第5章_非线性电路的一般的分析方法PPT课件
合集下载
非线性电路分析解析ppt课件

则称函数关系f所描述的系统为线性系统。
5
非线性电路中至少包含
一个非线性元件,它的输出 输入关系用非线性函数方程 v + 或非线性微分方程表示,右 –
图所示是一个线性电阻与二
极管组成的非线性电路。
Di
i
ZL
0
V0 v
二极管电路及其伏安特性
二极管是非线性器件,ZL为负载,V是所加信号 源,幅度不大。设非线性元件的函数关系为i = f
所表征的电流。如果根据叠加原理,电流i应该是v1和 v2分别单独作用时所产生的电流之和,即
i
kv
2 1
kv
2 2
kV12m
sin2 1t
kV22m
sin2 2t
(6)
i kV12m sin2 1t kV22m sin2 2t 2kV1mV2m sin1t sin2t
(4)
18
i
kv
2 1
kv
28
(4) m次谐波(直流成分可视作零次、基波可 视作一次)以及系数之和等于m的各组合频 率成分,其振幅只与幂级数中等于及高于 m次的各项系数有关。例:直流成分与b0 、 b2都有关,而二次谐波及组合频率为1 + 2与1 - 2的各成分其振幅只与b2有关, 而与b0无关。
29
(5) 因为幂级数展开式中含有两个信号的相 乘项,起到乘法器的作用,因此,所有 组合频率分量都是成对出现的,如有1 + 2就一定有1 – 2,有21 – 2,就 一定有21 + 2,等等。
31
信号较大时,所有实际的非
线性元件,几乎都会进入饱和
ic
如右图所示半导体二 i
i
极管的伏安特性曲线。当 (a)
某一频率的正弦电压作
5
非线性电路中至少包含
一个非线性元件,它的输出 输入关系用非线性函数方程 v + 或非线性微分方程表示,右 –
图所示是一个线性电阻与二
极管组成的非线性电路。
Di
i
ZL
0
V0 v
二极管电路及其伏安特性
二极管是非线性器件,ZL为负载,V是所加信号 源,幅度不大。设非线性元件的函数关系为i = f
所表征的电流。如果根据叠加原理,电流i应该是v1和 v2分别单独作用时所产生的电流之和,即
i
kv
2 1
kv
2 2
kV12m
sin2 1t
kV22m
sin2 2t
(6)
i kV12m sin2 1t kV22m sin2 2t 2kV1mV2m sin1t sin2t
(4)
18
i
kv
2 1
kv
28
(4) m次谐波(直流成分可视作零次、基波可 视作一次)以及系数之和等于m的各组合频 率成分,其振幅只与幂级数中等于及高于 m次的各项系数有关。例:直流成分与b0 、 b2都有关,而二次谐波及组合频率为1 + 2与1 - 2的各成分其振幅只与b2有关, 而与b0无关。
29
(5) 因为幂级数展开式中含有两个信号的相 乘项,起到乘法器的作用,因此,所有 组合频率分量都是成对出现的,如有1 + 2就一定有1 – 2,有21 – 2,就 一定有21 + 2,等等。
31
信号较大时,所有实际的非
线性元件,几乎都会进入饱和
ic
如右图所示半导体二 i
i
极管的伏安特性曲线。当 (a)
某一频率的正弦电压作
非线性电路分析法

20
1)半流通角 电流流通时间所对应的相角叫流通角,用
叫做半流通角或截止角。有 c
2c 表示,
上式来自以下推导:
vB VBB Vbm cost
iC gc (vB VBZ )
gc (VBB Vbm cos t VBZ )
当wt=θc时,iC=0。代入上式即得。
21
2)集电极电流脉冲
iC gc (VBB Vbm cos t VBZ )
式 sin cos 1 sin( ) 1 sin( )
2Hale Waihona Puke 2cos sin 1 sin( ) 1 sin( )
2
2
9
3,幂级数分析法的具体应用举例 设非线性元件的静态特性用三次多项式表示
i b0 b1 (v V0 ) b2 (v V0 )2 b3 (v V0 )3
工作范围尿限于特性曲线得起始弯曲部分因此可以用幂级数的前三项来近似3结合输入电压的时间函数求电流写出静态特性的幂级数表示式后将输入电压的时间函数代入然后用三角恒等式展开并加以整理即可得到电流的傅立叶级数展开式从而求出电流的各频谱成分
非线性电路分析法
变系数线性微分方程、非线性微分方程的求解问题:
1 困难
3)电流中的直流成分、偶次谐波以及组合频率系数之和为偶数的各种组合频率成 分,振幅只与幂级数的偶次项(包括常数项)有关;奇次谐波等的组合频率成分, 振幅则只与幂级数的奇次项有关。
14
4)m次谐波以及系数之和等于m的各个组合频率成分,振幅只与幂级数中等于及 高于m次的各项系数有关。
5)所有组合频率都是成对出现的。 掌握这些规律很重要。 可以利用这些规律,根据不同的要求,选用具有适当特性的非线性元 件,或者选择合适的工作范围,以得到所需的频率成分,而尽量减弱 甚至消除不需要的频率成分。
1)半流通角 电流流通时间所对应的相角叫流通角,用
叫做半流通角或截止角。有 c
2c 表示,
上式来自以下推导:
vB VBB Vbm cost
iC gc (vB VBZ )
gc (VBB Vbm cos t VBZ )
当wt=θc时,iC=0。代入上式即得。
21
2)集电极电流脉冲
iC gc (VBB Vbm cos t VBZ )
式 sin cos 1 sin( ) 1 sin( )
2Hale Waihona Puke 2cos sin 1 sin( ) 1 sin( )
2
2
9
3,幂级数分析法的具体应用举例 设非线性元件的静态特性用三次多项式表示
i b0 b1 (v V0 ) b2 (v V0 )2 b3 (v V0 )3
工作范围尿限于特性曲线得起始弯曲部分因此可以用幂级数的前三项来近似3结合输入电压的时间函数求电流写出静态特性的幂级数表示式后将输入电压的时间函数代入然后用三角恒等式展开并加以整理即可得到电流的傅立叶级数展开式从而求出电流的各频谱成分
非线性电路分析法
变系数线性微分方程、非线性微分方程的求解问题:
1 困难
3)电流中的直流成分、偶次谐波以及组合频率系数之和为偶数的各种组合频率成 分,振幅只与幂级数的偶次项(包括常数项)有关;奇次谐波等的组合频率成分, 振幅则只与幂级数的奇次项有关。
14
4)m次谐波以及系数之和等于m的各个组合频率成分,振幅只与幂级数中等于及 高于m次的各项系数有关。
5)所有组合频率都是成对出现的。 掌握这些规律很重要。 可以利用这些规律,根据不同的要求,选用具有适当特性的非线性元 件,或者选择合适的工作范围,以得到所需的频率成分,而尽量减弱 甚至消除不需要的频率成分。
第5章 非线性电路的一般的分析方法

三次谐波及组合频率: 1 22 , 1 22 ,21 2 ,21 2
b 的振幅均只与 b3 有关,而与 b0 、 2无关。 b b 直流成分均只与 b0 、 2有关,而与 b1、 3 无关。
二次谐波以及组合频率1 2 , 1 2 的振幅均只与 b2 有关, 而与 b1 、b3无关。
2 3
该幂级数各系数分别由下式确定,即:
b0 b 1 b2 b n f (U Q ) I 0 di u U Q g du 1 d 2i u U Q 2 du 2 1 d ni n! du n
i
Io
Q
0
UQ
u
u U Q
b0 I 0为静态工作点电流,b1 g是静态工作点处的电导, 即动态电阻r的倒数。
ex 1 x 若 则
i Is[
1 U Q U s cosst n ] n!U T
频率分析:
输入信号频率分量:直 流、s 输出信号频率分量: s,n=0,2, n 1,
2、幂级数分析法
将非线性电阻电路的输出输入特性用一个N阶幂级数近 似表示,借助幂级数的性质,实现对电路的解析分析。
四)、非线性元件的特征
1、特点(与线性电路比较) 非线性,不满足叠加定理,具有频率变换功能。 2、几个概念 A、伏安特性曲线 B、直流电阻 C、动态电阻或交流电阻
3、非线性元件的频率变换作用
非线性器件的频率变换作用
i k 2
1 2 V1m sin1 t V2m sin 2 t
n 1
可求得:ic I 00 I 0 n cosn1t [ g 0 g n cos n1t ]U m 2 cos2t
非线性电路特性及分析方法

iC
ic
gC
ICEO
uห้องสมุดไป่ตู้E
O
uCE
范围很大, 例:(以晶体管三极管 转移特性为例)当晶体 管的转移特性曲线运用 范围很大, :(以晶体管三极管 转移特性为例) 来近似, 如图示的 AOC ,可用 AB 和 BC 两直线段所构成的折线 来近似, ( i = 0 v B < V BZ ) 折线的数学表达式为: c 折线的数学表达式为: ic = g c ( v B − V BZ ) B > V BZ ) (v 式中, 截止电压; 跨导, 的斜率。 式中, V BZ-特性曲线折线化后的 截止电压; g c-跨导,即直线 BC 的斜率。 设基极输入端加入反向 直流偏置电压 − V BB 及余弦信号 Vbm cos ω t,则 基极输入电压为: 基极输入电压为: v B = −V BB + Vbm cos ω t 此时, 时三极管导通, 此时,只有 v B > V BZ 时三极管导通,其余时 间 截止, 变成余弦脉冲波形。 截止,即 ic变成余弦脉冲波形。电 流流通时间 对应的相角以 2θ c 表示, θ c简称导通角。 表示, 简称导通角。
3、折线法:大信号作用下 、折线法:
大信号作用下,所有实际的非线性元件几乎都会进入饱和或截止状态, 大信号作用下,所有实际的非线性元件几乎都会进入饱和或截止状态, 此时元件的非特性的突出表现是截止、导通、 此时元件的非特性的突出表现是截止、导通、饱和几种不同状态之间的 轮换,特性曲线上一些局部弯曲的非线性影响可忽略, 轮换,特性曲线上一些局部弯曲的非线性影响可忽略,元件的伏安特性 可用分段折线逼近(折线特性本质是一种开关特性) 可用分段折线逼近(折线特性本质是一种开关特性)
第5章 非线性电路特性及分析方法
ic
gC
ICEO
uห้องสมุดไป่ตู้E
O
uCE
范围很大, 例:(以晶体管三极管 转移特性为例)当晶体 管的转移特性曲线运用 范围很大, :(以晶体管三极管 转移特性为例) 来近似, 如图示的 AOC ,可用 AB 和 BC 两直线段所构成的折线 来近似, ( i = 0 v B < V BZ ) 折线的数学表达式为: c 折线的数学表达式为: ic = g c ( v B − V BZ ) B > V BZ ) (v 式中, 截止电压; 跨导, 的斜率。 式中, V BZ-特性曲线折线化后的 截止电压; g c-跨导,即直线 BC 的斜率。 设基极输入端加入反向 直流偏置电压 − V BB 及余弦信号 Vbm cos ω t,则 基极输入电压为: 基极输入电压为: v B = −V BB + Vbm cos ω t 此时, 时三极管导通, 此时,只有 v B > V BZ 时三极管导通,其余时 间 截止, 变成余弦脉冲波形。 截止,即 ic变成余弦脉冲波形。电 流流通时间 对应的相角以 2θ c 表示, θ c简称导通角。 表示, 简称导通角。
3、折线法:大信号作用下 、折线法:
大信号作用下,所有实际的非线性元件几乎都会进入饱和或截止状态, 大信号作用下,所有实际的非线性元件几乎都会进入饱和或截止状态, 此时元件的非特性的突出表现是截止、导通、 此时元件的非特性的突出表现是截止、导通、饱和几种不同状态之间的 轮换,特性曲线上一些局部弯曲的非线性影响可忽略, 轮换,特性曲线上一些局部弯曲的非线性影响可忽略,元件的伏安特性 可用分段折线逼近(折线特性本质是一种开关特性) 可用分段折线逼近(折线特性本质是一种开关特性)
第5章 非线性电路特性及分析方法
《非线性电路》课件

状态空间法
通过建立和求解状态方程,分析系统的动态 行为和稳定性。
05
非线性电路的仿真 技术
电路仿真软件介绍
Multisim
一款功能强大的电路仿真软件, 适用于模拟和数字电路的仿真, 特别适合非线性电路的仿真。
PSPICE
由MicroSim公司开发的一款电路 仿真软件,适用于模拟和混合信 号电路的仿真。
LTSpice
一款专门用于模拟电路仿真的软 件,具有强大的分析功能和直观 的用户界面。
仿真步骤与技巧
建立电路模型
根据非线性电路的原理图,在仿真软件中建立相应的电路模型。
设置仿真参数
根据需要,设置适当的仿真参数,如时间步长、仿真类型(稳态或瞬态)等。
运行仿真
设置好参数后,运行仿真,观察仿真结果。
分析仿真数据
04
非线性电路的稳定 性分析
稳定性定义
稳定性定义
一个电路在受到扰动后能够回到原来的平衡状态,则称该电路是 稳定的。
平衡状态
电路中各元件的电压、电流和功率达到一种相对静止的状态。
扰动
任何能使电路状态发生变化的外部作用,如电源电压波动、元件参 数变化等。
稳定性判据
1 2
劳斯稳定判据
通过计算系统的传递函数,确定系统稳定性的判 据。
非线性电路在各领域的应用前景
在通信领域,非线性电路可用于信号 处理、调制解调和光通信等方面,提 高通信系统的性能和稳定性。
在生物医学领域,非线性电路可用于 生理信号处理、医学影像和生物信息 等方面,为生物医学研究和临床应用 提供新的工具和方法。
在能源领域,非线性电路可用于电力 电子、电机控制和可再生能源转换等 方面,提高能源利用效率和系统稳定 性。
非线性电路分析法

1 dn f (v ) an n! dv n
1 n!
f
(n) (V0 )
v V0
实际运用中常常只取级数的若干项就够了。
5.3 非线性电路分析法 返回1 返回2 返回3
ib0Leabharlann 1 2b1V12m
1 2
b2V22m
直流 分量
基波 分量
谐波 分量
b1V1m
3 4
b3V13m
3 2
b3V1mV22m
c
5.3 非线性电路分析法
2. 折线分析法(broken line method) 信号较大时,所有实际的非线性元件几乎都会进入饱和或截止状态。此时,
元件的非线性特性的突出表现是截止、导通、饱和等几种不同状态之间的转换。
晶体 三极 管的 转移 特性 曲线 用折 线来 近似
折线分析法的适用场 合:输入信号足够大 (使非线性元件进入 饱和和截止状态)
c os21
2
t
3 4
b3V12mV2m
c os21
2
t
3 4
b3V1mV22m
c os1
2 2
t
3 4
b3V1mV22m
c os1
2 2
t
组合频率 分量
由于特性曲线的非线性,输出电流中产生了输入电压中不曾有的新的频
率成份:输入频率的谐波 21和
2,2
31
和
3
形;成的各种组合频率:
2
1 2 ,1 2 ,1 22 ,1 22 ,21 2 ,21 2
5.3 非线性电路分析法
直流 分量
n最高次数为3的多项式的频谱结构图
b0
b2 2
(V12m
非线性电路特性及分析方法

则产生电流: i k (v1 v2 ) 2 k (V1m sin 1t V2m sin 2 kV2m sin 2 2t 2kV1m sin 1t V2m sin 2t
2 2 2 1 cos21t 2 1 cos22t kV1m ( ) kV2m ( ) 2 2 2kV1mV2m cos(1 2 )t cos(1 2 )t ) 2 k 2 2 (V1m V2m ) kV1mV2m cos(1 2 )t kV1mV2m cos(1 2 )t 2 k k 2 2 V1m cos21t V2m cos22t 2 2 新产生的频率分量
非线性电路:含有非线性元件的电路即是。(以后各章
均讨论非线性电路,包括功放、振荡器、调制、解调等)
非线性电路的常用分析方法:图解法、解析法
5.2 非线性元件的特性
1、非线性元件的工作特性:非线性元件中有多种含义不同 的参数,且这些参数都随激励量的大小而变化。
例见非线性电阻器件,常用参数有直流电导、交流电导、平均电导。
平均电导:当非线性电阻器两端在静态直流电压的基础上又叠加幅度较 大的交变信号,对其不同的瞬时值,非线性电阻器的伏安特性曲线的斜 率是不同的,故引入平均电导的概念。 I g 1m Vm g 除与工作点 V 有关外,还随 v ( t) 幅度的不同而变化。 Q
2、非线性元件的频率变换作用
2 例:设非线性电阻的伏安特性曲线具有抛物线形状,即: i kv ,式中k为 常数。若在该元件上加入两个正弦电压:v V sin t , v V sin t 1 1 m 1 2 2 m 2
它是一周期函数,用傅 氏级数展开,可得频谱 成份: ic= I k cos k t
《非线性电路》PPT课件

24
4.5 晶体管混频器
1、电路分析
本振信号 v是0 (t一) 个大信号,使得晶 体管工作在非线性状态;但真正的信 号是小信号 ,v所s (以t) 图上 、 ab a、b a都b可 以看成线性。对于 而vs言(t), 晶体管工作在线性状态。
可见随着 v发0 (t生) 变化,各线段的斜 率(跨导)将随着 的频v0率(t)( )发生周0 期性的变化。因此晶体管对于输入信 号而言是一个时变线性器件。
1 2 1 2
vs ) S (t) vs ) S (t)
vi RLi1 R
rd
vs
S(t)
RL RL rd
vsm
cos
s
t
(
1 2
2
cos 0t
2
3
cos 30t
)
29
4.6 二极管混频器
1、平衡混频器
二极管混频器的输出信号:
vi
RL RL
rd
则可展开成泰勒级数:
i b0 b1 v V0 b2 v V0 2 b3 v V0 3
b0 f v vV0 I0
——工作点处的电流
b1
f v vV0
di dv
g ——工作点处的动态电导
vV0
8
2、非线性电路分析法
⑴ 幂级数分析法
分析步骤:
★ 确定特性曲线的近似表达式。——越精密,特性曲线的 工作范围越大,但级数的项数取得越多;
中iC只有频率为 的电i 流分量才是所需要的,称为中频电
流分量 : ii
ii
1 2
g1Vsm
cos(0
s )t
Iim
cos it
Iim
1 2
g1Vsm
4.5 晶体管混频器
1、电路分析
本振信号 v是0 (t一) 个大信号,使得晶 体管工作在非线性状态;但真正的信 号是小信号 ,v所s (以t) 图上 、 ab a、b a都b可 以看成线性。对于 而vs言(t), 晶体管工作在线性状态。
可见随着 v发0 (t生) 变化,各线段的斜 率(跨导)将随着 的频v0率(t)( )发生周0 期性的变化。因此晶体管对于输入信 号而言是一个时变线性器件。
1 2 1 2
vs ) S (t) vs ) S (t)
vi RLi1 R
rd
vs
S(t)
RL RL rd
vsm
cos
s
t
(
1 2
2
cos 0t
2
3
cos 30t
)
29
4.6 二极管混频器
1、平衡混频器
二极管混频器的输出信号:
vi
RL RL
rd
则可展开成泰勒级数:
i b0 b1 v V0 b2 v V0 2 b3 v V0 3
b0 f v vV0 I0
——工作点处的电流
b1
f v vV0
di dv
g ——工作点处的动态电导
vV0
8
2、非线性电路分析法
⑴ 幂级数分析法
分析步骤:
★ 确定特性曲线的近似表达式。——越精密,特性曲线的 工作范围越大,但级数的项数取得越多;
中iC只有频率为 的电i 流分量才是所需要的,称为中频电
流分量 : ii
ii
1 2
g1Vsm
cos(0
s )t
Iim
cos it
Iim
1 2
g1Vsm
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
举例一
设非线性元件的静态特性曲线用下列三次多项式来表示:
i b0 b1(u UQ ) b2 (u UQ )2 b3 (u UQ )3
加在该元件上的电压为:
u U Q U1m cos 1t U 2m cos 2t
求出通过元件的电流 i(t),再用三角公式将各项展开并整 理,得:
i
b0
1、工作点较高,可以当作线性电路来处理 用直线代替——线性电子线路,取前面的两项,可得:
i I 0 g1(u U Q )
2、工作点在曲线的弯曲部分 用抛物线代替——选取前面的三项,可得:
i I 0 g1(u U Q ) b2 (u U Q )2
如果输入信号的幅度很大,特性曲线的运用范围更宽,必 须取三次项或者更高次项来进行逼近。
第5章
非线性电路 时变参量电路
变频器
一、概述
一)、常用的无线电元件 1、线性元件 2、非线性元件 3、时变参量元件
二)、电子线路 1、线性电子线路 2、非线性电子线路 3、时变参量电路
三)、电子线路的分析方法
1、微分方程法 线性电子线路——常系数微分方程 非线性电子线路——非线性微分方程 时变参量电路——变系数微分方程
设非线性元件的特性函数为非线性方程i f (u) 若f (u)的各阶导数存在,则可展开成幂级数:
i a0 a1u a2u2 a3u3
若i
f
(u
)在静态工作点U
附近的各阶导数都存在,
Q
则可在U
附近展开成泰勒级数:
Q
i b0 b1(u UQ ) b2 (u UQ )2 b3 (u UQ )3
则
i
I
s
U [
Q
UT
Us UT
cosst
1 2UT
U
2 Q
2UQU s
cos s t
U
2 s
1
cos 2
2st
1 n!UT
UQ U s cosst n ]
频率分析:
输入信号频率分量:直流、s 输出信号频率分量:ns,n=0,1,2,
2、幂级数分析法
将非线性电阻电路的输出输入特性用一个N阶幂级数近 似表示,借助幂级数的性质,实现对电路的解析分析。
该幂级数各系数分别由下式确定,即:
i
Io Q
0 UQ u
b0 f (U Q ) I0
b1
di du
u UQ g
b2
1 2
d 2i du 2
u U Q
bn
1 d ni n! du n
u U Q
b0 I0为静态工作点电流,b1 g是静态工作点处的电导, 即动态电阻r的倒数。
工作点的设置对幂级数的等效的处理
成分与 b0 、b2 都有关,而二次谐波以及组合频率为
1 2 ,1 2
的各成分其振幅却只与 b2 有关,而与 b0 无关。
(5)所有组合频率都是成对出现的。例如,有 1 2 就一 定有1 2 ;有 21 2 就一定有 21 2 等。
2、工程近似分析法 图解法:
解析法:
四)、非线性元件的特征
1、特点(与线性电路比较) 非线性,不满足叠加定理,具有频率变换功能。
2、几个概念 A、伏安特性曲线 B、直流电阻 C、动态电阻或交流电阻 3、非线性元件的频率变换作用
非线性器件的频率变换作用
i k 2 1 2 V1msin1t V2msin 2 t i kV12msin 21t kV22msin 2 2 t 2kV1m V2msin1tsin 2 t
1 2
b2V12m
1 2
b2V22m
(b1V1m
3 4
b3V13m
3 2
b3V1mV22m ) cos1t
(b1V2m
3 4
b3V23m
3 2
b3V12mV2m ) cos2t
1 2
b2V12m
cos
21t
1 2
22m
cos
2 2t
出现的频率分量为 :
1、2、21、 22、 31、32、1 2、 21 2、1 22
五)、非线性分析方法
指数函数分析法、幂级数分析法、折线分析法
1、指数函数分析法
晶体管的正向伏安特性为:
qu
i Is (e kT
u
1) Is (eUT
1)
i
指数特性
Q 实际特性
UQ
0
u
指数函数法适于小信号工作状态的二极管特性分析。
数学分析
ex 1 x 1 x2 1 xn
2!
n!
若 u UQ U s cosst
三次谐波及组合频率: 1 22 ,1 22 ,21 2 ,21 2
的振幅均只与 b3 有关,而与 b0 、b2无关。 直流成分均只与 b0 、b2有关,而与 b1、b3无关。 二次谐波以及组合频率1 2,1 2 的振幅均只与 b2 有关,
而与 b1 、b3无关。
(4)m次谐波(直流成分可视为零次,基波可视为一次) 以及系数之和等于m的各组合频率成分。其振幅只与幂级数 中等于及高于m次的各项系数有关。例如,在上式中,直流
b2V1mV2m cos(1 2 )t b2V1mV2m cos(1 2 )t
1 4
b3V13m
cos 31t
1 4
b3V23m
cos 32t
3 4
b3V12mV2m
cos(21
2 )t
3 4
b3V12mV2m
cos(21
2 )t
3 4
b3V1mV22m
cos(1
22 )t
3 4
b3V1mV22m
i kV12msin 21t kV22msin 2 2 t 2kV1m V2msin1tsin 2 t
上式说明,电流中不仅含有输入信号的二次谐波,还出现 了输入信号频率的组合频率分量(和频与差频)。
4、非线性电路不满足叠加定理 叠加定理是线性电路分析的基础 非线性电路不满足叠加定理是一个非常重要的概念。
组合频率为:p1 q2,且p q n
(3)电流中的直流成分、偶次谐波及系数之和(p q)为偶数的 各种组合频率成分,其振幅均只与幂级数的偶次项系数(包括 常数项)有关,与奇次项系数无关;同样,奇次谐波及其系数 之和为奇数的组合频率的振幅只与幂级数的奇次项系数有关, 与偶次项系数无关。
例如,在上式中,基波振幅均 b1与 b3有关,而与b0 、b2无关。
cos(1
22 )t
可以看出规律:
(1)由于特性曲线的非线性,输出信号电流中产生了输入电压
中不曾有的新频率成分:输入频率的谐波21、22,31、32;输
入频率及其谐波组成的各种组合频率:
1 2,1 22,21 2
(2)由于这里的幂多项式最高次取的是3,故电流中谐波的最高 次数为3,组合频率系数和也不超过3。若幂多项式最高次数为n, 则电流中谐波次数最高为n;