烟气余热回收技术方案样本
余热回收设计方案

恒昌焦化焦炉烟气余热回收项目设计方案唐山德业环保设备有限公司二〇一二年三月一、焦化工艺概述:备煤车间送来的配合煤装入煤塔,装煤车按作业计划从煤塔取煤,经计量后装入炭化室内。
煤料在炭化室内经过一个结焦周期的高温干馏制成焦炭并产生荒煤气。
炭化室内的焦炭成熟后,用推焦车推出,经拦焦车导入熄焦车内,并由电机车牵引熄焦车到熄焦塔内进行喷水熄焦。
熄焦后的焦炭卸至凉焦台上,冷却一定时间后送往筛焦工段,经筛分按级别贮存待运。
煤在炭化室干馏过程中产生的荒煤气汇集到炭化室顶部空间,经过上升管、桥管进入集气管。
约800℃左右的荒煤气在桥管内被氨水喷洒冷却至84℃左右。
荒煤气中的焦油等同时被冷凝下来。
煤气和冷凝下来的焦油等同氨水一起经过吸煤气管送入煤气净化车间。
焦炉加热用的焦炉煤气,由外部管道架空引入。
焦炉煤气经预热后送到焦炉地下室,通过下喷管把煤气送入燃烧室立火道底部与由废气交换开闭器进入的空气汇合燃烧。
燃烧后的废气经过立火道顶部跨越孔进入下降气流的立火道,再经蓄热室,又格子赚把废气的部分显热回收后,经过小烟道、废气交换开闭器、分烟道、总烟道、烟囱排入大气。
对于其中经总烟道进入烟囱热烟气的仍有较大的余热回收价值。
二、余热回收工艺流程图技术方案如下:该系统由热管蒸气发生器、软水预热器、汽包、上升管、下降管、外连管路和控制仪表等组成,并且互相独立。
主要技术特点:1、地下烟道开孔技术:如何实现地下主烟道在焦炉正常行产情况下在线开孔,是本项目成功实施的第一关键。
我公司根据多次地下烟道的开孔经验,成功总结出一套行之有效施工方案。
地下烟道路截面尺寸如上图所示。
开孔及布筋图支模示意图支撑系统图2、防止地下烟道、余热回收设备、引风机间环流形成的技术。
由于地下烟道翻板阀与地下烟道周围的150-200的环隙,在风机工作的过程中,风机出口压头大于风机进口压头,且进口压头低于烟囱吸力,因此在设备烟气进口处与风机出口处间地下烟道有环流存在。
经验告诉我们在这种情况下,增大风机功率是没有作用的,因为随风机功率的增加,其环量也在增加,其结局是或影响焦炉总烟道负压度从而影响焦炉的正常生产,或影响余热回收的正常产汽量,这也是一般设备制造厂家在焦炉余热回收上失败的原因之一。
烟气余热回收技术方案

烟气余热回收技术方案1. 背景介绍烟气是许多工业生产过程中产生的一种重要废气。
燃烧产生的烟气中含有大量的热量,如果不进行有效的回收利用,将会造成能源的浪费和环境的污染。
因此,烟气余热回收技术成为了重要的研究方向之一。
本文将介绍一种烟气余热回收技术方案,以实现高效能源利用和环境保护。
2. 技术原理该烟气余热回收技术方案基于换热原理,通过烟气与工艺流体之间的热量交换,实现热能回收。
具体的技术原理如下:1.烟气预处理:在烟气进入烟道前,对其进行预处理,去除大颗粒的烟尘和其他污染物,以确保烟气的净化程度和换热器的正常运行。
2.烟气与工艺流体换热:将烟气通过烟道引导至烟气换热器中,与工艺流体进行热量交换。
工艺流体可以是水、油等,在换热器内与烟气进行流体间的热交换,使烟气中的热量传递给工艺流体,从而实现热能的回收利用。
3.对工艺流体进行冷却:烟气中的热能传递给工艺流体后,工艺流体温度升高。
为了保证回收后的热能能够有效利用,需要对工艺流体进行冷却。
这可以通过使用冷却器或进行进一步的热量转移实现。
4.回收后的热能利用:冷却后的工艺流体可以用于供热、供暖或其他工业生产过程中的热能需求,从而实现能源的高效利用。
3. 技术优势该烟气余热回收技术方案具有以下优势:•高效能源利用:通过回收烟气中的热能,将原本浪费的能源转化为可用的能源,提高能源利用率。
•环境保护:减少煤、油等能源的消耗,降低二氧化碳等温室气体的排放,对环境具有积极的影响。
•经济效益:通过烟气余热的回收利用,降低了企业的能源消耗成本,提高了企业的经济效益。
•可持续发展:烟气余热回收技术是一种可持续发展的技术,有助于提高能源的可再生利用率,减少对自然资源的依赖。
4. 技术应用烟气余热回收技术可以应用于各个领域,包括但不限于以下几个方面:•工业生产:适用于钢铁、化工、电力等工业生产过程中产生的烟气,将烟气中的余热转化为工艺流体的热能需求,减少能源浪费。
•建筑供热:可将烟气余热应用于建筑供热系统中,为建筑提供温暖的供暖水源,减少传统能源的消耗。
锅炉烟气余热回收方案

锅炉烟气余热回收方案引言在传统锅炉中,燃料的燃烧会产生大量的烟气,其中包含大量的热能。
然而,在传统的锅炉运行中,烟气中的余热往往被直接排放至大气中,导致能源的浪费和环境的污染。
为了充分利用和回收这部分烟气余热,提高能源利用效率和减少环境污染,研发锅炉烟气余热回收方案成为工程技术领域的热点之一。
本文将介绍几种常见的锅炉烟气余热回收方案及其工程应用。
1. 锅炉烟气余热回收原理锅炉烟气余热是指在锅炉燃烧过程中,未能被充分利用的热能。
烟气中的余热主要包括高温烟气和烟气中的水蒸气。
回收锅炉烟气余热的原理是通过烟气与工作介质(如水、空气等)的热交换,将烟气中的热能传递给工作介质,在回收烟气余热的同时实现能量的转换和利用。
2. 锅炉烟气余热回收方案2.1 烟气余热锅炉烟气余热锅炉是常见的一种烟气余热回收设备。
它通过在锅炉尾部增设余热回收器,在烟气经过锅炉尾部时,将高温烟气中的余热传递给工作介质,实现烟气余热的回收和再利用。
烟气余热锅炉可以将烟气中的余热转化为蒸汽、热水或其他工质,用于供热、发电或其他生产用途。
这种方案具有回收效果好、能源利用率高的优点,目前在工业领域得到广泛应用。
2.2 烟气换热器烟气换热器是另一种常见的烟气余热回收设备。
它通过在烟气管路上增设换热器,将烟气中的余热传递给工作介质,实现余热的回收和再利用。
烟气换热器可以将烟气中的高温热能转化为低温热能或其他形式的能量,例如热水、蒸汽等。
这种方案适用于烟气温度较高的情况,可以有效提高热能利用率和能源利用效率。
2.3 烟气余热发电系统烟气余热发电系统是将烟气余热转化为电能的一种方案。
它通过在锅炉系统中增设烟气余热发电装置,将烟气中的余热转化为蒸汽,并通过蒸汽发电机组发电。
这种方案适用于需要大量电能的场景,如工业厂房、发电厂等。
烟气余热发电系统可以充分利用烟气中的余热,提高能源利用效率,同时减少对传统能源的依赖,具有良好的经济和环境效益。
3. 烟气余热回收方案的应用案例3.1 石化行业在石化行业中,烟气余热回收方案得到了广泛应用。
某焦炉燃烧烟气余热回收

目录1.总论 (1)2.焦炉 (3)3.热力 (6)4.电气部分 (10)5.自动化仪表 (12)6.土建 (13)7.采暖通风 (14)8.给排水 (16)9.总图运输 (17)10.消防 (19)11.能源评价 (21)12. 三废、环境保护以及综合利用 (21)13.劳动安全与卫生 (21)1.总论1.1.工程概述某焦化厂焦炉属于38.5m3大容积焦炉,使用两座并联排列方式,年产量100万吨。
焦炉采用焦炉煤气做为燃料,属于双联火道、废气循环、复热、焦炉煤气下喷形式的焦炉。
焦炉煤气通过立火道进入焦炉燃烧室,在焦炉燃烧室内燃烧后,再经过斜道进入蓄热室,将蓄热室的蓄热体加热之后,进入分烟道。
各燃烧室的燃烧烟气通过分烟道汇集到二个总烟道,再由总烟道排出。
各分烟道和总烟道上设有闸板,用于调节和温度焦炉的烟道的吸力。
整个烟道采用自然排烟方式,完全靠烟囱的抽力所产生的负压使炉膛维持微负压燃烧状态。
两座焦炉最终排放烟气平均温度达到250℃左右,蓄热室与烟囱之间的烟道上未采取任何余热回收装置,因此烟气余热损失巨大,约占焦炉总能耗的21%左右。
根据某焦化厂焦炉生产现状,对烟道进行改造,增加余热回收系统,使焦炉烟气排放温度降低到150~170℃,所回收的余热产生0.6MPa和0.4MPa饱和蒸汽用于生产和生活,达到节能降耗减排的目的,提高能源利用率。
系统改造包括烟道改造、新建余热回收设备、水泵房建设等内容。
1.2. 具体设计范围(1)烟道改造:在原有一个总烟道的基础之上,增设一个旁路烟道,在旁路烟道上安装余热回收装置、增压风机、烟道闸板。
同时另外一个总烟道也需要连接到此旁路烟道上,这样两个总烟道并联进入此旁路烟道。
(2)余热利用系统:在旁路烟道中安装热管蒸汽发生器、热管水预热器,增压引风机,烟道调节闸板等设备。
新建一座水泵车间,在车间内安装2台补给水泵、2台循环泵,给水和蒸汽管网。
1.3. 建设条件(1)建设所需的公辅介质基本上从焦炉作业区内部接取。
燃气锅炉烟气余热深度回收技术及应用分析方案

燃气锅炉烟气余热深度回收技术及应用分析1、概述燃气锅炉作为主要的采暖设备,燃烧产生的烟气温度通常很高,这些烟气含有大量的显热和潜热,如果不经处理直接排放到大气中会造成能量浪费。
排烟温度越高,排烟热损失越大,一般排烟温度升高15~20 ℃,就会使排烟热损失增加1%,如果能将这部分热量回收利用起来,不仅节约能源,而且提高了锅炉热效率。
目前,烟气余热回收技术主要有两种:热泵式烟气余热回收技术和换热器式烟气余热回收技术。
热泵式烟气余热回收技术前期投资成本高,所需安装空间较大;换热器式烟气余热回收技术一般仅在锅炉尾部烟囱上加装烟气余热回收装置,但受被加热介质温度等方面的限制,处理后的低温烟气温度仍然较高,大部分水蒸气汽化潜热未被回收利用,造成能源浪费和环境污染。
由于天然气成分绝大部分为烃,燃气锅炉排烟中水蒸气的体积分数较高,烟气可利用的热能中,水蒸气的汽化潜热所占份额相当大,若将烟气冷却到露点温度以下,并深度回收利用天然气燃烧时产生的水蒸气凝结时放出的大量潜热,可进一步提升燃气锅炉热效率。
2、冷凝热回收计算锅炉烟气显热的回收量主要体现在锅炉排烟的温降幅度,而潜热回收量主要体现在烟气中水蒸气的凝结量,即当排烟温度低于露点温度,有水蒸气凝结时,烟气的放热量应用烟气的焓差表示。
不同地区燃气成分不同,不同锅炉燃烧工况不同,所以燃烧产物即烟气的成分和状态各不相同,特别是烟气中水蒸气含量各异,使得烟气热回收潜力存在差异。
选取过量空气系数α=1.1,相应露点温度为 58.15℃的工况进行相关参数的计算。
根据供热系统实际运行工况,相对于锅炉本体排烟温度(一级余热回收装置进口烟温)为 110 ℃时,不同排烟温度下显热回收量、潜热回收量、水蒸气冷凝率以及锅炉热效率增量的计算结果。
由计算结果可知,排烟温度越低,水蒸气冷凝率越高,潜热和显热回收量也相应越高。
当排烟温度低于 60 ℃(接近烟气露点温度)时,回收总热量及锅炉热效率的变化值迅速增大,这主要是由于排烟温度低于露点温度,烟气中水蒸气的汽化潜热得以回收;当排烟温度继续降至40℃时,水蒸气冷凝率65% ,每燃烧 1 m3 天然气所回收的显热为 1 090 kJ,潜热为2650 kJ,锅炉热效率可提高10.17% 。
烟气余热回收技术方案

烟气余热回收技术方案1.引言:随着工业化的发展,许多工业过程会产生大量的烟气余热。
如果这些余热不加以利用,不仅对环境造成负面影响,还会浪费能源资源。
因此,烟气余热回收技术的研发和应用变得至关重要。
本文将探讨一些常见的烟气余热回收技术方案。
2.烟气余热回收技术方案:2.1烟气热交换器烟气热交换器是一种常见的烟气余热回收技术方案。
烟气热交换器的原理是通过传导、对流、辐射等方式,将烟气中的热量传递给工作介质(如水或空气),从而提高工作介质的温度。
具体来说,烟气经过烟气热交换器后,冷却,而介质则被加热,可以用于供暖、工业热水等。
2.2高温烟气直接回收在一些高温烟气的情况下,可以直接回收其中的热能。
例如,高温烟气可以用于直接发电或驱动蒸汽涡轮机,从而产生电力或机械功。
这种烟气直接回收技术方案不仅能够有效回收热能,还能够实现能源的多次利用。
2.3烟气余热利用系统烟气余热利用系统是一种集成化的烟气余热回收技术方案。
该系统由多个组件组成,包括烟气余热锅炉、热交换器、余热净化装置等。
其工作原理是将从工业烟气中回收的余热传递给工作介质,并进一步利用该余热进行供热、发电等用途。
2.4烟气余热发电系统烟气余热发电系统是一种通过回收烟气中的热能来发电的技术方案。
该系统在烟气热交换器中通过热能传递的方式将烟气中的热量传递给工作介质,使其达到足够高的温度和压力,从而驱动蒸汽涡轮机产生电力。
3.烟气余热回收技术方案的应用和优势:3.1工业领域应用3.2环境保护优势3.3节能效益4.结论烟气余热回收技术方案在工业生产和环境保护中具有重要的意义。
通过采用适当的技术方案,可以有效回收烟气中的热能,提高能源利用效率,降低能源消耗和环境污染。
值得注意的是,不同的行业和工艺过程可能需要采用不同的烟气余热回收技术方案,因此在具体应用中需要根据实际情况进行选择和调整。
烟气余热回收技术方案

烟气余热回收利用改造项目技术方案***节能科技有限公司二O一二年一、运行现状锅炉房配备2.1MW锅炉2台(一用一备),供热面积5万m2;**炉配备2。
1MW 锅炉2台(一用一备),供热面积4。
5万m2。
经监测,**锅炉房2台锅炉正常运行排烟温度在150—-170℃,平均热效率在89%,**锅炉房2台锅炉正常运行排烟温度在160-180℃,平均热效率在88%,(标准应不高于160℃).锅炉系统运行进出水温差较小,排烟热损失较大,同时影响锅炉热效率的提高,回收利用潜力明显.二、技术介绍烟气冷凝回收利用技术是国家第一批特种设备节能技术推荐目录中的成熟技术。
有着显著的节能效益。
主要原理:1m3天然气燃烧后会放出9450kcal的热量,其中显热为8500kcal,水蒸气含有的热量(潜热)为950kcal。
对于传统燃气锅炉可利用的热能就是8500kcal的显热,供热行业中常规计算天然气热值一般以8500kcal/nm3为基础计算。
这样,天然气的实际总发热量9450kcal与天然气的显热8500kcal比例关系以百分数表示就为:111%,其中显热部分占100%,潜热部分占11%,所以对于传统燃气锅炉来说还是有很多热量白白浪费掉。
普通天然气锅炉的排烟温度一般在120—-250℃,这些烟气含有8%-—15%的显热和11%的水蒸气潜热。
加装烟气冷凝器的主要目的就是通过冷凝器把烟气中的水蒸气变成凝结水,最大限度地回收烟气中含有的潜热和显热,使回收热量后排烟温度可降至100℃左右,同时烟气冷却后产生的凝结水得到及时有效地排出(1 nm3天然气完全燃烧后,可产生1。
66kg水),并且大大减少了co2、co、nox等有害物质向大气的排放,起到了明显的节能、降耗、减排及保护锅炉设备的作用.从而达到节能增效的目的。
三、改造方案3.1、设备选型烟气余热回收器选用瑞典爱瑞科(AIREC)板式烟气热回收器。
瑞典AIREC公司是世界上唯一一家钎焊式模块化非对称流量板式换热器的专业生产制造商,凭借独到的设计理念,雄厚的产品开发能力和多年行业丰富的实践经验使AIREC成为在非对称流量换热领域的真正领导者.irCross21由多块板片重叠冲压在一起,在真空和高温的环境下,板片用铜或镍焊接在一起,具有很高的机械强度,更大的传热面积,更高的效率,更轻便小巧。
烟气余热回收技术方案

烟气余热回收技术方案一、引言工业生产过程中产生的烟气中含有大量的余热能量,如果能够将这部分余热回收并有效利用,不仅可以提高能源利用率,减少能源消耗,还可以减少对环境的污染。
因此,烟气余热回收技术的开发和应用对于企业的可持续发展具有重要意义。
二、烟气余热回收技术的原理烟气余热回收技术主要包括两个方面的内容:烟气的热量回收和余热的利用。
烟气的热量回收主要是通过烟气净化设备对烟气中的热量进行回收,常见的技术有烟气换热器、烟气脱硫设备等。
余热的利用则需要通过适当的设备将余热转化为可用能源,常见的方式有蒸汽循环、制冷循环等。
三、烟气换热器的设计和应用烟气换热器是烟气余热回收的核心设备,其主要功能是通过换热器将烟气中的热量传递给工艺流体,从而实现能量的转化。
烟气换热器的设计应考虑以下几个因素:1.换热器的材料选择:应根据烟气中存在的腐蚀物质和工艺流体的特性选择合适的材料,常见的材料有不锈钢、碳钢等。
2.换热器的热交换效率:应通过优化换热器的结构和流体的流动方式,提高热交换效率。
可以采用流体的迂回流动、增加流体的速度等方式提高换热效率。
3.换热器的清洁方式:由于烟气中含有灰尘和颗粒物等杂质,容易在换热器的表面形成污垢,影响换热效果。
因此,应考虑对换热器进行清洗和维护。
四、余热利用技术方案1.蒸汽循环技术:将回收的余热用于蒸汽发生器中,产生蒸汽用于工艺或供暖等用途。
蒸汽循环技术的优点是热效率高,适用于大量余热的回收利用。
2.制冷循环技术:将回收的余热用于制冷设备中,通过制冷设备产生低温热能,可用于制冷或其他低温工艺需求。
制冷循环技术的优点是适用于低温余热的回收利用。
3.热泵技术:热泵是一种将低温热能转化为高温热能的装置,通过热泵技术可以将回收的低温余热升温并利用于工艺流程。
热泵技术的优点是能够实现高效率的能量转化,适用于低温余热的回收利用。
五、烟气余热回收技术应用案例1.钢铁行业:钢铁生产中烟气中含有大量高温余热,可以通过烟气换热器将余热回收并用于烧结热风炉、蒸汽发生器等设备,提高能源利用率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
烟气余热回收技术
方案
烟气余热回收利用改造项目
技术方案
***节能科技有限公司
二O一二年
一、运行现状
锅炉房配备2.1MW锅炉2台(一用一备),供热面积5万m2;**炉配备2.1MW锅炉2台(一用一备),供热面积4.5万m2。
经监测,**锅炉房2台锅炉正常运行排烟温度在150--170℃,平均热效率在89%,**锅炉房2台锅炉正常运行排烟温度在160-180℃,平均热效率在88%,(标准应不高于160℃)。
锅炉系统运行进出水温差较小,排烟热损失较大,同时影响锅炉热效率的提高,回收利用潜力明显。
二、技术介绍
烟气冷凝回收利用技术是国家第一批特种设备节能技术推荐目录中的成熟技术。
有着显著的节能效益。
主要原理:1m3天然气燃烧后会放出9450kcal的热量,其中显热为8500kcal,水蒸气含有的热量(潜热)为950kcal。
对于传统燃气锅炉可利用的热能就是8500kcal的显热,供热行业中常规计算天然气热值一般以8500kcal/nm3为基础计算。
这样,天然气的实际总发热量9450kcal与天然气的显热8500kcal比例关系以百分数表示就为:111%,其中显热部分占100%,潜热部分占11%,因此对于传统燃气锅炉来说还是有很多热量白白浪费掉。
普通天然气锅炉的排烟温度一般在120--250℃,这些烟气含有8%--15%的显热和11%的水蒸气潜热。
加装烟气冷凝器的主要
目的就是经过冷凝器把烟气中的水蒸气变成凝结水,最大限度地回收烟气中含有的潜热和显热,使回收热量后排烟温度可降至100℃左右,同时烟气冷却后产生的凝结水得到及时有效地排出(1 nm3天然气完全燃烧后,可产生1.66kg水),而且大大减少了co2、co、nox等有害物质向大气的排放,起到了明显的节能、降耗、减排及保护锅炉设备的作用。
从而达到节能增效的目的。
三、改造方案
3.1、设备选型
烟气余热回收器选用瑞典爱瑞科(AIREC)板式烟气热回收器。
瑞典AIREC公司是世界上唯一一家
钎焊式模块化非对称流量板式换热器的
专业生产制造商,凭借独到的设计理
念,雄厚的产品开发能力和多年行业丰
富的实践经验使AIREC成为在非对称流量换热领域的真正领导者。
irCross21由多块板片重叠冲压在一起,在真空和高温的环境下,板片用铜或镍焊接在一起,具有很高的机械强度,更大的传热面积,更高的效率,更轻便小巧。
AIREC经过继承CBE(钎焊式换热器)的技术特点,独特的换热器设计板纹,气体/液体应用
的专业设计,主要应用在两种非对称流量介质换热领域,一侧是大流量低压气体,另一侧是小流量高压液体。
瑞典爱瑞科板式烟气热回收器具有独特的非对称流量设计——特别适用于大流量气体与小流量液体高效换热的环节。
应用范围:发电机组烟气余热回收-热电联产、锅炉余热回收改造、农场沼气发电机组余热回收、家用燃气热泵、发动机测试平台高温烟气的余热回收。
技术特点:
●紧凑焊接板式换热器
●316 铜/镍焊接
●高耐压性
●高密闭性
●不对称设计
●一侧(A)高压降小流量/另一侧(B)低压降大流量
●极其紧凑设计:所有材料参与换热;超高的热效率:可实现非常小的温差效率超过90%
●苛刻的工作条件:660度的高温;自我清洗,同时方便清洗
3.2、设计方案
3.2.1、烟气回收量指标:。