在获得人脸图像后,接下来的步骤是对图像进行处理,提取关键的人脸特征。
主要的特征提取方法有以下两种:1. 几何特征:基于人脸的几何结构和比例关系,提取人脸的特定区域和点的位置。
例如,眼睛间距、嘴巴宽度等几何特征可以用来描述一个人脸的独特特征。
2. 纹理特征:基于人脸图像的纹理信息,提取人脸的纹理特征。
例如,皮肤颜色、皱纹纹理等可以用来区分不同个体的人脸。
特征提取的目的是将原始图像转换为能够有效区分人脸的特征向量,为后续的比对和匹配提供支持。
三、特征匹配特征匹配是人脸识别技术最关键的一步,通过对提取到的特征进行对比,判断目标人脸与数据库中的人脸是否相匹配。
主要的特征匹配方法有以下两种:1. 模板匹配:将目标人脸的特征与已知的人脸模板进行比对,通过计算相似度来判断是否匹配。
常用的相似度计算方法有欧氏距离、余弦相似度等。
2. 统计模型匹配:利用统计学习的方法,构建人脸模型,并利用该模型对目标人脸的特征进行匹配。
例如,主成分分析(PCA)、线性判别分析(LDA)等都可以应用于人脸识别中。
人脸识别技术研究的意义应用与发展现状

人脸识别技术研究的意义应用与发展现状
一、人脸识别技术的意义
人脸识别技术是一种新兴的智能验证技术,它可以使用摄像头采集人脸特征数据,采用图像处理和分析技术,以及机器学习等多种技术实现人脸识别。
由于这种技术的应用,将大大提升我们的生活质量,减少不必要的安全隐患,能够更好的保护社会安全。
人脸识别技术的核心思想是通过读取人脸特征数据(亮度、颜色、纹理等),来识别人脸,从而实现安全认证。
它可以进行两人之间的比对,也可以比对两张照片,如果识别率较高,就可以实现更精准的身份验证与认证,从而保护个人信息,增强安全性,可以解决很多安全问题。
例如,在银行验证中,采用人脸识别技术可以有效地提高安全系数,减少冒充险;而在公共交通场景,则可以通过自动识别技术实现安全护卫以及有效的出行收费系统,从而更好地控制人流量。
同时,人脸识别技术也可以在社会活动中应用,例如活动报道、视频监控、社交保护等服务,可以帮助用户验证场景中不同角色的身份,增强安全性;也可以用于进行犯罪抓捕,减少犯罪负担。
目前,世界各国都在加大研发投入,加快人脸识别技术的发展。
人脸识别技术的精度与误识率分析

人脸识别技术的精度与误识率分析摘要:人脸识别技术作为一种生物特征识别技术,近年来得到了广泛的关注和研究。
本文旨在对人脸识别技术的精度和误识率进行全面分析,探讨其在各个领域的应用前景。
一、引言人脸识别技术是通过采集和处理人的脸部特征来进行身份验证和识别的一种技术。
它能够在现实环境中快速准确地检测和识别人脸信息,具有广泛的应用前景。
然而,人脸识别技术的精度和误识率是评估其性能优劣的重要指标。
二、人脸识别技术的精度人脸识别技术的精度主要包括两个指标:一对一识别准确率和一对多识别准确率。
1. 一对一识别准确率一对一识别准确率是指在给定的两个人脸图像中,能够准确判断两个图像是否属于同一个人的能力。
这一指标常用于身份验证等场景中。
目前,许多先进的人脸识别系统在一对一识别准确率上已经达到了超过99%的水平。
2. 一对多识别准确率一对多识别准确率是指在给定的一组人脸图像中,能够正确地识别某个人的能力。
这一指标常用于人脸检索和安全监控等场景中。
随着深度学习等技术的发展,人脸识别技术的一对多识别准确率也在不断提高。
三、人脸识别技术的误识率人脸识别技术的误识率是指在进行人脸识别时,错误地将不同人的面部特征识别为同一人的概率。
误识率的高低直接影响着人脸识别技术的可靠性和可信度。
1. 原因分析误识率的高低受多种因素影响,包括图像质量、角度、遮挡、光照等。
图像质量较低、角度较大、存在遮挡或光照条件差的情况下,人脸识别系统易产生误识。
2. 解决方法为了降低人脸识别技术的误识率,可以采取以下方法:- 图像质量增强:通过图像预处理算法提升图像质量,减少图像噪声和模糊度。
- 姿态校正:通过建立三维人脸模型,校正图像中的角度问题,提高识别准确率。
- 遮挡处理:通过人脸图像的分割和补全算法,减少遮挡对识别结果的影响。
- 光照补偿:采用合适的光照模型对图像进行光照归一化,降低光照差异对识别的影响。
四、人脸识别技术的应用前景人脸识别技术已经在各个领域得到了广泛的应用。
人脸识别技术的算法原理与核心技术解析

人脸识别技术的算法原理与核心技术解析概述人脸识别技术是指利用计算机视觉和模式识别技术,对图像或视频中的人脸进行检测、识别和验证的技术。
随着计算机视觉技术和人工智能的飞速发展,人脸识别技术已经在很多领域得到了广泛应用,如安全领域的人脸门禁、身份认证、刑侦领域的嫌疑人比对等。
本文将从算法原理和核心技术两个方面对人脸识别技术进行解析。
算法原理人脸识别技术的算法原理主要包括特征提取、特征比对和分类器构建三个关键步骤。
其中,特征提取是将图像中的人脸区域提取出来,并转化为计算机能够理解的数值特征。
特征比对是将提取得到的人脸特征与特征数据库中的人脸特征进行比对,确定是否匹配。
分类器构建是根据已知的人脸特征数据集,训练出一个具有分类能力的模型,能够将新的人脸数据分类为已知的不同身份。
在特征提取阶段,人脸识别技术主要采用两种方法:基于几何结构的方法和基于统计的方法。
基于几何结构的方法将人脸图像中的关键特征点(如眼睛、鼻子、嘴巴)位置与人脸模型进行对齐,通过计算特征点之间的相对位置和角度来提取人脸特征。
基于统计的方法则通过学习大量的人脸图像,使用统计模型来表示人脸的特征分布,将人脸图像投影到该模型的子空间中得到特征信息。
而特征比对阶段,人脸识别技术采用的核心技术是人脸匹配算法。
常用的人脸匹配算法包括最近邻分类器(Nearest Neighbor Classifier)、支持向量机(Support Vector Machines)和卷积神经网络(Convolutional Neural Networks)。
这些算法通过计算待比对人脸特征与数据库中已有特征之间的相似度或距离,来判断是否匹配。
核心技术人脸识别技术的核心技术包括图像预处理、人脸检测、特征提取、特征选择和分类器训练等几个关键环节。
首先,图像预处理是为了减少图像噪声、增强图像对比度和亮度一致性,以提高后续步骤的准确性。
图像预处理常包括图像灰度化、直方图均衡化、滤波和人脸图像归一化等处理步骤。
人脸识别技术解析

人脸识别技术解析近年来,随着科技的不断进步和应用的快速普及,人脸识别技术逐渐引起人们的关注和兴趣。
作为一种用于识别和验证个体身份的技术手段,人脸识别技术在安全领域、金融业务、娱乐活动等多个领域都得到了广泛应用。
本文将对人脸识别技术进行全面解析,包括其原理、应用和未来发展趋势。
一、人脸识别技术的原理人脸识别技术是一种利用计算机视觉、模式识别和机器学习等领域的理论和方法,通过对人脸图像进行处理和分析,实现对人脸特征进行提取和匹配的过程。
其基本原理可以概括为以下几个步骤:1.采集人脸图像:通过照相机或摄像头等设备,获取被识别者的人脸图像。
2.预处理:对采集到的人脸图像进行预处理,包括图像增强、人脸检测、人脸对齐等步骤,从而提高后续步骤的准确性和鲁棒性。
3.特征提取:利用各种算法和模型,对预处理后的人脸图像进行特征提取,通常包括几何特征、纹理特征、光谱特征等。
4.特征匹配:将提取到的人脸特征与事先存储的特征库中的数据进行比对和匹配,通过计算相似度或距离度量来判断是否为同一人脸。
5.决策和输出:根据特定的阈值或规则,判断匹配结果是否达到一定的准确性要求,从而决策出识别结果并进行输出。
二、人脸识别技术的应用人脸识别技术在现实生活中有着广泛的应用,主要体现在以下几个领域:1.安全领域:人脸识别技术可以用于安防监控系统,通过对进出人员的身份进行识别,实现自动门禁控制和安全警报。
同时,它也可以用于公安系统中的刑事侦查和犯罪预防,辅助警方进行追踪和定位。
2.金融业务:人脸识别技术被广泛应用于银行、支付和证券等金融行业。
在用户身份认证方面,它可以替代传统的密码和证件验证,提高交易安全性。
在金融诈骗防控方面,它可以通过对人脸特征的比对,减少诈骗风险和损失。
3.娱乐活动:人脸识别技术可以应用于游戏、娱乐和社交网络等领域。
例如,它可以用于让玩家在游戏中通过面部表情来控制角色的动作,增加游戏的趣味性和互动性。
在社交网络方面,它可以用于人脸标签和情感分析,提供更加精确和便捷的分享和交流。
人脸识别技术的原理分析

人脸识别技术的原理分析人脸识别技术是一种基于人脸图像特征识别与比对的生物识别技术,它可以通过摄像头、照片或视频等方式采集人脸图像,并通过图像处理和模式识别技术来对人脸进行分析和比对,从而实现身份认证、门禁控制、罪犯追踪等多种应用。
人脸识别技术的原理可以分为人脸图像采集、特征提取与模板匹配三个步骤。
一、人脸图像采集人脸图像采集是人脸识别技术中的第一步,也是最关键的一步。
它通过一系列装有高清摄像头和红外传感器的设备来捕捉人脸图像,将人脸图像转化为数字信号,并对其进行精准识别、分析和处理。
在人脸图像采集中需要考虑的因素包括光线、角度、距离、遮挡等,其中光线因素对于人脸识别技术的准确性影响最大。
二、特征提取特征提取是人脸识别技术中的核心环节,该环节通过一系列算法将人脸图像中的特征提取出来,形成一个特征向量,用于后续的比对和匹配。
特征提取的算法主要包括PCA(主成分分析)法、LDA(线性判别分析)法、IJB(人脸识别杂志评估测试)评估方法、深度学习等。
其中,深度学习技术在现代人脸识别技术中占有重要地位,它通过卷积神经网络(CNN)提取人脸图像中的特征,再进行训练和学习,最终形成一个对于该人脸图像的特征向量。
三、模板匹配模板匹配是人脸识别技术中的最后一步,它通过将人脸图像中的特征向量与预先存储的人脸数据库中的特征向量进行比对,从而判断该人脸图像是否属于数据库中的某一人。
在模板匹配中需要考虑的因素主要包括相似度计算方法、训练模型、更新数据库等方面。
总的来说,人脸识别技术的原理主要是通过摄像头、照片或视频采集人脸图像,通过一系列算法和模式匹配技术提取人脸图像的特征向量,并与预先存储的人脸数据库中的特征向量进行比对和匹配,从而实现身份认证、门禁控制、罪犯追踪等多种应用。
虽然人脸识别技术在各个领域中已经逐渐得到广泛应用,但是也存在一些风险和隐患。
例如,人脸识别技术可能会侵犯个人隐私权;人脸识别技术也可能会出现误认等问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人脸识别技术研究1 引言1.1 选题背景目前,在个人身份鉴别中主要依靠ID卡和密码等传统手段,这些传统手段的安全性能较低,且都是基于,“What he Dossesses”或“What he remembers”的简单身份鉴别,离真真意义上的身份鉴别“Who he is”还相差甚远。
依靠传统方法来确认个人身份越来越不适应现代科技的发展和社会的进步。
生物特征识别技术给可靠的身份鉴定带来了可能。
最近,国际生物特征组织(IBG)对生物特征识别技术做了较详细的市场分析和预测,其结果显示,全球生物特征识别技术2014年的产值约为69亿美元,预计到2016年将超过93亿美元,市场潜力非常巨大…。
生物识别技术是指利用一个人特有的生理和行为特征进行自动的身份认证。
只有满足以下几个条件的生理或行为特征才能被用做生物识别特征1)普遍性。
即每个人都要具备这种特征。
2)唯一性。
即不同的人应该具备不同的这种特性。
3)持久性。
即这种特征不随时间地点的改变而变化。
4)可采集性。
即该特征可以被定量地测量。
研究和经验表明,人脸、指纹、手型、掌纹、虹膜、视网膜、签名、声音等都满足这些条件,可以用于识别人的身份。
基于这些特征,人们发展了人脸识别、指纹识别、语音识别、虹膜识别等多种生物识别技术。
在所有的生物特征识别技术中,利用人脸特征进行身份识别是最自然、最直接和最友好的于段。
与其它生物特征识别技术相比,人脸的获取非常容易,几乎可以在被采集对象无意识的状态下获取人脸图像,这样的取样方式没有“侵犯性”。
人脸识别技术是种重要的生物特征识别技术,应用非常广泛。
人脸是自然界存在的一种特殊的复杂视觉模式,它包含及其丰富的信息。
首先,人脸具有一定的不变性和唯一性,人脸识别是人类在进行身份确认时使用最为普遍的一种方式,人脸图像还能够提供一个人的性别、年龄、种族等有关信息。
其次,人脸也具有多样的变化能力,从人脸的不同表情人们可以感知到一个人的情绪、感受、甚至秉性和气质。
它无需特殊的采集设备,系统的成本低,而且自动人脸识别的使用非常自然,可以在被识别对象毫无察觉的情况下进行,是种非常受使用者欢迎的方式。
虽然人类在表情、年龄或发型等发生巨大变化的情况下,可以毫不费力地以人脸来识别某人,但要建立一个能够完全自动进行人脸识别的系统却是非常困难的,诸多因素使得人脸识别研究成为一项极其挑战性的课题.它牵涉到模式识别、图像处理、计算机视觉、生理学、心理学、以及认知科学等方面的诸多知识,并与基于其它生物特征的身份鉴别方法以及计算机人机感知交互领域都有密切联系。
与指纹、视网膜、虹膜、基因、掌形等其它生物特征识别系统相比,人脸识别具有直接、友好、方便和非接触等许多优点,多年来一直受到许多研究者的关注。
人脸识别研究,起源于19世纪末法国人Sir Franis Gahon的工作。
到20世纪90年代,开始作为一个独立学科快速发展起来。
人脸识别研究的发展大致分成三个阶段第一阶段是以Allen和Parke为代表,主要研究人脸识别所需要的面部特征。
研究者用计算机实现了较高质量的人脸灰度模型。
这阶段的工作特点是识别过程全部依赖于操作人员。
第二阶段是人机交互式识别阶段,其中用几何特征参数来表示人脸正面图像是以Harmon和Lesk为代表,将人脸面部特征用多维特征矢量表示出来,并设计了基于这一特征表示法的识别系统。
而以Kaya和Kobayashi为代表,则采用了统计识别的方法、用欧氏距离来表示人脸特征,这两类方法都摆脱不了人的干预。
第三阶段是真正的机器自动识别阶段,近十余年来,随着高速度高性能计算机的发展,人脸模式识别方法有了较大的突破,提出了多种机器全自动识别系统,人脸识别技术进人了实用化阶段。
如Eyematic公司研发的人脸识别系统。
我国清华大学的“十五”攻关项目《人脸识别系统》也通过了由公安部主持的专家鉴定。
人脸识别有着广泛的应用领域(1)在安全防领域中的应用。
社会上有许多重要的部门,如军事、金融、等部门都需要对出入人员进行身份识别,以防止信息泄漏和不法现象的发生。
使用该技术可以方便地进行身份识别,而不使被识别者感到不舒服。
(2)在犯罪刑侦领域中的应用。
在刑侦工作中,对罪犯的抓捕是至关重要的一环。
应用人脸识别技术可以依据犯罪嫌疑人的人脸图像对机场、车站、港口等重要交通场所进行监控,从而大大促进了罪犯抓捕工作的开展。
(3)在公共事业领域中的应用。
在现代社会,许多领域都需要对人进行身份验证。
如银行、保险、交通等公工事业部门。
采用传统的密码、IC卡等手段和技术对人进行身份验证具有安全性差,易遗失、易伪造等缺点。
而采用人脸识别技术进行身份验证则能够很好地克服传统身份验证手段和技术的缺点。
因此成熟的人脸识别技术不但具有极大的学术研究价值,而且具有广泛的社会需求和市场领域。
一个成功的具有商用价值的人脸识别系统必将对现实社会带来极大的影响。
当前,人脸识别己成为计算机视觉、模式识别和人工智能等领域的一个研究热点。
我们有理由相信,随着技术的不断发展,人脸识别技术将不断完善,并得到更为广泛的应用。
1.2 论文的研究历史背景及目的近年来,由于视频监控,人机交互和视频检索等应用的需求,视频中的人脸检测研究得到迅速发展。
视频中人脸检测可以划分为三个环节:先提取视频文件中的帧,对图像进行人脸检测,再还原成视频,完成视频中人脸的检测。
人脸检测最初来源于人脸识别。
是指对于任意一副给定的图像,采用一定的策略对其进行搜索以确定其中是否含有人脸,如果是则返回一脸的位置、大小和姿态,并把有人脸的地放识别出来。
早期,人脸检测技术主要服务于人脸识别课题的研究;但是,随着生物识别技术的快速发展,入脸检测技术己经被广泛的应用于其它相关领域,产生一定的商业价值。
例如:军事、安全系统验证、视频会议、人机智能交,各类金融卡、身份验证等等方面具有重要的应用价值,所以,现在人们有许多人对人脸识别越来越重视了。
人脸检测的研究同时也具有非常重要的的学术价值,人脸是一类具有相当复杂的细节变化的自然结构目标,对此类目标的挑战性在于:人脸由于外貌、表情、肤色等不同,具有模式的可变性;一般意义下的人脸上,可能存在眼镜、须等附属物;作为三维物体的人脸影像不可避免地受由光照产生的阴影的影响。
因此,如果能够找到解决这些问题的方法,成功地构造出人脸检测系统,将为解决其他类似的复杂模式的检测问题提供重要的启示。
人脸检测的目的是检测一图像是否由人脸,如果有人脸,就把它从图像背景中分离出来,然后对特征进行人脸识别。
而在视频中的人脸检测在信息处理中,已经成为是一项相当难突破的技术,越来越受到计算机视觉界的广泛关注,作为这个有价值课题,已经渗透到各不同领域中。
1.3 国外研究现状三维人脸识别越来越受到研究人员的重视。
国外都兴起了对三维人脸识别技术研究的浪潮。
1.3.1 国进展在国,最早研究人脸检测识别的,当属于中科院计算所跟哈工大的一个联合面像实验室。
该实验室的高文教授,熙林教授,山世光教授,直到今天,都一直活跃在人脸识别领域,更可贵的是,在IEEE上面发表了很多paper。
这一点,很值得国的同行学习。
后来,该实验室,成为银晨的研发中心,专门为银晨做技术研发和技术支持。
其次是中科院生物识别研究所的子青教授,以及下属的中科奥森公司。
子青教授,当年在微软亚洲研究院的时候,就从事人脸识别方面的研究工作。
后来,在中科院组建了专门的人脸识别研究团队。
该研究团队,首先提出了基于近红外的人脸识别技术,并将该项人脸识别技术用于08年奥运会。
同时,基于近红外的人脸识别技术,得到了国际上同行业专家的认同和一致肯定。
接着,是清华大学的丁晓青教授。
丁晓青教授在OCR(字符识别)领域,可谓国第一人。
不过,最近几年转行做人脸识别,也是非常有成就的。
不说别的,就只从FRVT2006(美国标准研究所2006年全球人脸识别供应商系统性能测试)的测试结果来看,丁晓青教授的研究团队是唯一一个完成大规模3D人脸识别性能测试的参赛团队。
由此可见,在国人脸识别领域来说,她们的算法,在3D领域,绝对排名第一。
1.3.2 国外进展国外主要有美国、欧洲、日本等著名的科研机构有美国的MIT和CMU,英国的剑桥大学。
在人脸识别领域中,国际上逐步形成了一下几个研究方向:基于几何特征的方法、基于肤色模型的方法、基于模板匹配的方法、基于KL变换的特征脸方法、基于隐马尔可夫模型的方法和神经网络识别的方法等等。
它们可以被归类到基于显式特征和基于隐式特征的两大类方法中。
发展至今,人脸识别的方法越来越多,最有代表的是基于Haar特征的人脸识别方法是其中较为典型的方法,该算法不仅具有较高的检测率,同时也能够满足实时检测的要求。
基于Haar特征的人脸识别方法始于2001年Paul Viola和Michael Jones两者撰写的一篇论文,他们在论文中提出了Haar特征和Adaboost 算法,并利用它们进行人脸检测。
但是此方法只能用于检测正面无旋转的人脸。
为此,Rainer Lienhart等人于2002年对此方法进行了扩展, 增加了倾斜特征的定义,此后此方法被扩展到全旋转缩放情况下的人脸检测。
自从以上几位学者运用基于Haar特征和Adaboost算法进行人脸检测取得长足进步之后,基于Haar 特征的人脸检测方法备受专家学者的青睐,国外相关容的研究成果也是层出不穷。
1.4 本文的主要工作本文是在人脸特征库的基础上做人脸特征提取和识别研究,主要容分为四章,分别如下:(1)第一章:主要介绍了本文的历史背景,着重介绍了人脸检测技术的研究现状以及国外研究现状,并明确了本文的工作容和章节安排。
(2)第二章:主要分析几种主流的人脸识别算法和每种算法的优点和劣势,本文在这里主要介绍了三种即:基于几何特征的方法、基于模板的方法和基于模型的方法。
1. 基于几何特征的方法是最早、最传统的方法,通常需要和其他算法结合才能有比较好的效果;2. 基于模板的方法可以分为基于相关匹配的方法、特征脸方法、线性判别分析方法、奇异值分解方法、神经网络方法、动态连接匹配方法等。
3. 基于模型的方法则有基于隐马尔柯夫模型,主动形状模型和主动外观模型的方法等。
(3)第三章:本章针对光照不均问题,提出了基于球面谐波基图像的光照补偿算法,用以在任意光照条件下进行人脸识别。
算法份两步进行:光照估计和光照补偿。
(4)第四章:基于几何特征的人脸识别并利用几何特征的方法实现人脸特征识别。
2 人脸识别算法分析主流的人脸识别技术基本上可以归结为三类,即:基于几何特征的方法、基于模板的方法和基于模型的方法。
基于几何特征的方法是最早、最传统的方法,通常需要和其他算法结合才能有比较好的效果;2. 基于模板的方法可以分为基于相关匹配的方法、特征脸方法、线性判别分析方法、奇异值分解方法、神经网络方法、动态连接匹配方法等。