标准正态分布表

合集下载

正态分布表三位小数

正态分布表三位小数

正态分布表三位小数
正态分布表(也称为标准正态分布表)是用于计算正态分布的概率的一种工具。

由于正态分布是连续概率分布,所以无法通过简单的计算得到精确的概率值,而需要使用正态分布表来进行估计。

正态分布表通常是以标准正态分布(均值为0,标准差为1)为基准建立的。

表中列出了不同的Z值(标准差的倍数),以及对应的累积概率值。

根据需要,可以使用这些累积概率值来计算不同区间内的概率。

由于正态分布表是根据标准正态分布建立的,因此可以通过将原始正态分布转化为标准正态分布,然后利用正态分布表进行计算。

正态分布表通常是四位小数的精度,而不是三位小数。

每个Z 值对应的累积概率值都以四位小数给出。

因此,无法提供三位小数的正态分布表。

如果需要更高精度的正态分布表,可以参考统计学教科书或使用计算机软件来进行计算。

标准正态分布表格

标准正态分布表格

标准正态分布表格引言标准正态分布是统计学中常用的一种连续型概率分布。

它是均值为0,标准差为1的正态分布的特殊情况。

标准正态分布表格是一种方便查找标准正态分布的概率值的工具。

在统计分析和假设检验中,使用标准正态分布表格可以帮助我们计算和推断随机变量的概率。

本文将介绍标准正态分布表格的使用方法,并提供一个完整的标准正态分布表格。

标准正态分布表格的使用方法标准正态分布表格通常由两列构成:Z值列和概率值列。

其中,Z值列表示标准正态分布的随机变量的取值,而概率值列表示对应Z值的概率。

使用标准正态分布表格时,我们可以通过查找Z值,找到对应的概率值。

下面是一个示例标准正态分布表格的部分内容:Z值概率值-3.5 0.000-3.4 0.001-3.3 0.001……下面是使用标准正态分布表格的步骤:1.确定需要计算的随机变量的Z值,即计算公式:Z = (X - μ)/σ,其中X 是随机变量的取值,μ是总体的均值,σ是总体的标准差。

2.在标准正态分布表格中找到最接近的Z值。

如果无法找到精确的Z值,可以选择最接近的两个Z值之间的概率值进行插值计算。

3.根据Z值对应的概率值,可以进行概率的计算或者推断。

下面是一个使用标准正态分布表格计算概率的示例:假设某随机变量X服从正态分布,均值为50,标准差为10。

我们想要计算X 小于等于60的概率。

首先,我们需要将X转化为Z值:Z = (60 - 50)/10 = 1.0接下来,在标准正态分布表格中找到最接近1.0的Z值。

在示例表格中,最接近1.0的Z值是0.841。

因此,P(X ≤ 60) = P(Z ≤ 1.0) = 0.841根据标准正态分布表格,我们得到P(X ≤ 60)的概率近似值为0.841。

完整的标准正态分布表格下面是一个完整的标准正态分布表格:Z值概率值-3.5 0.000-3.4 0.001-3.3 0.001-3.2 0.001-3.1 0.002-3.0 0.003-2.9 0.004-2.8 0.005-2.7 0.006-2.6 0.009-2.5 0.010-2.4 0.016-2.3 0.021-2.2 0.028-2.1 0.036-2.0 0.047-1.9 0.058-1.8 0.071-1.7 0.086-1.6 0.103-1.5 0.122-1.4 0.144-1.3 0.169-1.2 0.197-1.1 0.229-1.0 0.262-0.9 0.298-0.8 0.335-0.7 0.374-0.6 0.414-0.5 0.456-0.4 0.498 -0.3 0.542 -0.2 0.579 -0.1 0.618 0.0 0.500 0.1 0.382 0.2 0.341 0.3 0.301 0.4 0.260 0.5 0.221 0.6 0.183 0.7 0.146 0.8 0.1100.9 0.0821.0 0.062 1.1 0.038 1.2 0.022 1.3 0.012 1.4 0.006 1.5 0.003 1.6 0.002 1.7 0.001 1.8 0.0011.9 0.0002.0 0.000 2.1 0.000 2.2 0.000 2.3 0.000 2.4 0.000 2.5 0.000 2.6 0.000 2.7 0.000 2.8 0.0002.9 0.0003.0 0.000 3.1 0.0003.2 0.0003.3 0.0003.4 0.0003.5 0.000结论标准正态分布表格是统计学中非常重要的工具之一。

正态分布讲解(含标准表)

正态分布讲解(含标准表)

2.4正态分布复习引入:总体密度曲线:样本容量越大,所分组数越多,各组的频率就越接近于总体在相应各组取值的概率.设想样本容量无限增大,分组的组距无限缩小,那么频率分布直方图就会无限接近于一条光滑曲线,这条曲线叫做总体密度曲线. 总体密度曲线b 单位O 频率/组距a它反映了总体在各个范围内取值的概率.根据这条曲线,可求出总体在区间(a ,b )内取值的概率等于总体密度曲线,直线x =a ,x =b 及x 轴所围图形的面积.观察总体密度曲线的形状,它具有“两头低,中间高,左右对称”的特征,具有这种特征的总体密度曲线一般可用下面函数的图象来表示或近似表示:22()2,1(),(,)2x x e x μσμσϕπσ--=∈-∞+∞ 式中的实数μ、)0(>σσ是参数,分别表示总体的平均数与标准差,,()x μσϕ的图象为正态分布密度曲线,简称正态曲线.讲解新课:一般地,如果对于任何实数a b <,随机变量X 满足,()()b aP a X B x dx μσϕ<≤=⎰, 则称 X 的分布为正态分布(normal distribution ) .正态分布完全由参数μ和σ确定,因此正态分布常记作),(2σμN .如果随机变量 X 服从正态分布,则记为X ~),(2σμN .经验表明,一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似服从正态分布.例如,高尔顿板试验中,小球在下落过程中要与众多小木块发生碰撞,每次碰撞的结果使得小球随机地向左或向右下落,因此小球第1次与高尔顿板底部接触时的坐标 X 是众多随机碰撞的结果,所以它近似服从正态分布.在现实生活中,很多随机变量都服从或近似地服从正态分布.例如长度测量误差;某一地区同年龄人群的身高、体重、肺活量等;一定条件下生长的小麦的株高、穗长、单位面积产量等;正常生产条件下各种产品的质量指标(如零件的尺寸、纤维的纤度、电容器的电容量、电子管的使用寿命等);某地每年七月份的平均气温、平均湿度、降雨量等;一般都服从正态分布.因此,正态分布广泛存在于自然现象、生产和生活实际之中.正态分布在概率和统计中占有重要的地位.说明:1参数μ是反映随机变量取值的平均水平的特征数,可以用样本均值去佑计;σ是衡量随机变量总体波动大小的特征数,可以用样本标准差去估计.2.早在 1733 年,法国数学家棣莫弗就用n !的近似公式得到了正态分布.之后,德国数学家高斯在研究测量误差时从另一个角度导出了它,并研究了它的性质,因此,人们也称正态分布为高斯分布.2.正态分布),(2σμN )是由均值μ和标准差σ唯一决定的分布 通过固定其中一个值,讨论均值与标准差对于正态曲线的影响3.通过对三组正态曲线分析,得出正态曲线具有的基本特征是两头底、中间高、左右对称 正态曲线的作图,书中没有做要求,教师也不必补上 讲课时教师可以应用几何画板,形象、美观地画出三条正态曲线的图形,结合前面均值与标准差对图形的影响,引导学生观察总结正态曲线的性质4.正态曲线的性质:(1)曲线在x 轴的上方,与x 轴不相交(2)曲线关于直线x=μ对称(3)当x=μ时,曲线位于最高点(4)当x <μ时,曲线上升(增函数);当x >μ时,曲线下降(减函数) 并且当曲线向左、右两边无限延伸时,以x 轴为渐近线,向它无限靠近(5)μ一定时,曲线的形状由σ确定σ越大,曲线越“矮胖”,总体分布越分散;σ越小.曲线越“瘦高”.总体分布越集中:五条性质中前三条学生较易掌握,后两条较难理解,因此在讲授时应运用数形结合的原则,采用对比教学5.标准正态曲线:当μ=0、σ=l 时,正态总体称为标准正态总体,其相应的函数表示式是2221)(x e x f -=π,(-∞<x <+∞)其相应的曲线称为标准正态曲线标准正态总体N (0,1)在正态总体的研究中占有重要的地位 任何正态分布的概率问题均可转化成标准正态分布的概率问题讲解范例:例1.给出下列三个正态总体的函数表达式,请找出其均值μ和标准差σ (1)),(,21)(22+∞-∞∈=-x e x f x π(2)),(,221)(8)1(2+∞-∞∈=--x e x f x π (3)22(1)2(),(,)2x f x e x π-+=∈-∞+∞ 答案:(1)0,1;(2)1,2;(3)-1,0.5例2求标准正态总体在(-1,2)内取值的概率.解:利用等式)()(12x x p Φ-Φ=有)([]}{11)2()1()2(--Φ--Φ=-Φ-Φ=p=1)1()2(-Φ+Φ=0.9772+0.8413-1=0.8151.1.标准正态总体的概率问题: xy对于标准正态总体N (0,1),)(0x Φ是总体取值小于0x 的概率,即 )()(00x x P x <=Φ, 其中00>x ,图中阴影部分的面积表示为概率0()P x x < 只要有标准正态分布表即可查表解决.从图中不难发现:当00<x 时,)(1)(00x x -Φ-=Φ;而当00=x 时,Φ(0)=0.5 2.标准正态分布表标准正态总体)1,0(N 在正态总体的研究中有非常重要的地位,为此专门制作了“标准正态分布表”.在这个表中,对应于0x 的值)(0x Φ是指总体取值小于0x 的概率,即)()(00x x P x <=Φ,)0(0≥x .若00<x ,则)(1)(00x x -Φ-=Φ.利用标准正态分布表,可以求出标准正态总体在任意区间),(21x x 内取值的概率,即直线1x x =,2x x =与正态曲线、x 轴所围成的曲边梯形的面积1221()()()P x x x x x <<=Φ-Φ. 3.非标准正态总体在某区间内取值的概率:可以通过)()(σμ-Φ=x x F 转化成标准正态总体,然后查标准正态分布表即可 在这里重点掌握如何转化 首先要掌握正态总体的均值和标准差,然后进行相应的转化4.小概率事件的含义发生概率一般不超过5%的事件,即事件在一次试验中几乎不可能发生假设检验方法的基本思想:首先,假设总体应是或近似为正态总体,然后,依照小概率事件几乎不可能在一次试验中发生的原理对试验结果进行分析假设检验方法的操作程序,即“三步曲”一是提出统计假设,教科书中的统计假设总体是正态总体;二是确定一次试验中的a 值是否落入(μ-3σ,μ+3σ);三是作出判断讲解范例:例1. 若x ~N (0,1),求(l)P (-2.32<x <1.2);(2)P (x >2).解:(1)P (-2.32<x <1.2)=Φ(1.2)-Φ(-2.32)=Φ(1.2)-[1-Φ(2.32)]=0.8849-(1-0.9898)=0.8747.(2)P (x >2)=1-P (x <2)=1-Φ(2)=l-0.9772=0.0228.例2.利用标准正态分布表,求标准正态总体在下面区间取值的概率:(1)在N(1,4)下,求)3(F(2)在N (μ,σ2)下,求F(μ-σ,μ+σ);F(μ-1.84σ,μ+1.84σ);F(μ-2σ,μ+2σ);F(μ-3σ,μ+3σ) 解:(1))3(F =)213(-Φ=Φ(1)=0.8413 (2)F(μ+σ)=)(σμσμ-+Φ=Φ(1)=0.8413 F(μ-σ)=)(σμσμ--Φ=Φ(-1)=1-Φ(1)=1-0.8413=0.1587 F(μ-σ,μ+σ)=F(μ+σ)-F(μ-σ)=0.8413-0.1587=0.6826F(μ-1.84σ,μ+1.84σ)=F(μ+1.84σ)-F(μ-1.84σ)=0.9342F(μ-2σ,μ+2σ)=F(μ+2σ)-F(μ-2σ)=0.954F(μ-3σ,μ+3σ)=F(μ+3σ)-F(μ-3σ)=0.997对于正态总体),(2σμN 取值的概率:68.3%2σx 95.4%4σx 99.7%6σx在区间(μ-σ,μ+σ)、(μ-2σ,μ+2σ)、(μ-3σ,μ+3σ)内取值的概率分别为68.3%、95.4%、99.7% 因此我们时常只在区间(μ-3σ,μ+3σ)内研究正态总体分布情况,而忽略其中很小的一部分 例3.某正态总体函数的概率密度函数是偶函数,而且该函数的最大值为π21,求总体落入区间(-1.2,0.2)之间的概率解:正态分布的概率密度函数是),(,21)(222)(+∞-∞∈=--x e x f x σμσπ,它是偶函数,说明μ=0,)(x f 的最大值为)(μf =σπ21,所以σ=1,这个正态分布就是标准正态分布( 1.20.2)(0.2)( 1.2)(0.2)[1(1.2)](0.2)(1.2)1P x -<<=Φ-Φ-=Φ--Φ=Φ+Φ- 教学反思:1.在实际遇到的许多随机现象都服从或近似服从正态分布 在上一节课我们研究了当样本容量无限增大时,频率分布直方图就无限接近于一条总体密度曲线,总体密度曲线较科学地反映了总体分布 但总体密度曲线的相关知识较为抽象,学生不易理解,因此在总体分布研究中我们选择正态分布作为研究的突破口 正态分布在统计学中是最基本、最重要的一种分布 2.正态分布是可以用函数形式来表述的 其密度函数可写成:22()21(),(,)2x f x e x μσπσ--=∈-∞+∞, (σ>0)由此可见,正态分布是由它的平均数μ和标准差σ唯一决定的 常把它记为),(2σμN 3.从形态上看,正态分布是一条单峰、对称呈钟形的曲线,其对称轴为x=μ,并在x=μ时取最大值 从x=μ点开始,曲线向正负两个方向递减延伸,不断逼近x 轴,但永不与x 轴相交,因此说曲线在正负两个方向都是以x 轴为渐近线的4.通过三组正态分布的曲线,可知正态曲线具有两头低、中间高、左右对称的基本特征。

标准正态分布分位数表

标准正态分布分位数表

标准正态分布分位数表正态分布这个概念在统计学中很常见,在做与正态分布有关计算的时候经常会用到标准正态分布表。

如果知道一个数值的标准分数即z-score ,就可以非常便捷地在标准正态分布表中查到该标准分数对应的概率值。

任何数值,只要符合正态分布的规律,均可使用标准正态分布表查询其发生的概率。

下表就是标准正态分布表,在使用的时候,第一步是先计算数值的标准分数,然后将标准分数四舍五入到小数点后第二位第二步是在标准正态分布表中的左侧查到直到标准分数的小数点后第一位,然后用顶部的数值查到所对应的标准分数的小数点后第二位。

市川新田三丁貝比如标准分数为1.16 ,在表左侧可以查到1.1所在的行,然后再找到0.06所在的列,最后对应的概率值为0.877。

这就意味看在正态分布的情况下,如果一个数值的标准分数为1.16 ,那么该数值所代表的情况出现的概率为87.7%。

以下通过案例来看标准正态分布表的应用。

假设某地成年男性的身高数据呈正态分布,平均身高为1.70米,标准差为4厘米。

问题:1.男性身高超过1.75米的占比为多少?2.男性身高在1.74-1.75米之间的占比为多少?3.如果有20%的男性身高高于某个数值,该数值所对应的身高数据是多少?4.如果有20%的男性身高低于某个数值,该数值所对应的身高数据是多少? 解题:1、先用标准分数即z-score计算公式将1.75米的身高数据转换成标准分数,结果为(1.75- 1.70) / 0.04 =1.25 ,这样问题就成了:在标准正态分布曲线中标准分数大于1.25的概率是多少?查询标准正态分布表,可以看到1.25的标准分数对应的概率值为0.894二89.4%,也就是有89.4%的男性身高数据的标准分数不超过1.25 ,因此有100%-89.4%二10.6%的男性身高超过1.75米。

■<厉丿」隔曰三丁目2、在问题1中已知身高为1.75米的标准分数为1.25 ,那么身高为1.74米的标准分数=(1.74 -170)/4 = 1.00,因此只需找到l.OOv标准分数<1.25所对应的概率即可,1.00的标准分数所对应的概率值为0.841 ,也就是有84.1%的男性身高数据的标准分数不超过1.00,因此身高在1.74-1.75米之间的男性占比为0.894-0.841 二0.853二5.3%3、如果说有20%的男性身高高于某个数值,那就意味看80%的男性身高不超过该数值,因此在标准正态分布表看到概率值为0.800所对应的标准分数为 0.84 ,现在将这个标准分数转换成身高数据,带入z-score的计算公式为0.84二(x-1.70)/0.04 ,结果为1.7336米,即在全部成年男性中有20%的男性身高高于1.7336米。

标准正态分布表5

标准正态分布表5

标准正态分布表5
标准正态分布表5
f(x)=(1/√2π)e^(-x^2/2)
1.确定要计算的随机变量的z分数(标准分数)。

z分数的计算公式为:z=(x-μ)/σ,其中x是要计算的随机变量的值,μ是该分布的均值,σ是该分布的标准差。

2.在标准正态分布表中,找到最接近所计算的z分数的数值。

通常,
表中的数值以两位小数精度呈现。

3.查找表格中该数值对应的累积概率值。

这个值表示随机变量小于或
等于该z分数的概率。

有时也可以找到相反的概率值,即随机变量大于该
z分数的概率。

这些概率值常用来进行统计推断和假设检验。

4.如果要计算随机变量大于一些特定z分数的概率,可以使用对称性质。

表格中给出的是随机变量小于或等于一些特定z分数的概率,所以随
机变量大于该z分数的概率可以通过减去给定z分数的概率值从1中得到。

需要注意的是,标准正态分布表通常只给出了一部分常用的z分数和
概率值。

如果需要计算没有给出的值,可以使用插值法来估计。

另外,现
代统计软件和计算机程序通常提供了更加准确和方便的方式来计算标准正
态分布函数的值。

z值概率
根据需要计算的z分数,可以在表中找到对应的概率值。

例如,如果
要计算随机变量小于2.25的概率,可以查找表格,找到最接近2.25的z
分数为2.24,对应的概率值为0.9875、因此,随机变量小于2.25的概率为0.9875。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档