必修一[8]指数函数对数函数和幂函数

合集下载

幂函数、指数函数与对数函数(解析版))

幂函数、指数函数与对数函数(解析版))

幂函数、指数函数与对数函数知识方法扫描一、指数函数及其性质形如y =a x (a >0,a ≠1)的函数叫作指数函数,其定义域为R ,值域为(0,+∞).当0<a <1时,y =a x 是减函数,当a >1时,y =a x 为增函数,它的图像恒过定点(0,1).二、分数指数幂a 1n=na ,a m n=n a m ,a -n=1an ,a -mn =1na m三、对数函数及其性质对数函数y =log a x (a >0,a ≠1)的定义域为(0,+∞),值域为R ,图像过定点(1,0).它是指数函数y =a x (a >0,a ≠1)的反函数,所有性质均可由指数函数的性质导出.当0<a <1时,y =log a x 为减函数,当a >1时,y =log a x 为增函数.四、对数的运算性质(M >0,N >0)(1)a log M a =M (这是定义);(2)log a (MN )=log M a +log a N ;(3)log a MN=log a M -log a N ;(4)log a M n =n log a M ;(5)log a b =log c blog c a (a ,b ,c >0,a ,c ≠1)(换底公式).由以上性质(4)、(5)容易得到以下两条推论:1)log a mb n =n m log a b ;2)log a b =1log b a.典型例题剖析1已知x 1是方程x +lg x =10的根,x 2是方程x +10x =10的根,求x 1+x 2的值.【解法1】由题意得lg x 1=10-x 110x 2=10-x 2,表明x 1是函数y =lg x 与y =10-x 的交点的横坐标,x 2是函数y =10x 与y =10-x 的交点的横坐标.因为y =lg x 与y =10x 互为反函数,其图像关于y =x 对称,由y =10-x y =x 得,x =5y =5 ,所以x 1+x 22=5,所以x 1+x 2=10.【解法2】构造函数f (x )=x +lg x ,由x 1+lg x 1=10知f x 1 =10,x 2+10x 2=10即10x 2+lg10x 2=10,则f 10x 2 =10,于是f x 1 =f 10x 2 ,又f (x )为(0,+∞)上的增函数,故x 1=10x 2,x 1+x 2=10x 2+x 2=10.【解法3】由题意得x 1=1010-x 110-x 2=10x 2,两式相减有x 1+x 2-10=1010-x 1-10x 2.若x 1+x 2-10>0,则1010-x 1-10x 2>0,得10-x 1>x 2,矛盾;若x 1+x 2-10<0,则1010-x 1-10x 2<0,得10-x 1<x 2,矛盾;而当x 1+x 2=10时,满足题意.【评注】解法1巧妙地利用了数形结合的方法,解法2巧妙地利用了函数的单调性,解法3巧妙地利用了反证法的技巧.2已知a >0,b >0,log9a =log 12b =log 16(a +b ),求ba的值.【解法1】设log 9a =log 12b =log 16(a +b )=k ,则a =9k ,b =12k ,a +b =16k .由于9k ×16k =12k 2故(a +b )a =b 2,解得:b a =1+52(负根舍去).【解法2】设log 9a =log 12b =log 16(a +b )=k ,则a =9k ,b =12k ,a +b =16k .b a =12k 9k =43 k ,而9k +12k =16k,故1+12k 9k =16k 9k ,即43 k 2-43 k -1=0,故b a =43 k =1+52(负根舍去).【评注】对数运算和指数运算互为逆运算,有关对数的运算和处理,往往可以转化为指数的运算和处理.3已知函数f (x )=1x +1+log 13x 2-x,试解不等式f x x -12 >12.【分析】本题为分式不等式与对数不等式混合.初看不易解决,但可以发现该函数在其定义域内单调递减,这是本题的解题关键.【解】易证函数y =f (x )在其定义域(0,2)内是单调减函数.并且f (1)=12,所以原不等式即为f x x -12 >f (1)等价于x x -12 <10<x x -12 <2⇒ x 12<x <1+174或1-174<x <0 .【评注】利用函数单调性解决不易入手的不等式是一种常用方法.4设方程lg (kx )=2lg (x +1)仅有一个实根,求k 的取值范围.【分析】本题要注意函数的定义域.【解法1】当且仅当kx >0①x +1>0②x 2+(2-k )x +1=0③时原方程仅有一个实根,对方程③使用求根公式,得x 1,x 2=12k -2±k 2-4k ④Δ=k 2-4k ≥0⇒k <0或k ≥4.当k <0时,由方程③,得x 1+x 2=k -2<0,x 1x 2=1>0,所以x 1,x 2同为负根.又由方程程④知x 1+1>0,x 2+1<0,所以原方程有一个解x 1.当k =4时,原方程有一个解x =k2-1=1.当k >4时,由方程③,得x 1+x 2=k -2>0,x 1x 2=1>0. 所以x 1,x 2同为正根,且x 1≠x 2,不合题意,舍去.综上所述可得k <0或k =4为所求.【解法2】由题意,方程kx =(x +1)2,也即方程k =x +1x+2在满足关于x 的不等式kx >0x +1>0 的范围内有唯一实数根,以下分两种情况讨论:(1)当k >0时,k =x +1x +2在x >0范围内有唯一实数根,则有k =4;(2)当k <0时,k =x +1x+2在-1<x <0范围内有唯一实数根,则有k <0.综上可得k <0或k =4为所求.【评注】本题实质上是一道一元二次方程问题.5解不等式:log 12(x +3x )>log 64x .【分析】若考虑到去根号,可设x =y 6(y >0),原不等式变为log 12y 3+ y 2 >log 6446=log 2y ,即2log 12y +log 2(y +1)>log 2y ,陷入困境.原不等式即6log 12(x +3x )>log 2x ⇒2log 12x +log 121+x166>log 2x ,设t =log 2x ,则log 12x =1log x12=12log x 2+log x 3,同样陷入困境.下面用整体代换y =log 64x .【解】设y =log 64x ,则x =64y,代人原不等式,有log 128y +4y >y ,8y +4y >12y,23 y +13 y >1,由指数函数的单调性知y =log 64x <1,则0<x <64.故原不等式的解集为(0,64).6已知1<a ≤b ≤c 证明:log a b +log b c +log c a ≤log b a +log c b +log a c .【证法1】注意到log a b +log b c +log c a -log b a +log c b +log a c=ln b ln a +ln c ln b +ln a ln c -ln a ln b+ln b ln c +ln c ln a =ln 2b ln c +ln 2c ln a +ln 2a ln b -ln 2b ln a +ln 2c ln b +ln 2a ln c ln a lnb ln c=-(ln a -ln b )(ln b -ln c )(ln c -ln a )ln a ln b ln c.【证法2】设log b a =x ,log c b =y ,则log a c =1xy ,于是原不等式等价于x +y +1xy ≤1x +1y+xy ,即x 2y +xy 2+1≤y +x +x 2y 2,即xy (x +y )-(x +y )+1-x 2y 2 ≤0,也即(x +y -1-xy )(xy -1)≤0也即(x -1)(y -1)(xy -1)≥0,由1<a ≤b ≤c 知x ≥1,y ≥1,所以(x -1)(y -1)(xy -1)≥0,得证.因为1<a ≤b ≤c ,所以ln a ln b ln c >0,(ln a -ln b )(ln b -ln c )(ln c -ln a )≥0所以log a b +log b c +log c a -log b a +log c b +log a c ≤0即log a b +log b c +log c a ≤log b a +log c b +log a c °【评注】若令x =ln a ,y =ln b ,z =ln c 则原不等式等价于:设0<x ≤y ≤z ,求证:x 2y +y 2z +z 2x ≤xy 2+yz 2+zx 2.7设函数f (x )=|lg (x +1)|,实数a ,b (a <b )满足f (a )=f -b +1b +2,f (10a +6b +21)=4lg2,求a 、b 的值.【分析】利用已知条件构建关于a 、b 的二元方程组进行求解.【解】因为f (a )=f -b +1b +2 ,所以|lg (a +1)|=lg -b +1b +2+1 =lg 1b +2=|lg (b +2)|所以,a +1=b +2或(a +1)(b +2)=1,又因为a <b ,所以a +1≠b +2,所以(a +1)(b +2)=1又由于0<a +1<b +1<b +2,于是0<a +1<1<b +2,所以(10a +6b +21)+1=10(a +1)+6(b +2)=6(b +2)+10b +2>1,从而f (10a +6b +21)=lg 6(b +2)+10b +2=lg 6(b +2)+10b +2,又f (10a +6b +21)=4lg2,所以lg 6(b +2)+10b +2 =4lg2,故6(b +2)+10b +2=16.解得b =-13或b =-1(舍去).把b =-13代故(a +1)(b +2)=1,解得a =-25.所以,a =-25,b =-13.同步训练一、选择题1已知a 、b 是方程log 3x 3+log 27(3x )=-43的两个根,则a +b =().A.1027B.481C.1081D.2881【答案】C .【解析】原方程变形为log 33log 3(3x )+log 3(3x )log 327=-43,即11+log 3x +1+log 3x 3=-43.令1+log 3x =t ,则1t +t 3=-43,解得t 1=-1,t 2=-3.所以1+log 3x =-1或1+log 3x =-3,方程的两根分别为19和181,所以a +b =1081.故选C .2已知函数f (x )=1a x -1+12x 2+bx +6(a ,b 为常数,a >1),且f lglog 81000 =8,则f (lglg2)的值是().A.8 B.4 C.-4 D.-8【答案】B .【解析】由已知可得f lglog 81000 =f lg33lg2=f (-lglg2)=8,又1a -x -1+12=a x 1-a x +12=-1+11-a x +12=-1a x -1-12,令F (x )=f (x )-6,则有F (-x )=-F (x ).从而有f (-lglg2)=F (-lglg2)+6=-F (lglg2)+6=8,即知F (lglg2)=-2,f (lglg2)=F (lglg2)+6=4.3如果f (x )=1-log x 2+log x 29-log x 364,则使f (x )<0的x 的取值范围为().A.0<x <1 B.1<x <83C.x >1D.x >83【答案】B .【解析】显然x >0,且x ≠1.f (x )=1-log x 2+log x 29-log x 364=1-log x 2+log x 3-log x 4=log x 38x .要使f (x )<0.当x >1时,38x <1,即1<x <83;当0<x <1时,38x >1,此时无解.由此可得,使得f (x )<0的x 的取值范围为1<x <83.应选B .4若f (x )=lg x 2-2ax +a 的值域为R ,则a 的取值范围是().A.0<a <1 B.0≤a ≤1 C.a <0或a >1 D.a ≤0或a ≥1【答案】D .【解析】由题目条件可知,(0,+∞)⊆y |y =x 2-2ax +a ,故Δ=(-2a )2-4a ≥0,解得a ≤0或a ≥1.选D .二、填空题5设f (x )=log 3x -4-x ,则满足f (x )≥0的x 的取值范围是.【答案】[3,4].【解析】定义域(0,4].在定义域内f (x )单调递增,且f (3)=0.故f (x )≥0的x 的取值范围为[3,4].6设0<a <1,0<θ<π4,x =(sin θ)log asin θ,y =(cos θ)log atan θ,则x 与y 的大小关系为.【答案】x <y .【解析】根据条件知,0<sin θ<cos θ<1,0<sin θ<tan θ<1,因为0<a <1,所以f (x )=log a x 为减函数,所以log a sin θ>log a tan θ>0,于是x =(sin θ)log a sin θ<(sin θ)log a tan θ<(cos θ)log a tan θ=y .7设f (x )=12x +5+lg 1-x 1+x ,则不等式f x x -12<15的解集为.【答案】1-174,0 ∪12,1+174.【解析】原不等式即为f x x -12<f (0).因为f (x )的定义域为(-1,1),且f (x )为减函数.所以-1<x x -12 <1x x -12 >0.解得x ∈1-174,0∪12,1+174.8设f (x )=11+2lg x +11+4lg x +11+8lg x ,则f (x )+f 1x =.【答案】3.【解析】f (x )+f 1x =11+2lg x +11+4lg x +11+8lg x +11+2-lg x +11+4-lg x +11+8-lg x =3.三、解答题9已知函数f (x )=a x +3a (a >0,a ≠1)的反函数是y =f -1(x ),而且函数y =g (x )的图像与函数y =f -1(x )的图像关于点(a ,0)对称.(1)求函数y =g (x )的解析式;(2)若函数F (x )=f -1(x )-g (-x )在x ∈[a +2,a +3]上有意义,求a 的取值范围.【解析】(1)由f (x )=a x +3a (a >0,a ≠1),得f -1(x )=log a (x -3a ).又函数y =g (x )的图像与函数y =f -1(x )的图像关于点(a ,0)对称,则g (a +x )=-f -1(a -x ),于是,g (x )=-f -1(2a -x )=-log a (-x -a ),(x <-a ).(2)由(1)的结论,有F (x )=f -1(x )-g (-x )=log a (x -3a )+log a (x -a ).要使F (x )有意义,必须满足x -3a >0,x -a >0. 又a >0,故x >3a .由题设F (x )在x ∈[a +2,a +3]上有意义,所以a +2>3a ,即a <1.于是,0<a <1.10设f (x )=log a (x -2a )+log a (x -3a ),其中a >0且a ≠1.若在区间[a +3,a +4]上f (x )≤1恒成立,求a 的取值范围.【解析】f (x )=log a x 2-5ax +6a 2=log a x -5a 2 2-a 24.由x -2a >0x -3a >0, 得x >3a ,由题意知a +3>3a ,故a <32,从而(a +3)-5a 2=-32(2-a )>0,故函数g (x )=x -5a 2 2-a 24在区间[a +3,a +4]上单调递增.若0<a <1,则f (x )在区间[a +3,a +4]上单调递减,所以f (x )在区间[a +3,a +4]上的最大值为f (a +3)=log a 2a 2-9a +9 .在区间[a +3,a +4]上不等式f (x )≤1恒成立,等价于不等式loglog a 2a 2-9a +9 ≤1恒成立,从而2a 2-9a +9≥a ,解得a ≥5+72或a ≤5-72.结合0<a <1,得0<a <1.若1<a <32,则f (x )在区间[a +3,a +4]上单调递增,所以f (x )在区间[a +3,a +4],上的最大值为f (a +4)=log a 2a 2-12a +16 .在区间[a +3,a +4]上不等式f (x )≤1恒成立,等价于不等式log a 2a 2-12a +16 ≤1恒成立,从而2a 2-12a +16≤a ,即2a 2-13a +16≤0,解得13-414≤a ≤13+414.易知13-414>32,所以不符合.综上所述,a 的取值范围为(0,1).11解方程组x x +y=y 12y x +y =x 3,(其中x ,y ∈R * .【解析】两边取对数,则原方程组可化为(x +y )lg x =12lg y ①(x +y )lg y =3lg x ②把式①代入式②,得(x +y )2lg x =36lg x ,所以(x +y )2-36 lg x =0.由lg x =0,得x =1;代入式①,得y =1.由(x +y )2-36=0x ,y ∈R * 得x +y =6.代入式①得lg x =2lg y ,即x =y 2,所以y 2+y -6=0.又y >0,所以y =2,x =4.所以方程组的解为x 1=1y 1=1 ,x 2=4y 2=2 .12已知f (x )=lg (x +1)-12log 3x .(1)解方程f (x )=0;(2)求集合M =n f n 2-214n -1998 ≥0,n ∈Z 的子集个数.【解析】(1)任取0<x 1<x 2,则f x 1 -f x 2 =lg x 1+1 -lg x 2+1 -12log 3x 1-log 3x 2=lgx 1+1x 2+1-12log 3x 1x 2=lg x 1+1x 2+1-log 9x 1x 2,因为x 1+1x 2+1>x 1x 2,所以lg x 1+1x 2+1>lg x 1x 2.故f x 1 -f x 2 =lg x 1+1x 2+1-log 9x 1x 2>lg x 1x 2-lg x1x 2lg9,因为0<lg9<1,lg x 1x 2<0,所以f x 1 -f x 2 >lg x 1x 2-lg x1x 2=0,f (x )为(0,+∞)上的减函数,注意到f (9)=0,当x >9时,f (x )<f (9)=0;当<x <9时,f (x )>f (9)=0,所以f (x )=0有且仅有一个根x =9.(2)由f n 2-214n -1998 ≥0⇒f n 2-214n -1998 ≥f (9)所以n 2-214n -1998≤9n 2-214n -1998>0 ⇔n 2-214n -2007≤0n 2-214n -1998>0⇔(n -223)(n +9)≤0(n -107)2>1998+1072=13447>1152⇔-9≤n ≤223n >222或n <-8 ⇔⇔-9≤n ≤223n ≥223或n ≤-9 ,所以n =223或n =-9,M ={-9,223},M 的子集的个数是4.13已知a >0,a ≠1,试求使得方程log a (x -ak )=log a x 2-a 2 有解的k 的取值范围.【解析】由对数性质知,原方程的解x 应满足(x -ak )2=x 2-a 2x -ak >0x 2-a 2>0(1)(2)(3)若式(1)、式(2)同时成立,则式(3)必成立,故只需要解(x -ak )2=x 2-a 2x -ak >0.由式(1)可得2kx =a 1+k 2(4)当k =0时,式(4)无解;当k ≠0时,式(4)的解是x =a 1+k 2 2k ,代人式(2),得1+k 22k>k .若k <0,则k 2>1,所以k <-1;若k >0,则k 2<1,所以0<k <1.综上所述,当k ∈(-∞,-1)∪(0,1)时,原方程有解.14已知0.301029<lg2<0.301030,0.477120<lg3<0.477121,求20001979的首位数字.【解析】lg20001979=1979lg2000=1979(3+lg2).所以6532.736391<lg20001979<6532.73837.故20001979为6533位数,由lg5=1-lg2,lg6=lg2+lg3,得0.698970<lg5<0.6989710.778149<lg6<0.778151⇒lg5<0.736391<0.73837<lg6,说明20001979的首位数字是5.15已知3a +13b =17a ,5a +7b =11b ,试判断实数a 与b 的大小关系,并证明之.【解析】令a =1,则13b =14,5+7b =11b ,可见b >1.猜想a <b .下面用反证法证明:若a ≥b ,则13a ≥13b ,5a ≥5b ,所以17a =3a +13b ≤3a +13a ,11b =5a +7b ≥5b +7b ,即317 a +1317 a ≥1,511 b +711 b ≤1,而函数f (x )=317 x +1317 x和g (x )=511 x +711 x在R 上均为减函数,且f (1)=317+1317=1617<1≤f (a ),g (1)=511+711=1211>1≥g (b ).所以a <1,b >1.这与a ≥b 矛盾,故a <b .16解不等式log 2x 12+3x 10+5x 8+3x 6+1 <1+log 2x 4+1 .【解析】原不等式等价于log 2x 12+3x 10+5x 8+3x 6+1 <log 22x 4+2 .由于y =log 2x 为单调递增函数,于是x 12+3x 10+5x 8+3x 6+1<2x 4+2,两端同时除以x 6,并整理得2x2+1x 6>x 6+3x 4+3x 2+1+2x 4+2=x 2+1 3+2x 2+1 构造函数g (t )=t 3+2t ,则上述不等式转化为g1x2>g x 2+1 .显然g (t )=t 3+2t 在R 上为增函数.于是以上不等式等价于1x2>x 2+1,即x 2 2+x 2-1<0,解得x 2<5-12.故原不等式的解集为-5-12,5-12.。

高一数学指数函数、对数函数、幂函数知识归纳

高一数学指数函数、对数函数、幂函数知识归纳
函数 名称
叫做指数函数,其中 是自变量,函数的定义域为
.
指数
图象 定义域
值域 过定点 奇偶性 单调性
学习必备
欢迎下载
图象过定点 在 上是增函数
,即当 非奇非偶
时,
.
在 上是减函数
函数值的变化情况
变化对图象的影 响
在第一象限内,从逆时针方向看图象, 看图象, 逐渐减小 .
知识点三:对数与对数运算
式子 叫做根式, 叫做根指数, 叫做被开方数 . 2.n 次方根的性质:
(1) 当 为奇数时,
;当 为偶数时,
(2)
3. 分数指数幂的意义:
; 注意: 0 的正分数指数幂等与 0,负分数指数幂没有意义 . 4. 有理数指数幂的运算性质:
(1)
(2)
(3)
知识点二:指数函数及其性质
1. 指数函数概念 :一般地,函数 2. 指数函数函数性质:

上是增函数

上是减函数
函数值的 变化情况
变化对图
象的影响
知识点五:反函数
1. 反函数的概念
在第一象限内,从顺时针方向看图象, 看图象, 逐渐减小 .
设函数
的定义域为 ,值域为 ,从式子
逐渐增大;在第四象限内,从顺时针方向
中解出 ,得式子
. 如果对于 在 中
的任何一个值,通过式子
, 在 中都有唯一确定的值和它对应,那么式子

其中成立的是 ( ) A .①与③
② B.①与④
C.②与③


D .②与④
4.设函数
,则
的值为 ( )
A.1
B. -1
C.10
D.
5.定义在 上的任意函数

指数函数、幂函数、对数函数增长的比较(45张PPT)——高中数学必修第一册

指数函数、幂函数、对数函数增长的比较(45张PPT)——高中数学必修第一册

一次函数y=kx(k>0),指数函数y=ax(a>1)和对数函数y=logbx(b>1)的增长有何差异?
一般地,无论k(k>0)、a(a>1)、b(b>1)如何取值,三种函数在区间(0,+∞)上都单调递增,但一次函数总是保持固定的增长速度;指数函数的增长速度都会越来越快,并且指数函数的函数值最终总会大于一次函数的函数值;对数函数的增长速度都会越来越慢,并且对数函数的函数值最终总会小于一次函数的函数值.
401
626
901
y2
2
32
1024
32768
1.05×106
3.36×107
1.07×109
y3
2
10
20
30
40
50
60
y4
2
4.322
5.322
5.907
6.322
6.644
6.907
【解析】(1)由于指数型函数的增长式为爆炸式增长,则当x越来越大时,函数y=的增长速度最快,故选A.
(2)从表格中可以看出,四个变量y1,y2,y3,y4均是从2开始变化,变量y1,y2,y3,y4都是越来越大,但是增长速度不同,其中变量y2的增长速度最快,可知变量y2关于x呈指数函数变化.
x
y=2x
y=2x
0
1
0
2
4
4
4
16
8
6
64
12
8
256
16
10
1024
20
12
4096
24



可以看到,当自变量x越来越大时,y=2x的图象就像与x轴垂直一样,2x的值快速增长;而函数y=2x的增长速度依然保持不变,与函数y=2x的增长速度相比几乎微不足道.

指数函数幂函数对数函数知识点总结

指数函数幂函数对数函数知识点总结

指数函数幂函数对数函数知识点总结一.指数函数指数函数是一种特殊的函数形式,其中自变量位于指数的上方。

指数函数的一般形式为:$y=a^x$。

在指数函数中,底数$a$是一个正实数,且$a\ne q1$。

1.指数函数的性质指数函数的增长特性-:当底数$a$大于1时,指数函数呈现增长趋势,随着自变量$x$的增大,函数值$y$也随之增大。

当底数$a$在0和1之间时,指数函数则呈现递减趋势。

指数函数的定义域和值域-:指数函数的定义域为所有实数,即$(-\i nf ty,+\i nf ty)$。

根据底数$a$的不同,指数函数的值域也有所不同。

若底数$a>1$,则值域为$(0,+\in ft y)$;若底数$0<a<1$,则值域为$(-\in ft y,+\in fty)$。

指数函数的奇偶性-:当底数$a>0$且$a\n eq1$时,指数函数为奇数函数。

2.指数函数的图像指数函数的图像特点也与底数$a$的取值有关:-当底数$a>1$时,指数函数的图像呈现增长趋势,在原点左侧逐渐接近$y=0$轴,右侧逐渐趋近于正无穷。

-当底数$0<a<1$时,指数函数的图像呈现递减趋势,在原点左侧呈现正无穷,右侧逐渐接近$y=0$轴。

二.幂函数幂函数是指数函数的一种特殊形式,其中底数固定为正整数。

幂函数的一般形式为:$y=x^n$。

1.幂函数的性质幂函数的增长特性-:当指数$n$为正整数时,幂函数呈现增长趋势。

若$n$为奇数,则幂函数随自变量$x$的增大而增加;若$n$为偶数,则幂函数随着自变量$x$的增大或减小而增加。

幂函数的定义域和值域-:幂函数的定义域为所有实数,即$(-\i nf ty,+\i nf ty)$。

幂函数的值域则根据指数$n$的奇偶性而定。

若$n$为奇数,则值域为$(-\i nf ty,+\i nf t y)$;若$n$为偶数,则值域为$[0,+\in ft y)$。

幂函数、指数函数和对数函数·对数及其运算法则·教案

幂函数、指数函数和对数函数·对数及其运算法则·教案

教案:幂函数、指数函数和对数函数·对数及其运算法则第一章:幂函数1.1 幂函数的定义与性质定义:幂函数是一种形式的函数,可以表示为f(x) = x^a,其中a 是实数。

性质:幂函数的图像是一条曲线,随着a 的不同取值,曲线的形状也会发生变化。

当a > 1 时,函数在x > 0 的区间上是增函数;当0 < a < 1 时,函数在x > 0 的区间上是减函数;当a = 0 时,函数是常数函数;当a < 0 时,函数在x >0 的区间上是增函数。

1.2 幂函数的图像与性质图像:通过绘制不同a 值的幂函数图像,观察曲线的形状和变化趋势。

性质:当a > 0 时,函数在x = 0 时无定义,但在x > 0 的区间上有定义;当a < 0 时,函数在x = 0 时无定义,但在x < 0 的区间上有定义;当a 为正整数时,函数在x > 0 的区间上是增函数;当a 为负整数时,函数在x < 0 的区间上是增函数。

第二章:指数函数2.1 指数函数的定义与性质定义:指数函数是一种形式的函数,可以表示为f(x) = a^x,其中a 是正实数。

性质:指数函数的图像是一条曲线,随着x 的增大,曲线的值也会增大。

指数函数的图像经过点(0, 1),并且随着a 的增大,曲线的斜率也会增大。

2.2 指数函数的图像与性质图像:通过绘制不同a 值的指数函数图像,观察曲线的形状和变化趋势。

性质:当a > 1 时,函数在整个实数域上是增函数;当0 < a < 1 时,函数在整个实数域上是减函数;指数函数的图像具有反射性,即f(x) = a^x 和f(x) = a^(-x) 的图像关于y 轴对称。

第三章:对数函数3.1 对数函数的定义与性质定义:对数函数是一种形式的函数,可以表示为f(x) = log_a(x),其中a 是正实数。

性质:对数函数的图像是一条曲线,随着x 的增大,曲线的值也会增大。

对数函数指数函数幂函数

对数函数指数函数幂函数

对数的公理化定义真数式子没根号那就只要求真数式大于零,如果有根号,要求真数大于零还要保证根号里的式子大于等于零,底数则要大于0且不为1对数函数的底数为什么要大于0且不为1在一个普通对数式里 a<0,或=1 的时候是会有相应b的值的;但是,根据对数定义: logaa=1;如果a=1或=0那么logaa就可以等于一切实数比如log1 1也可以等于2,3,4,5,等等第二,根据定义运算公式:loga M^n = nloga M 如果a<0,那么这个等式两边就不会成立比如,log-2 4^-2 就不等于-2log-2 4;一个等于4,另一个等于-4通常我们将以10为底的对数叫常用对数common logarithm,并把log10N记为lgN;另外,在科学技术中常使用以无理数e=···为底数的对数,以e为底的对数称为自然对数natural logarithm,并且把loge N 记为In N. 根据对数的定义,可以得到对数与指数间的关系:当a 〉0,a≠ 1时,a^x=N→X=logaN;由指数函数与对数函数的这个关系,可以得到关于对数的如下结论:负数和零没有对数;loga 1=0 loga a=1 a为常数对数的定义和运算性质一般地,如果aa大于0,且a不等于1的b次幂等于N,那么数b叫做以a为底N的对数,记作logaN=b,其中a叫做对数的底数,N叫做真数;底数则要大于0且不为1 真数大于0对数的运算性质:当a>0且a≠1时,M>0,N>0,那么:1logaMN=logaM+logaN;2logaM/N=logaM-logaN;3logaM^n=nlogaM n∈R4换底公式:logAM=logbM/logbA b>0且b≠15 a^logbn=n^logba 证明:设a=n^x 则a^logbn=n^x^logbn=n^x·logbn=n^logbn^x=n^logba 6对数恒等式:a^logaN=N;logaa^b=b对数与指数之间的关系当a>0且a≠1时,a^x=N x=㏒aN右图给出对于不同大小a所表示的函数图形:可以看到对数函数的图形只不过的指数函数的图形的关于直线y=x的对称图形,因为它们互为反函数;1 对数函数的定义域为大于0的实数集合;2 对数函数的为全部实数集合;3 函数图像总是通过1,0点;4 a大于1时,为单调增函数,并且上凸;a小于1大于0时,函数为单调减函数,并且下凹;5 显然对数函数无界;对数函数的常用简略表达方式:1logab=logab2lgb=log10b3lnb=logeb对数函数的运算性质:如果a〉0,且a不等于1,M>0,N>0,那么:1logaMN=logaM+logaN;2logaM/N=logaM-logaN;3logaM^n=nlogaM n属于R4loga^kM^n=n/klogaM n属于R对数与指数之间的关系当a大于0,a不等于1时,a的X次方=N等价于logaNloga^kM^n=n/klogaM n属于R换底公式很重要logaN=logbN/logba= lnN/lna=lgN/lgaln 自然对数以e为底 e为无限不循环小数lg 常用对数以10为底对数函数的常用简略表达方式1常用对数:lgb=log10b2自然对数:lnb=logebe=... 通常情况下只取e= 对数函数的定义对数函数的一般形式为 y=㏒ax,它实际上就是指数函数的图象关于直线y=x对称的两函数互为反函数,可表示为x=a^y;因此里对于a的规定a>0且a≠1,同样适用于对数函数;右图给出对于不同大小a所表示的函数图形:可以看到对数函数的图形只不过的指数函数的图形的关于直线y=x的对称图形,因为它们互为反函数;性质定义域求解:对数函数y=loga x 的定义域是{x ︳x>0},但如果遇到对数型复合函数的定义域的求解,除了要注意真数大于0以外,还应注意底数大于0且不等于1,如求函数y=logx2x-1的定义域,需满足{x>0且x≠1} ;{2x-1>0 =〉x>1/2且x≠1,即其定义域为{x ︳x>1/2且x≠1}值域:实数集R定点:函数图像恒过定点1,0;单调性:a>1时,在定义域上为单调增函数,并且上凸;0<a<1时,在定义域上为单调减函数,并且下凹;奇偶性:非奇非偶函数,或者称没有奇偶性;周期性:不是周期函数零点:x=1注意:负数和0没有对数;两句经典话:底真同对数正底真异对数负数学术语指数函数是中重要的;应用到值e上的这个函数写为exp x;还可以等价的写为e,这里的e是数学常数,就是自然对数的底数,近似等于 ,还称为数;指数函数对于x的负数值非常平坦,对于x的正数值迅速攀升,在x 等于 0 的时候等于 1;在x处的切线的斜率等于此处y的值乘上lna;即由导数知识:da^x/dx=a^xlna;作为变量x的函数,y=e x 的总是正的在x轴之上并递增从左向右看;它永不触及x轴,尽管它可以任意程度的靠近它所以,x轴是这个图像的水平;它的是 ln x,它定义在所有正数x上;有时,尤其是在中,术语指数函数更一般性的用于形如ka x 的指数函数函数,这里的 a 叫做“底数”,是不等于 1 的任何正实数;本文最初集中于带有底数为欧拉数 e 的指数函数;指数函数的一般形式为y=a^xa>0且≠1 x∈R,从上面我们关于的讨论就可以知道,要想使得x能够取整个实数集合为定义域,则只有使得如图所示为a的不同大小影响函数图形的情况;在函数y=a^x中可以看到:1 指数函数的定义域为所有实数的集合,这里的前提是a大于0且不等于1,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑,同时a等于0函数无意义一般也不考虑;2 指数函数的值域为大于0的实数集合;3 函数图形都是下凸的;4 a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的;5 可以看到一个显然的规律,就是当a从0趋向于无穷大的过指数函数程中当然不能等于0,函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置;其中水平直线y=1是从递减到递增的一个过渡位置;6 函数总是在某一个方向上无限趋向于X轴,并且永不相交;7 函数总是通过0,1这点,若y=a^x+b,则函数定过点0,1+b8 显然指数函数无界;9 指数函数既不是奇函数也不是偶函数;10当两个指数函数中的a互为倒数时,两个函数关于y轴对称,但这两个函数都不具有奇偶性;11当指数函数中的自变量与因变量一一映射时,指数函数具有反函数; ......底数的平移:对于任何一个有意义的指数函数:在指数上加上一个数,图像会向左平移;减去一个数,图像会向右平移;在fX后加上一个数,图像会向上平移;减去一个数,图像会向下平移;即“上加下减,左加右减”底数与指数函数图像:指数函数1由指数函数y=a^x与直线x=1相交于点1,a可知:在y轴右侧,图像从下到上相应的底数由小变大;2由指数函数y=a^x与直线x=-1相交于点-1,1/a可知:在y轴左侧,图像从下到上相应的底数由大变小;3指数函数的底数与图像间的关系可概括的记忆为:在y轴右边“底大图高”;在y轴左边“底大图低”;如右图;幂的大小比较:比较大小常用方法:1比差商法:2函数单调性法;3中间值法:要比较A与B的大小,先找一个中间值C,再比较A与C、B与C的大小,由不等式的传递性得到A与B之间的大小;比较两个幂的大小时,除了上述一般方法之外,还应注意:1对于底数相同,指数不同的两个幂的大小比较,可以利用指数函数的单调性来判断;例如:y1=3^4,y2=3^5,因为3大于1所以函数单调递增即x的值越大,对应的y值越大,因为5大于4,所以y2大于y1.2对于底数不同,指数相同的两个幂的大小比较,可指数函数以利用指数函数图像的变化规律来判断;例如:y1=1/2^4,y2=3^4,因为1/2小于1所以函数图像在定义域上单调递减;3大于1,所以函数图像在定义域上单调递增,在x=0是两个函数图像都过0,1然后随着x的增大,y1图像下降,而y2上升,在x等于4时,y2大于y1.3对于底数不同,且指数也不同的幂的大小比较,则可以利用中间值来比较;如:<1> 对于三个或三个以上的数的大小比较,则应该先根据值的大小特别是与0、1的大小进行分组,再比较各组数的大小即可;<2> 在比较两个幂的大小时,如果能充分利用“1”来搭“桥”即比较它们与“1”的大小,就可以快速的得到答案;那么如何判断一个幂与“1”大小呢由指数函数的图像和性质可知“同大异小”;即当底数a和1与指数x与0之间的不等号同向例如: a 〉1且x 〉0,或0〈 a〈 1且 x〈 0时,a^x大于1,异向时a^x小于1.〈3〉例:下列函数在R上是增函数还是减函数说明理由.⑴y=4^x因为4>1,所以y=4^x在R上是增函数;⑵y=1/4^x因为0<1/4<1,所以y=1/4^x在R上是减函数定义域:实数集指代一切实数R 值域:0,+∞分式化简的方法与技巧1把分子、分母分解因式,可约分的先约分2利用公式的基本性质,化繁分式为简分式,化异分母为同分母3把其中适当的几个分式先化简,重点突破.指数函数4可考虑整体思想,用换元法使分式简化指数函数图像与指数函数性质之间的对应关系1曲线沿x轴方向向左无限延展〈=〉函数的定义域为-∞,+∞.2曲线在x轴上方,而且向左或向右随着x值的减小或增大无限靠指数函数近X轴x轴是曲线的渐近线〈=〉函数的值域为0,+∞3曲线过定点0,1〈=〉x=0时,函数值y=a0零次方=1a>0且a≠14a>1时,曲线由左向右逐渐上升即a>1时,函数在-∞,+∞上是增函数;0<a<1是,曲线逐渐下降即0<a<1时,函数在-∞,+∞上是减函数.形如y=x^aa为常数的函数,即以为幂为因变量,指数为常量的函数称为幂函数;当a取非零的时是比较容易理解的,而对于a取时,初学者则不大容易理解了;因此,在里,我们不要求掌握为无理数的问题,只需接受它作为一个已知事实即可,因为这涉及到实数连续统的极为深刻的知识;特性对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:首先我们知道如果a=p/q,且p/q为既约分数即p、q互质,q和p都是整数,则x^p/q=q次根号下x的p次方,如果q是奇数,函数的定义域是R,如果q是偶数,函数的是0,+∞;当指数a是负整数时,设a=-k,则y=1/x^k,显然x≠0,函数的定义域是-∞,0∪0,+∞;因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:排除了为0与负数两种可能,即对于x>0,则a可以是任意实数;排除了为0这种可能,即对于x<0或x>0的所有实数,q不能是偶数;排除了为负数这种可能,即对于x为大于或等于0的所有实数,a就不能是负数;定义域总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根据q 的来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0 的所有实数;在x大于0时,函数的值域总是大于0的实数;在x小于0时,则只有同时q为奇数,函数的值域为非零的实数;而只有a为正数,0才进入函数的;由于x大于0是对a的任意取值都有意义的,因此下面给出幂函数在第一象限的各自情况.第一象限可以看到:1所有的图形都通过1,1这点.a≠0 a>0时图象过点0,0和1,12当a大于0时,幂函数为单调递增的,而a小于0时,幂函数为单调递减函数;3当a大于1时,幂函数图形下凸;当a小于1大于0时,幂函数图形上凸;4当a小于0时,a越小,图形倾斜程度越大;5显然幂函数无界限;6a=2n,该函数为偶函数{x|x≠0};7 0<a<1时,只在第一象限内有图像,即x≥0.图象幂函数的图象:。

必修1第二章幂函数、指数函数、对数函数复习

必修1第二章幂函数、指数函数、对数函数复习

年级高一学科数学版本人教新课标A版课程标题必修1 第二章幂函数、指数函数、对数函数综合复习编稿老师王志国一校林卉二校李秀卿审核吴华斌一、学习目标:1、熟练掌握幂的运算和对数的运算。

2、进一步理解指数函数、对数函数和幂函数的概念和意义,能画出草图并能熟练应用其性质。

3、在解决简单实际问题的过程中,能理解指数函数、对数函数和幂函数是三种不同的函数模型。

二、重点、难点:重点是熟练掌握幂的运算和对数的运算,指数函数、对数函数和幂函数的概念并能熟练应用其性质。

难点是指数函数、对数函数和幂函数性质的熟练应用,尤其是对分类讨论思想的理解。

三、考点分析:1、掌握幂的运算,理解对数的概念及其运算性质。

2、理解指数函数、对数函数和幂函数的概念、图象及其性质。

3、指数函数、对数函数和幂函数作为高中学习阶段三种重要的函数模型,一直是考试的重点和热点。

知识点一:指数函数例1:如图是指数函数xxxxy a y b y c y d ====,,,的图象,则a b c d ,,,与1的大小关系是( )A. 1a b c d <<<<B. 1b a d c <<<<C. 1a b d c <<<<D. 1a b c d <<<< 思路分析:解本题的关键在于令x =1,这样一来,比较a b c d ,,,与1的大小关系就变成了比较四个函数的函数值与1的大小关系了。

解答过程:在同一坐标系中作出四个指数函数的图象,并作出直线1x =的图象,且它与指数函数图象有交点,则交点纵坐标就分别是c d a b ,,,,从图中可以看到它们由上至下依次变小,故正确选项为B 。

解题后的思考:指数函数(01)xy a a a =>≠且,的图象恒过(01),点,作出直线1x =与x y a =交点的纵坐标,即为对应的指数函数的底数,靠上的点对应的数值大,则底数较大。

幂函数指数函数与对数函数的性质与计算

幂函数指数函数与对数函数的性质与计算

幂函数指数函数与对数函数的性质与计算幂函数、指数函数与对数函数是数学中常见的函数类型,它们具有一些独特的性质以及特定的计算方式。

在本文中,我们将探讨这些函数的基本概念、性质以及如何进行计算。

一、幂函数的性质与计算幂函数是形如y=x^n的函数,其中n为实数。

幂函数的性质如下:1. 幂函数的定义域为实数集R,值域则取决于n的值。

- 当n为正奇数时,f(x)为增函数,值域为R+(正实数集);- 当n为正偶数时,f(x)为非负且有最小值0,值域为[0, +∞);- 当n为负数时,f(x)有正负之分,值域为R+和R-(负实数集),且在不同的定义域上具有不同的增减性;- 当n为0时,0的0次方没有定义。

2. 幂函数的图像特点:- 当n为正数时,随着x的增大,函数值也随之增大,图像呈现递增趋势;- 当n为负数时,随着x的增大,函数值递减,图像呈现递减趋势。

3. 幂函数的计算方法:- 幂函数的运算法则遵循指数运算法则,如x^m * x^n = x^(m+n),x^m / x^n = x^(m-n),(x^m)^n = x^(m*n)等。

二、指数函数的性质与计算指数函数是形如y=a^x的函数,其中a为常数且a>0且a≠1。

指数函数的性质如下:1. 指数函数的定义域为实数集R,值域为正实数集R+。

2. 指数函数以a为底,随着自变量x的增大,函数值呈现指数增长的特征。

3. 指数函数的计算方法:- 当a为正数时,指数函数的运算法则与幂函数相似,如a^m *a^n = a^(m+n),a^m / a^n = a^(m-n)等。

- 当a为负数时,指数函数的运算方法可以通过转化为幂函数的形式进行计算。

三、对数函数的性质与计算对数函数是指数函数的逆运算,以b为底,记作y=logₐx。

对数函数的性质如下:1. 对数函数的定义域为正实数集R+,值域为实数集R。

2. 对数函数以b为底,将正实数x映射到实数y,即b^y=x。

3. 对数函数的计算方法主要包括:- 同底数的对数乘法法则:logₐ(x * y) = logₐx + logₐy;- 同底数的对数除法法则:logₐ(x / y) = logₐx - logₐy;- 对数的换底公式:logₐx = log_bx / log_ba,其中a、b为正实数且a≠1,b≠1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

指对函数及幂函数指对函数及幂函数三个基本函数的考查一直是高考必考重点,对于指对函数考查主要集中在图像性质(如定点、定义域、运算性质、单调性、复合函数单调性以及比较大小等热点考点),对幂函数主要考查五中基本类型的的幂函数,另该知识点也常和不等式、解三角形、导数、三角函数等知识点结合在一起考查,故在高一阶段应该打好基础,学好三种基本函数的基本性质及其运用. 一、基础知识回顾 (1)含零的指数幂运算:○101(0)a a =≠ ○201(0)xx =>(2)根式与分数指数幂的转化运算:1(0)n a ⇒≥当, ○21(0)nn aa a-=≠ ○301)n m a a n =>>, ○41(0)nmn ma a a -=> (3)指数幂的运算性质 ○1(0)mnm na a aa m n R +=>∈,, ○2()(0)m n mna a a m n R =>∈,,○3()(00)n n nab a b a b n R =>>∈,, 练习1 求下列函数的定义域:(1)2()(23)f x x x =+- (2)223()0x x f x --=(3)()f x =4)324()(2)f x x x =--练习2 求下列式子的值:(1)314422 (2)78472⎛⎫ ⎪⎝⎭(3)22- (4)1216二、指数函数定义:一般形如(01)xy a a a x R =>≠∈且,的函数叫做指数函数,其中x 自变量是,a 是底数重要性质:2()01(01)10x x x f x a a ma na k t a a ⎧<<⇒⎫⇒∞⎪⎬>⇒⎭⎪⎪⎨⎪++==⎪⎪⎩单调递减均过定点,,值域为(0,+),定义域为R 单调递增比较大小的方法:化成同底数或同指数方程思想:形如解方程可以将设将其转化为一元二次方程复合函数性质综合:(单调性:“同增异减”)题型1:考查图像 例1:已知2231()2x x f x +-⎛⎫=⎪⎝⎭,求使()1f x >的x 的取值范围.解析:此题考查指数函数基本性质,因为()f x 的图像必过(0,1)且为减函数,故只需解2230x x +-< 解:()223031x x x +-<⇒∈-,练习1 求下列各式满足条件的x 的解集: (1)2()21xf x =< (2)3()39x f x -=< (3)223()0.51xx f x +-=<题型2:比较大小 例2:已知232343112223a b c ⎛⎫⎛⎫⎛⎫===⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,,比较a b c ,,的大小 解析:可以发现a b 与同底且结合1()2xf x ⎛⎫= ⎪⎝⎭为单调递减,故有a b >,又a c 与同指数,可以由草图得知a c <解:b a c <<练习1 已知有23a m ⎛⎫= ⎪⎝⎭,34bn ⎛⎫= ⎪⎝⎭,试在下列条件下比较m n ,的大小(1)a b = (2)00a b >>, (3)00a b <<, (4)00a b ><,(5)00a b <>,题型3:判断单调性求值域 例3:函数22()2x x f x -+=,求函数()f x 在[]12,上的值域.解析:()()2g x f x =,根据复合函数“同增异减”得到()f x 在区间[]12,上为增函数,故()f x 值域为[](1)(2)f f ,解:由题意2min ()(1)24f x f ===,5max ()(2)232f x f ===,故()f x 在区间[]12,上的值域为[]432,练习1 函数221()2x x f x --⎛⎫= ⎪⎝⎭,求函数()f x 在[]12,上的最大值.练习2 函数223()2x x f x -+=,求函数()f x 在[]21--,上的最大值.题型4:综合方程考查例4: 已知关于x 的方程211()32533x xf x ⎛⎫⎛⎫=⨯-⨯+ ⎪ ⎪⎝⎭⎝⎭(0)x ≥,求()f x 的最值.解析:此类形式可先将方程进行转化,令13xt ⎛⎫= ⎪⎝⎭(01t <≤),原方程转化为2()325f t t t =-+,由于已知t 的取值范围,故进一步可求()f x 的最值.解:令13xt ⎛⎫= ⎪⎝⎭(01t <≤),原方程转化为2()325f t t t =-+当13t =,即1x =时,方程()f x 取得最小值,14(1)3f =; 当1t =,即0x =时,方程()f x 取得最大值,(0)6f =. 练习1 已知关于x 的方程1()428xx f x +=--(0)x <,求()f x 的最值三、对数函数定义:一般若有(01)xa N a a =>≠,,则x 叫做以为a 底N 的对数,记作log a x N =,其中称a 为底,N 为真数.重要性质:1001(10)1=2.71828log ln 10log lg log 10log 1(01)log ()log log ;log log log ;log log ea a ba a a a a a a a a a e N NN a a a M MN M N M N M b M N <<⇒⎫⇒∞⎬>⇒⎭==>≠=+=-=单调递减均过定点,,值域为R,定义域为(0,+)单调递增自然对数:以无理数为底的对数,将记作常用对数:以为底的对数,将N 记作常用性质:,且运算性质:恒等式:log log ;log log a N a M a N a N N M ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪==⎪⎩换底公式: 题型1:考查对数函数定义域例1 已知函数22()log (34)f x x x =+-,求函数的定义域解析:此题复合函数考查定有类型,2()340u x x x =+->解集即为函数()f x 的定义域 解:令2()340u x x x =+->解得41x x <->•或,故()f x 的定义域为()4(1)-∞-+∞,,练习1 已知函数22()log (34)f x x x =--,求函数的定义域.练习2 已知函数2()lg(23)f x x x =-++,求(2)(1)f x f x ++的定义域.题型2:考查单调区间且求最值例2 求函数()ln(35)f x x =+的单调区间解析:由题可求出函数()f x 的定义域为53⎛⎫-+∞ ⎪⎝⎭,,令35t x =+()0t >在53⎛⎫-+∞ ⎪⎝⎭,上为增函数,且()ln f t t=在()0+∞,上为增函数,“同增异减”,故()f x 在53⎛⎫-+∞ ⎪⎝⎭,上单调递增 解:()f x 的单调增区间为53⎛⎫-+∞ ⎪⎝⎭,.练习1 求函数23()log (6)f x x x =--的单调减区间题型3:考查对数运算 例3 求lg 25lg 4+的值解析:可以发现直接求值是行不通的,可以将原式运用对数运算性质进行化简 解:lg 25lg 4lg(254)lg1002+=⨯== 练习1 计算下列各式的值(1)22log 24log 3- (2)816log 16log 8+ (3)44log 92log 3-题型4:考查奇偶性 例4 已知函数1()log (1)1axf x a x+=>-,试判断函数()f x 奇偶性 解析:判断函数的奇偶性首先要判断定义域是否关于原点对称,再运用其奇偶性判断方法构造()f x -,比较()()f x f x -与的关系解: 由101xx+>-得11x -<<(关于原点对称) 又()1111()log log log 111a a a x x x f x f x x x x --++⎛⎫-===-=- ⎪+--⎝⎭所以()f x 是奇函数 练习1 已知函数122()log 2x f x x +=-,试判断函数()f x 的奇偶性,若12()log 3f x a >恒成立,求实数a 的值 题型5:比较大小例5:设a b c d ,,,均为非负数,且有21122211log 2log log 2log 22a cb d a bcd ⎛⎫⎛⎫==== ⎪ ⎪⎝⎭⎝⎭,,,,试比较a b c d ,,,的大小四、幂函数定义:一般形如()ay x a R =∈的函数称为幂函数,x 为自变量,a 为常数重要性质:11231232123a a y x y x y x y x y x y x y x --⎧⎪⎪⎨⎪⎪=======⎩判断:、指数为常数;、底数为自变量; 、幂系数为1比较大小:与指数函数一样化为同底或同指数奇偶性:当为奇数时,幂函数奇函数;当为偶函数时,幂函数为偶函数单调性:熟记,,,,,,图像题型:幂函数判断 例1 若122(3)3m m xn --+-是幂函数,求m n +的值解析:因为122(4)3m m x n --+-为幂函数,则必须符合幂函数的几个判断条件,由判断条件解出m n ,的值,则可以求出m n +的值解:由题意2312201330m m m m n n n ⎧-==-⎧⎪-≠⇒⇒+=⎨⎨=⎩⎪-=⎩练习1 判断下列函数是否为幂函数:(1)2y x = (2)33y x =⨯ (3)2y x -= (4)1y x =+ (5)y x = (6)13x y +=(7)2xy = (8)12y x = (9)32x y = 练习2 若13()(2)mf x m x +=+为幂函数,求(4)f 的值.题型2:性质结合图像综合运用 规律:对于ay x =(a R ∈)由图像先判断a 的正负,图像过原点且在第一象限为增函数则0a >,若图像不过原点且在第一象限为减函数则0a <;其次判断奇偶性,若图像关于y 轴对称,则a 为偶数且幂函数为偶数,若图像关于原点对称,则a 为奇数且幂函数为奇函数;当1a >时,图像曲线在第一象限下凹,当01a <<时,图像曲线在第一象限上凸,当0a <时,图像曲线在第一象限下凹.经典巩固练习2. (2006福建)已知()f x 是周期为2的奇函数,当01x <<时,()lg .f x x =设63(),(),52a f b f ==5(),2c f =则( )A.a b c <<B.b a c <<C.c b a <<D.c a b <<3. (2006湖北)设2()lg2x f x x +=-,则)2()2(xf x f +的定义域为( ) A. ),(),(-4004 B.(-4,-1) (1,4) C. (-2,-1) (1,2) D. (-4,-2) (2,4)4. (2006湖南)函数x y 2log =的定义域是( )A .(0,1] B. (0,+∞) C. (1,+∞) D . [1,+∞)5. (2006湖南)函数y =( )A.(3,+∞)B.[3, +∞)C.(4,, +∞) D .[4,+∞) 7. (2006天津)设2log 3P =,3log 2Q =,23log (log 2)R =,则( )A .R Q P <<B .P R Q <<C .Q R P <<D .R P Q <<8. (2006浙江)已知1122log log 0m n <<,则( )A. n <m < 1B.m <n < 1C.1< m <nD.1 <n <m 10. (2006全国)若ln 2ln 3ln 5,,235a b c ===,则( ) A .a <b<c B .c<b<a C .c<a <b D .b<a <c11. (2005上海)若函数121)(+=x x f ,则该函数在(),-∞+∞上是( )A .单调递减无最小值B .单调递减有最小值C .单调递增无最大值D .单调递增有最大值12. (2005北京)函数2log y x =的图象是( )13. (2005)函数)34(log 1)(22-+-=x x x f 的定义域为( )A .(1,2)∪(2,3)B .),3()1,(+∞⋃-∞C .(1,3)D .[1,3]16. (2009北京)为了得到函数的图像,只需把函数的图像上所有的点( ) A .向左平移3个单位长度,再向上平移1个单位长度 B .向右平移3个单位长度,再向上平移1个单位长度 C .向左平移3个单位长度,再向下平移1个单位长度 D .向右平移3个单位长度,再向下平移1个单位长度18. (2009全国)设2lg (lg )lg a e b e c ===,, )A. B . C. D. 19. (2010广东)若函数()33xxf x -=+与()33xxg x -=-的定义域均为R ,则( )A .f (x )与g (x )均为偶函数 B. f (x )为偶函数,g (x )为奇函数 C .f (x )与g (x )均为奇函数 D. f (x )为奇函数,g (x )为偶函数 22. (2005湖北)函数x x x x f ---=4lg 32)(的定义域是 . 27. (2011四川)计算 .28. (2011江苏)函数)12(log )(5+=x x f 的单调增区间是__________. 29. (2011陕西)设lg 0()100xx x f x x >⎧=⎨≤⎩,, 则((2))f f - =__ ____.3lg10x y +=lg y x =a b c >>a c b >>c a b >>c b a >>121(lg lg 25)100=4--÷。

相关文档
最新文档