烟气余热回收技术方案
焙烧炉烟气余热回收及利用技术

2023年 5月下 世界有色金属17冶金冶炼M etallurgical smelting焙烧炉烟气余热回收及利用技术罗振勇(贵阳铝镁设计研究院有限公司,贵州 贵阳 550081)摘 要:本文介绍了一种氧化铝厂气态悬浮焙烧炉烟气余热回收以及将回收的烟气余热用于氧化铝生产的节能新技术。
本技术采用喷淋冷却塔对高温焙烧炉烟气进行喷淋冷却,通过直接换热方式,烟气中的水蒸汽释放其潜热,大部分热量回收进入喷淋循环水中。
升温后的循环水再与经过真空闪蒸后的蒸发原液进行热交换,使真空闪蒸后的原液温度升高,温度升高后的蒸发原液再返回进行真空闪蒸,最终蒸发原液浓度得到提高,降低了蒸发工段低压蒸汽消耗,节约了氧化铝生产的综合能耗。
本文对焙烧炉烟气余热回收及利用技术进行了热平衡计算和运营成本估算,分别从技术和经济角度分析了本技术应用于氧化铝生产企业的可行性。
关键词:焙烧炉;烟气余热;水蒸汽潜热;回收及利用中图分类号:X706 文献标识码:A 文章编号:1002-5065(2023)10-0017-3The Recovery and Utilization of Waste Heat Technology for Calciner Flue GasLUO Zhen-yong(Guiyang Aluminium and Magnesium Design and Research Institute Co.,Ltd.,Guiyang 550081,China)Abstract: This paper introduces a new energy saving technology of gas suspension calciner in alumina plant, this technology can recycle the waste heat of flue gas and apply it to production of alumina. The water cooling tower was used to spray cooling the high temperature flue gas of calciner by direct heat exchange. The latent heat was discharged from water vapor in flue gas, and the heat was recycled into spray water. The warming recycled water transfer heat to spent liquor after vacuum flashing. The concentration of spent liquor was higher than before. And then the low pressure steam consumption was lower than before, the comprehensive energy consumption of alumina production was saved. The heat balance calculation and operating cost estimation for the technology were provided in this paper. The feasibility which the technology was applied to alumina industries was analyzed from technical and economic point of view.Keywords: Calciner; Waste Heat of Flue Gas; Latent Heat of Water Vapor; Recovery and Utilization收稿日期:2023-03作者简介:罗振勇,男,生于1982年,满族,辽宁开原人,硕士研究生,工程师,研究方向:氧化铝生产工艺设计及研究。
燃气锅炉烟气余热回收技术方案

结论:可回收≥15%的热量,热效率提高≥ 17%
2
锅炉理论效率与排烟温度的关系
露点温度
结论:1、烟气温度降至60℃时,锅炉热效率可提高3~6%; 2、烟气温度再降至30℃以下时,热效率再提高8~10%。
3
二、小型烟气全热回收系统
同为小型燃气锅炉烟气全热回收节能产品,系 统热效率提高15~17%以上。该系统采用气液换热 冷凝器和热泵余热回收专利技术,将烟气温度降到 25℃以下,回收燃气锅炉烟气中的显热和潜热,用 于供暖、供应卫生热水或其它工艺生产应用,实现了 烟气全热(显热和潜热)的回收利用。 该系统适用于5 t/h及以上的燃气热水/蒸汽锅炉。
8
低温端5~10℃温差
气液冷凝换热原理:
冷凝式气液板壳采用不对称结 构、强制换热流程通道的板壳 式换热器,换热器两侧流体通 道截面积相差近10倍。其中大 截面积通道用于通过体积流量 大的气体,来降低气体的压力 损失。小截面积通道用于通过 体积流量小的液体,来确保液 体换热所需的流速。 具有低成本、低阻力、高效率 实现尾气利用的特点。
4
系统解决方案
其工作原理为:燃气锅炉的 高温烟气与低温采暖回水或卫生
50℃
热水在换热器中换热降温,回收
烟气显热,然后由引风机导流进 入冷凝器,在冷凝器中与水源热 泵循环水进行进一步换热,回收 烟气潜热。采暖回水或卫生热水 经过高温烟气和热泵加热后,温 度提升,进入原热系统。实现烟
气余热到中温热水的转移,锅炉
燃气锅炉 烟气余热回收技术方案
湖南同为节能科技有限公司
HuNan TOWNS Energy Technology CO.,LTD
0
一、燃气锅炉烟气节能分析
近年来,中大型燃气热水锅炉和天然气热电厂在集中供 暖地区作为供热热源得到大量的应用,同时小型燃气锅炉在人 民的生产生活中已经得到大量应用。 这些锅炉的热效率一般小于0.9,其热量损失最大的途径 就是排烟。大量的烟气冷凝热由于采暖回水温度高的原因都未 能得到回收而被白白的排放浪费;并且在冬季排放大量的“白 烟”,影响环境和美观。
转炉烟气余热回收流程

转炉烟气余热回收流程转炉是一种用于冶炼钢铁的设备,在生产过程中会产生大量的烟气。
这些烟气中含有大量的热能,如果不能有效地回收利用,不仅会造成能源的浪费,还会对环境造成污染。
因此,利用转炉烟气余热回收技术,将其中的热能回收利用,不仅可以降低能源消耗,还可以减少环境污染。
转炉烟气余热回收流程主要包括烟气净化、余热回收和余热利用三个步骤。
第一步,烟气净化。
转炉烟气中含有大量的粉尘、二氧化硫、氮氧化物等有害物质,需要进行净化处理。
烟气净化的方式主要包括干法和湿法两种方式。
干法烟气净化主要是利用静电除尘器、布袋除尘器等设备将烟气中的粉尘和微小颗粒物过滤掉。
湿法烟气净化则是将烟气通过喷淋等方式与水接触,使烟气中的有害气体转化为水溶液,进而进行分离和回收。
第二步,余热回收。
在烟气净化后,烟气中的热能仍然很高,需要通过余热回收设备进行回收利用。
常用的余热回收设备包括烟气余热锅炉、烟气换热器等。
烟气余热锅炉是利用烟气中剩余的热量产生蒸汽或热水的设备。
烟气换热器则是利用烟气与其他介质接触,将烟气中的热能传递给其他介质,进而产生蒸汽或热水。
这些蒸汽或热水可以用于工业生产或供热等领域。
第三步,余热利用。
回收到的余热可以直接供应给工业生产中的热源,也可以通过热电联产等方式将其转化为电能供应给电网。
热电联产技术是利用余热锅炉产生的高温高压蒸汽驱动汽轮机发电,并将过程中产生的低温余热通过换热器回收利用,从而实现能量的高效利用。
转炉烟气余热回收技术不仅可以降低能源消耗,还可以减少环境污染。
目前,该技术已经在钢铁、化工、建材等领域得到广泛应用,为企业节能减排、提高经济效益做出了贡献。
烟气余热回收技术方案

烟气余热回收技术方案1. 背景介绍烟气是许多工业生产过程中产生的一种重要废气。
燃烧产生的烟气中含有大量的热量,如果不进行有效的回收利用,将会造成能源的浪费和环境的污染。
因此,烟气余热回收技术成为了重要的研究方向之一。
本文将介绍一种烟气余热回收技术方案,以实现高效能源利用和环境保护。
2. 技术原理该烟气余热回收技术方案基于换热原理,通过烟气与工艺流体之间的热量交换,实现热能回收。
具体的技术原理如下:1.烟气预处理:在烟气进入烟道前,对其进行预处理,去除大颗粒的烟尘和其他污染物,以确保烟气的净化程度和换热器的正常运行。
2.烟气与工艺流体换热:将烟气通过烟道引导至烟气换热器中,与工艺流体进行热量交换。
工艺流体可以是水、油等,在换热器内与烟气进行流体间的热交换,使烟气中的热量传递给工艺流体,从而实现热能的回收利用。
3.对工艺流体进行冷却:烟气中的热能传递给工艺流体后,工艺流体温度升高。
为了保证回收后的热能能够有效利用,需要对工艺流体进行冷却。
这可以通过使用冷却器或进行进一步的热量转移实现。
4.回收后的热能利用:冷却后的工艺流体可以用于供热、供暖或其他工业生产过程中的热能需求,从而实现能源的高效利用。
3. 技术优势该烟气余热回收技术方案具有以下优势:•高效能源利用:通过回收烟气中的热能,将原本浪费的能源转化为可用的能源,提高能源利用率。
•环境保护:减少煤、油等能源的消耗,降低二氧化碳等温室气体的排放,对环境具有积极的影响。
•经济效益:通过烟气余热的回收利用,降低了企业的能源消耗成本,提高了企业的经济效益。
•可持续发展:烟气余热回收技术是一种可持续发展的技术,有助于提高能源的可再生利用率,减少对自然资源的依赖。
4. 技术应用烟气余热回收技术可以应用于各个领域,包括但不限于以下几个方面:•工业生产:适用于钢铁、化工、电力等工业生产过程中产生的烟气,将烟气中的余热转化为工艺流体的热能需求,减少能源浪费。
•建筑供热:可将烟气余热应用于建筑供热系统中,为建筑提供温暖的供暖水源,减少传统能源的消耗。
锅炉烟气余热回收方案

锅炉烟气余热回收方案引言在传统锅炉中,燃料的燃烧会产生大量的烟气,其中包含大量的热能。
然而,在传统的锅炉运行中,烟气中的余热往往被直接排放至大气中,导致能源的浪费和环境的污染。
为了充分利用和回收这部分烟气余热,提高能源利用效率和减少环境污染,研发锅炉烟气余热回收方案成为工程技术领域的热点之一。
本文将介绍几种常见的锅炉烟气余热回收方案及其工程应用。
1. 锅炉烟气余热回收原理锅炉烟气余热是指在锅炉燃烧过程中,未能被充分利用的热能。
烟气中的余热主要包括高温烟气和烟气中的水蒸气。
回收锅炉烟气余热的原理是通过烟气与工作介质(如水、空气等)的热交换,将烟气中的热能传递给工作介质,在回收烟气余热的同时实现能量的转换和利用。
2. 锅炉烟气余热回收方案2.1 烟气余热锅炉烟气余热锅炉是常见的一种烟气余热回收设备。
它通过在锅炉尾部增设余热回收器,在烟气经过锅炉尾部时,将高温烟气中的余热传递给工作介质,实现烟气余热的回收和再利用。
烟气余热锅炉可以将烟气中的余热转化为蒸汽、热水或其他工质,用于供热、发电或其他生产用途。
这种方案具有回收效果好、能源利用率高的优点,目前在工业领域得到广泛应用。
2.2 烟气换热器烟气换热器是另一种常见的烟气余热回收设备。
它通过在烟气管路上增设换热器,将烟气中的余热传递给工作介质,实现余热的回收和再利用。
烟气换热器可以将烟气中的高温热能转化为低温热能或其他形式的能量,例如热水、蒸汽等。
这种方案适用于烟气温度较高的情况,可以有效提高热能利用率和能源利用效率。
2.3 烟气余热发电系统烟气余热发电系统是将烟气余热转化为电能的一种方案。
它通过在锅炉系统中增设烟气余热发电装置,将烟气中的余热转化为蒸汽,并通过蒸汽发电机组发电。
这种方案适用于需要大量电能的场景,如工业厂房、发电厂等。
烟气余热发电系统可以充分利用烟气中的余热,提高能源利用效率,同时减少对传统能源的依赖,具有良好的经济和环境效益。
3. 烟气余热回收方案的应用案例3.1 石化行业在石化行业中,烟气余热回收方案得到了广泛应用。
燃气锅炉烟气余热深度回收技术及应用分析方案

燃气锅炉烟气余热深度回收技术及应用分析1、概述燃气锅炉作为主要的采暖设备,燃烧产生的烟气温度通常很高,这些烟气含有大量的显热和潜热,如果不经处理直接排放到大气中会造成能量浪费。
排烟温度越高,排烟热损失越大,一般排烟温度升高15~20 ℃,就会使排烟热损失增加1%,如果能将这部分热量回收利用起来,不仅节约能源,而且提高了锅炉热效率。
目前,烟气余热回收技术主要有两种:热泵式烟气余热回收技术和换热器式烟气余热回收技术。
热泵式烟气余热回收技术前期投资成本高,所需安装空间较大;换热器式烟气余热回收技术一般仅在锅炉尾部烟囱上加装烟气余热回收装置,但受被加热介质温度等方面的限制,处理后的低温烟气温度仍然较高,大部分水蒸气汽化潜热未被回收利用,造成能源浪费和环境污染。
由于天然气成分绝大部分为烃,燃气锅炉排烟中水蒸气的体积分数较高,烟气可利用的热能中,水蒸气的汽化潜热所占份额相当大,若将烟气冷却到露点温度以下,并深度回收利用天然气燃烧时产生的水蒸气凝结时放出的大量潜热,可进一步提升燃气锅炉热效率。
2、冷凝热回收计算锅炉烟气显热的回收量主要体现在锅炉排烟的温降幅度,而潜热回收量主要体现在烟气中水蒸气的凝结量,即当排烟温度低于露点温度,有水蒸气凝结时,烟气的放热量应用烟气的焓差表示。
不同地区燃气成分不同,不同锅炉燃烧工况不同,所以燃烧产物即烟气的成分和状态各不相同,特别是烟气中水蒸气含量各异,使得烟气热回收潜力存在差异。
选取过量空气系数α=1.1,相应露点温度为 58.15℃的工况进行相关参数的计算。
根据供热系统实际运行工况,相对于锅炉本体排烟温度(一级余热回收装置进口烟温)为 110 ℃时,不同排烟温度下显热回收量、潜热回收量、水蒸气冷凝率以及锅炉热效率增量的计算结果。
由计算结果可知,排烟温度越低,水蒸气冷凝率越高,潜热和显热回收量也相应越高。
当排烟温度低于 60 ℃(接近烟气露点温度)时,回收总热量及锅炉热效率的变化值迅速增大,这主要是由于排烟温度低于露点温度,烟气中水蒸气的汽化潜热得以回收;当排烟温度继续降至40℃时,水蒸气冷凝率65% ,每燃烧 1 m3 天然气所回收的显热为 1 090 kJ,潜热为2650 kJ,锅炉热效率可提高10.17% 。
烟气余热回收技术方案

烟气余热回收技术方案1.引言:随着工业化的发展,许多工业过程会产生大量的烟气余热。
如果这些余热不加以利用,不仅对环境造成负面影响,还会浪费能源资源。
因此,烟气余热回收技术的研发和应用变得至关重要。
本文将探讨一些常见的烟气余热回收技术方案。
2.烟气余热回收技术方案:2.1烟气热交换器烟气热交换器是一种常见的烟气余热回收技术方案。
烟气热交换器的原理是通过传导、对流、辐射等方式,将烟气中的热量传递给工作介质(如水或空气),从而提高工作介质的温度。
具体来说,烟气经过烟气热交换器后,冷却,而介质则被加热,可以用于供暖、工业热水等。
2.2高温烟气直接回收在一些高温烟气的情况下,可以直接回收其中的热能。
例如,高温烟气可以用于直接发电或驱动蒸汽涡轮机,从而产生电力或机械功。
这种烟气直接回收技术方案不仅能够有效回收热能,还能够实现能源的多次利用。
2.3烟气余热利用系统烟气余热利用系统是一种集成化的烟气余热回收技术方案。
该系统由多个组件组成,包括烟气余热锅炉、热交换器、余热净化装置等。
其工作原理是将从工业烟气中回收的余热传递给工作介质,并进一步利用该余热进行供热、发电等用途。
2.4烟气余热发电系统烟气余热发电系统是一种通过回收烟气中的热能来发电的技术方案。
该系统在烟气热交换器中通过热能传递的方式将烟气中的热量传递给工作介质,使其达到足够高的温度和压力,从而驱动蒸汽涡轮机产生电力。
3.烟气余热回收技术方案的应用和优势:3.1工业领域应用3.2环境保护优势3.3节能效益4.结论烟气余热回收技术方案在工业生产和环境保护中具有重要的意义。
通过采用适当的技术方案,可以有效回收烟气中的热能,提高能源利用效率,降低能源消耗和环境污染。
值得注意的是,不同的行业和工艺过程可能需要采用不同的烟气余热回收技术方案,因此在具体应用中需要根据实际情况进行选择和调整。
烟气余热深度梯级利用方案分析

烟气余热深度梯级利用方案分析
烟气余热深度梯级利用是提高热能利用效率的一种有效手段。
本文主要探讨烟气余热深度梯级利用方案。
一、传统的烟气余热利用方案
传统的烟气余热利用方案通常采用预热器、冷凝器等设备对烟气进行热量回收。
这些设备通常只能回收烟气中的一部分热量,利用效率不高。
烟气余热深度梯级利用方案通过对烟气进行多层次的热量回收,实现了对烟气中热量的最大限度回收,提高了热能利用效率。
具体方案如下:
1.一级回收
一级回收通常采用高效传热设备,如换热器,将烟气中高温热量回收利用,降低烟气排放温度。
这样不仅可以减少对环境的污染,还能节约能源。
二级回收通常采用蒸汽发生器对烟气进行再次加热,产生高温高压蒸汽,用于驱动涡轮发电机发电。
这种方式能够更好地利用烟气中的热量,不仅能够回收更多的余热,还能够实现清洁能源的利用。
三级回收通常采用吸收式制冷机,将烟气余热用于制冷空调,实现了热量的再次回收利用,节能环保。
四级回收通常采用热泵技术,将烟气中的低品位热量提升,用于供暖或热水供应,进一步最大限度地利用烟气余热。
三、总结
烟气余热深度梯级利用方案可以最大限度地回收烟气中的热量,提高热能利用效率。
各级别利用方式可以结合具体生产过程及工艺流程进行调整和选择,以达到最好的节能环保效果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
烟气余热回收利用改造项目
技术方案
***节能科技有限公司
二O一二年
一、运行现状
锅炉房配备2.1MW锅炉2台(一用一备),供热面积5万m2;**炉配备2.1MW 锅炉2台(一用一备),供热面积4.5万m2。
经监测,**锅炉房2台锅炉正常运行排烟温度在150--170℃,平均热效率在89%,**锅炉房2台锅炉正常运行排烟温度在
160-180℃,平均热效率在88%,(标准应不高于160℃)。
锅炉系统运行进出水温差较小,排烟热损失较大,同时影响锅炉热效率的提高,回收利用潜力明显。
二、技术介绍
烟气冷凝回收利用技术是国家第一批特种设备节能技术推荐目录中的成熟技术。
有着显著的节能效益。
主要原理:
1m3天然气燃烧后会放出9450kcal的热量,其中显热为8500kcal,水蒸气含有的热量(潜热)为950kcal。
对于传统燃气锅炉可利用的热能就是8500kcal的显热,供热行业中常规计算天然气热值一般以8500kcal/nm3为基础计算。
这样,天然气的实际总发热量9450kcal与天然气的显热8500kcal比例关系以百分数表示就为:111%,其中显热部分占100%,潜热部分占11%,所以对于传统燃气锅炉来说还是有很多热量白白浪费掉。
普通天然气锅炉的排烟温度一般在120--250℃,这些烟气含有8%--15%的显热和11%的水蒸气潜热。
加装烟气冷凝器的主要目的就是通过冷凝器把烟气中的水蒸气变成凝结水,最大限度地回收烟气中含有的潜热和显热,使回收热量后排烟温度可降至100℃左右,同时烟气冷却后产生的凝结水得到及时有效地排出(1 nm3天然气完全燃烧后,可产生1.66kg水),并且大大减少了co2、co、nox等有害物质向大气的排放,起到了明显的节能、降耗、减排及保护锅炉设备的作用。
从而达到节能增效的目的。
三、改造方案
3.1、设备选型
烟气余热回收器选用瑞典爱瑞科(AIREC)板式烟气热回收器。
瑞典AIREC公司是世界上唯一一家钎焊式模块
化非对称流量板式换热器的专业生产制造商,凭借
独到的设计理念,雄厚的产品开发能力和多年行业
丰富的实践经验使AIREC成为在非对称流量换热领
域的真正领导者。
irCross21由多块板片重叠冲压在一起,在真
空和高温的环境下,板片用铜或镍焊接在一起,具
有很高的机械强度,更大的传热面积,更高的效率,
更轻便小巧。
AIREC通过继承CBE(钎焊式换热器)的技术特点,独特的换热器设计板纹,气体/液体应用的专业设计,主要应用在两种非对称流量介质换热领域,一侧是大流量低压气体,另一侧是小流量高压液体。
瑞典爱瑞科板式烟气热回收器具有独特的非对称流量设计——特别适用于大流量气体与小流量液体高效换热的环节。
应用范围:发电机组烟气余热回收-热电联产、锅炉余热回收改造、农场沼气发电机组余热回收、家用燃气热泵、发动机测试平台高温烟气的余热回收。
技术特点:
●紧凑焊接板式换热器
●316 铜/镍焊接
●高耐压性
●高密闭性
●不对称设计
●一侧(A)高压降小流量/另一侧(B)低压降大流量
●极其紧凑设计:所有材料参与换热;超高的热效率:可实现非常小的温差效率超过90%
●苛刻的工作条件:660度的高温;自我清洗,同时方便清洗
3.2、设计方案
3.2.1、烟气回收量指标:
根据锅炉实际运行情况,此次改造,烟气余热利用设计回收指标见下表:
烟气余热装置设计参数见下表:
3.2.2、设计方案
烟气余热回收装置全部采用加热锅炉回水方式进行热量回收。
考虑到在烟气回收过程中不产生冷凝水,烟气温度控制在100度以上,并增加旁通烟道,实现烟气排温烟气和出水温度的可调节、可控制的目地。
进出水管径为DN25,进水流量设计为1.5t/h。
设备全部采用不锈钢材质,烟道加装调风阀,进出水管采用不锈钢管,水侧加装20目过滤器。
增加设备使用寿命和防腐蚀能力。
见下图:
3.3、改造数量
此次针对4台锅炉安装烟气余热回收器,主要为:**路锅炉房2台2.1MW燃气锅炉,**锅炉房2台2.1MW燃气锅炉,在烟气出口处各安装一台爱瑞克烟气余热回收器。
配套安装2台热量计,温度变送器16个,**监控柜1台,**路烟气余热装置的运行参数全部上传至锅炉DCS系统,达到实时监控的目地。
具备远程通信功能,能够全面反映和监控余热回收效果及数据,为今后数字化打下基础。
3、设备配置及预算
针对两个锅炉房在用的4台2.1MW燃气锅炉加装4台烟气余热回收装置。
具体方案见下表:
四、投资效果及节能估算
4.1、有效提高锅炉热效率,减少锅炉热损失。
烟气锅炉热效率通常均在88%以上,主要热损失就是排烟热损失,通过在烟气尾部安装烟气余热回收装置,可以提高锅炉热效率3-5%,将排温温度控制在100-130度之间,有效回收热量。
4.2、减少大气环境污染,实现节能减排。
***锅炉房年供热时间约120天,年耗气量近120万立方,通过该系统估算节能量。