2021年高二上学期期末考试数学理试卷 含答案
四川省绵阳市安家中学2021-2022学年高二数学理上学期期末试卷含解析

四川省绵阳市安家中学2021-2022学年高二数学理上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知某程序框图如图所示,则执行该程序后输出的结果是()2 1参考答案:A2. 若函数f(x)在R上可导,且f(x)>f′(x),则当a>b时,下列不等式成立的是()A.e a f(a)>e b f(b)B.e b f(a)>e a f(b)C.e b f(b)>e a f(a)D.e a f (b)>e b f(a)参考答案:D【考点】利用导数研究函数的单调性.【分析】构造函数g(x)=,求导g′(x)=;从而可判断g(x)=在R上是减函数,从而判断.【解答】解:令g(x)=,则g′(x)=;∵f(x)>f′(x),∴<0,∴g(x)=在R上是减函数,又∵a>b,∴<;故e a f(b)>e b f(a),故选:D.3. 设抛物线的顶点在原点,准线方程为x= -2,则抛物线的方程是A. B.C. D.参考答案:B4. 设m>1,在约束条件下,目标函数z=x+my的最大值小于2,则m的取值范围为() A.B.C.(1,3) D.(3,+∞)参考答案:A5. 下列四个命题中,正确的是().已知函数,则;.设回归直线方程为,当变量增加一个单位时,平均增加个单位;.已知服从正态分布,,且,则.对于命题:,使得,则:,均有参考答案:A略6. 若函数f (x)=+x,则=A. B.C. D.参考答案:C【分析】利用微积分基本定理即可得到结果.【详解】∵f (x)=+x,∴故选:C【点睛】本题考查微积分基本定理,考查函数的表达式,考查运算能力.7. 古希腊亚历山大时期的数学家怕普斯(Pappus, 约300~约350)在《数学汇编》第3卷中记载着一个定理:“如果同一平面内的一个闭合图形的内部与一条直线不相交,那么该闭合图形围绕这条直线旋转一周所得到的旋转体的体积等于闭合图形面积乘以重心旋转所得周长的积”如图,半圆O的直径AB=6cm,点D是该半圆弧的中点,那么运用帕普斯的上述定理可以求得,半圆弧与直径所围成的半圆面(阴影部分个含边界)的重心G位于对称轴OD上,且满足OG= ( )A.2cm B. C. D.参考答案:B以为轴,旋转题设半圆所得的球的体积为。
2021-2022学年安徽省滁州市定远县高二(普通班)上学期期末考试数学(理)试题 解析版

OP AB(O为原点)AC,EC⊥平面ABCD,AB【解析】解法一:由解得71141767482141314722S a d S a d ⨯⎧=+=⎪⎪⎨⨯⎪=+=⎪⎩1408492449a d ⎧=⎪⎪⎨⎪=-⎪⎩所以;21408212024217249249S ⨯⎛⎫=⨯+⨯-= ⎪⎝⎭解法二:,,7127S a a a =++⋅⋅⋅+1478914777S S a a a S d -=++⋅⋅⋅+=+⨯,所以,,成等差数21141516217714S S a a a S d -=++⋅⋅⋅+=+⨯7S 147S S -2114S S -列,公差为,由等差中项定义得,即49d ()147721142S S S S S -=+-,解得.故选:B()21272484872S ⨯-=+-2172S =6.【答案】A【解析】因为PF ⊥x 轴,所以P .又OP ∥AB ,所以,即b =c .2b b a a =于是b 2=c 2,即a 2=2c 2.所以.22c e a ==7.【答案】C【解析】因为△ABF 2的周长为8,所以|AB |+|AF 2|+|BF 2|=8⇒|AF 1|+|BF 1|+|AF 2|+|BF 2|=8⇒(|AF 1|+|AF 2|)+(|BF 1|+|BF 2|)=8,由椭圆的定义可知,|AF 1|+|AF 2|=2a ,|BF 1|+|BF 2|=2a ,所以2a +2a =8⇒a =2,由题意可得,23ab ππ=解得,3b =因为椭圆的焦点在x 轴上,所以C 的标准方程为.22143x y +=8.【答案】C【解析】设点,由题意知,(),P x y 222122222223y y y y b k k a y x a x a x a ab ⋅=⋅====-+-所以其渐近线方程为,故选C.3y x =±9.【答案】D【解析】由得,22214b e a =+=3ba =则双曲线的渐近线方程为,3y x =±即,抛物线的焦点坐标为,30x y ±=2C 0,2p ⎛⎫⎪⎝⎭则有,解得,22p =8p =故抛物线C 2的方程为x 2=16y .10.【答案】A11.【答案】C【解析】∵|AB |∶|BF 2|∶|AF 2|=3∶4∶5,不妨令|AB |=3,|BF 2|=4,|AF 2|=5,∵|AB |2+|BF 2|2=|AF 2|2,∴∠ABF 2=90°,又由双曲线的定义得|BF 1|-|BF 2|=2a ,|AF 2|-|AF 1|=2a ,∴|AF 1|+3-4=5-|AF 1|,∴|AF 1|=3,∴2a =|AF 2|-|AF 1|=2,∴a =1,|BF 1|=6.在Rt △BF 1F 2中,|F 1F 2|2=|BF 1|2+|BF 2|2=36+16=52,又|F 1F 2|2=4c 2,∴4c 2=52,13,13c e ∴=∴=12.【答案】D【解析】设点P (x 0,y 0),由于点P 是抛物线x 2=8y 上任意一点,则x =8y 0(y 0≥0),∵点A (0,3),则|PA |2=x +(y 0-3)2=8y 0+(y 0-3)2=y +2y 0+9,由于点Q 是圆x 2+(y -2)2=1上任意一点,要使的值最小,∴2||PA PQ则的值要最大,即点到圆心的距离加上圆的半径为的最大值,PQP PQ则,()()222max 00000||218213PQ x y y y y =+-+=+-+=+.()()()222000000003431229||1234333y y y y PA y PQ y y y +-++++∴≥==++-+++,经检验满足条件,()()()000012123234333y y y y ++≥+⋅=++ 的最小值为.2||PA PQ∴434-【解析】如图,抛物线焦点为联立消去y 得x 2-2px -p 2=0,∴x 1=(1+)p ,x 2=(1-)p .2,22,p y x x py ⎧=+⎪⎨⎪=⎩22∴|AD |+|BC |=y 1+y 2=x 1++x 2+=2p +p =3p ,|CD |=|x 1-x 2|=2p .2p 2p2由S 梯形ABCD =(|AD |+|BC |)·|CD |=·3p ·2p =12,解得p 2=4,∴p =±2.121222∵p >0,∴p =2.17.【答案】(1)方程m :(a +2)x +(1-2a )y +4-3a =0可化为a (x -2y -3)+(2x +y +4)=0,要使a 有无穷多个解,必须有解得230,240,x y x y --=⎧⎨++=⎩1,2.x y =-⎧⎨=-⎩无论a 取何值,(-1,-2)都满足方程,故直线m 过定点M (-1,-2).(2)设直线n :,1x ya b +=则解得121,14,2a b ab --⎧+=⎪⎪⎨⎪=⎪⎩2,4,a b =-⎧⎨=-⎩故直线n :,即2x +y +4=0.124x y+=--所以当直线n 为2x +y +4=0时,三角形的面积为4.18.【答案】(1)设A (x 1,y 1),B (x 2,y 2),由得4x 2+4(m -1)x +m 2=0,22,4,y x m y x =+⎧⎨=⎩由根与系数的关系,得x 1+x 2=1-m ,x 1·x 2=,24m ∴|AB |=|x 1-x 2|=21k +()22121214k x x x x ++-==,222+()22144m m --⨯()512m ⨯-∵|AB |=3,∴=3,解得m =-4.5()512m -5(2)设P (a ,0),P 到直线AB 的距离为d ,则d ==,()2220421a --+-225a -又S △ABP =|AB |·d ,则d =,∴=,122ABP S AB ⋅ 225a -2935⨯∴|a -2|=3,∴a =5或a =-1,故点P 的坐标为(5,0)或(-1,0).19.【解析】(1)由题意得S n =n 2+2n ,当n >1时,a n =S n -S n -1=(n 2+2n )-[(n -1)2+2(n -1)]=2n +1;当n =1时,a 1=S 1=3,满足上式,所以a n =2n +1(n ∈N *).(2)由题意得b n =3n -1,又由(1)可知a n =2n +1,故a n b n =(2n +1)3n -1,所以T n =3×30+5×31+7×32+…+(2n +1)×3n -1,3T n =3×31+5×32+7×33+…+(2n +1)×3n ,两式相减,得-2T n =3+2(31+32+33+…+3n -1)-(2n +1)×3n=3+2×-(2n +1)×3n ,-13(1-3)1-3n =-2n ·3n所以T n =n ·3n .20.【答案】解(1)设点F (c ,0),因为直线AF 的斜率为,A (0,-2),233所以,.2233c=3c =又因为,b 2=a 2-c 2,32c a=解得a =2,b =1,所以椭圆E 的方程为.2214x y +=(2)设P (x 1,y 1),Q (x 2,y 2),由题意可知直线l 的斜率存在,设直线l 的方程为y =kx -2,联立消去得,221,42,x y y kx ⎧+=⎪⎨⎪=-⎩y ()221416120k x kx +-+=当,即时,.()2Δ16430k =->234k >1212221612,1414k x x x x k k +==++所以()22121214PQ k x x x x =++-∴·=0,∴AC⊥BF.=2(a n +a n -1)-1,=2(a n +1+a n )-1,2-1n c 2n c 两式相减得,=2[(a n +1-a n )+(a n -a n -1)]=2(c n +c n -1),得c n -c n -22-1n n c c -1=2(n ≥2).故{a n +1-a n }是等差数列.(2)因为(a 2-a 1)2=2(a 2+a 1)-1,a 1=1,且a 2>a 1,所以a 2=4,故c 1=a 2-a 1=3,所以c n =c 1+(n -1)×2=2n +1,n ∈N *,所以a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=(2n -1)+(2n -3)+…+3+1=n 2.故b n =-,222211(1)n n n n +=+21(1)n +b 1+b 2+…+b n =+…+-.222211111223-+-21n 221(2)(1)(1)n n n n +=++。
2020-2021学年河南省平顶山市高二上学期期末考试数学(理科)试卷及答案

2020-2021学年河南省平顶山市高二上学期期末考试数学(理科)试卷及答案一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{}03M x x =<≤,321xN x x ⎧⎫=≤⎨⎬-⎩⎭,则M N ⋂=()A.(0,1]B.(1,2)C.(0,2]D.(0,1)2.已知{}n a 是公差为2的等差数列,35a =,则1a =()A.10B.7C.6D.13.抛物线22y x =的焦点到准线的距离为()A.18 B.14 C.12 D.14.已知双曲线22221(0,0)x y a b a b -=>>的一条渐近线的倾斜角为30°,且焦距为4,则双曲线的方程为()A.221x y -= B.2212y x -= C.2213x y -= D.2213y x -=5.在正方体1111ABCD A B C D -中,点E 是线段1CC 的中点,则1A E =()A.112AB AD AA ++ B.112AB AD AA +- C.112AB AD AA -+D.112AB AD AA +- 6.设直线l 的方向向量是a ,平面α的法向量是n ,则“l //α”是“a n ⊥ ”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.已知0a >,0b >,2a b +=,则2aa b +()A.有最小值2B.有最大值2C.有最小值3D.有最大值38.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,若3a =,5b =,2cos c a A =,则cos A =() A.13 B.24 C.33 D.639.数列{}n a 满足11a =,23a =,且11202()n n n a a a n +-++=≥,则{}n a 的前2020项和为()A.8080B.4040C.-4040D.010.已知双曲线22:143x y C -=的两个焦点分别为1F ,2F ,双曲线C 上一点P 在x 轴上的射影为Q ,且1212PQ F F PF PF ⋅=⋅,则12PF PF +=()A.B. C.10D.2011.在直三棱柱111ABC A B C -中,底面是等腰直角三角形,90ACB ∠=︒,侧棱13AA =,点D ,E 分别是1CC ,1A B 的中点,点E 在平面ABD 上的射影是ABD △的重心G ,则点1A 到平面ABD 的距离为()C.23312.已知抛物线22(0)y px p =>的焦点为F ,过点F 的直线分别交抛物线于A ,B 两点,若4AF =,1BF =,则p =()A.165 B.2C.85D.1二、填空题:本题共4小题,每小题5分,共20分.13.已知变量x ,y 满足约束条件3,3,50,y x x y ≤⎧⎪≤⎨⎪+-≥⎩则23z x y =-的最大值为______.14.已知等比数列{}n a 的前n 项和13n n S λ+=+,则1a λ+=______.15.点P 为椭圆C 上一动点,过点P 作以椭圆短轴为直径的圆的两条切线,切点分别为M ,N ,若60MPN ∠=︒,则椭圆C 的离心率的取值范围是______.16.已知平面四边形ABCD 为凸四边形(四个内角均小于180°),且1AB =,4BC =,5CD =,2DA =,则平面四边形ABCD 面积的最大值为______.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.17.设命题:p 方程22137x y a a +=-+表示双曲线;命题:q 不等式10a x -<对01x <≤恒成立.(Ⅰ)若命题p q ∨为真,求实数a 的取值范围;(Ⅱ)若命题p q ∨为真,命题p q ∧为假,求实数a 的取值范围.18.已知等比数列{}n a 的公比不为1,且11a =,32a 是23a 与4a 的等差中项.(Ⅰ)求{}n a 的通项公式;(Ⅱ)若数列{}n b 满足()()1211n n n n a b a a +=++,求数列{}n b 的前n 项和n T .19.如图所示,在多面体BC ADE -中,ADE △为正三角形,平面ABCD ⊥平面ADE ,且BC //AD ,60BAD ∠=︒,30CDA ∠=︒,2AB BC ==.(Ⅰ)求证:AD CE ⊥;(Ⅱ)求直线CD 与平面BCE 所成角的正弦值.20.在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,cossin 2A b a B =.(Ⅰ)求A ;(Ⅱ)若D 在边BC 上,AD 是BAC ∠的角平分线,3AD =,求ABC △面积的最小值.21.某厂家拟进行某产品的促销活动,根据市场情况,该产品的月销量(即月产量)m 万件与月促销费用x 万元(0)x ≥满足102k m x =-+(k 为常数),如果不搞促销活动,则该产品的月销量是2万件.已知生产该产品每月固定投入为8万元,每生产一万件该产品需要再投入5万元,厂家将每件产品的销售价格定为9.66m m+元,设该产品的月利润为y 万元.注:利润=销售收入-生产投入-促销费用.(Ⅰ)将y 表示为x 的函数;(Ⅱ)月促销费用为多少万元时,该产品的月利润最大?22.已知椭圆2222:1(0)x y C a b a b+=>>的左、右两个焦点分别是1F ,2F ,焦距为2,点M 在椭圆上且满足212MF F F ⊥,123MF MF =.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)点O 为坐标原点,直线l 与椭圆C 交于A ,B 两点,且OA OB ⊥,证明2211||||OA OB +为定值,并求出该定值.数学试题(理科)参考答案1-10DDBCB ACDBB11-12AC 13.014.315.,12⎫⎪⎪⎣⎭16.17.解析(Ⅰ)当命题p 为真时,由题意()()370a a -+<,解得73a -<<.当命题q 为真时,由题意可得min1a x ⎫⎛< ⎪⎝⎭,由此可得1a <.若命题p q ∨为真命题,则73a -<<或1a <,即(,3)a ∈-∞.(Ⅱ)命题p q ∨为真,命题p q ∧为假,则p ,q 一真一假.p 真q 假时,73,1,a a -<<⎧⎨≥⎩13a ∴≤<,p 假q 真时,731,a a , a ≤-≥⎧⎨<⎩或7a ∴≤-,综上,(,7][1,3)a ∈-∞-⋃.18.解(Ⅰ)设数列{}n a 的公比为q ,由条件知32443a a a =+,即2311143a q a q a q =+,整理可得2430q q -+=,解得3q =(1q =舍去),所以11133n n n a a --=⋅=.(Ⅱ)()()()()111122*********3131n n n n n n n n n a b a a ---+⋅===-++++++,所以01121111111313131313131n n n T -⎫⎫⎫⎛⎛⎛=-+-+⋅⋅⋅+- ⎪ ⎪ ⎪++++++⎝⎝⎝⎭⎭⎭011113131231n n =-=-+++.19.解(Ⅰ)如图,过B 作BF AD ⊥于F ,过C 作CG AD ⊥于G ,连接GE .可得BF //CG ,又因为BC //AD ,在Rt ABF △中,因为60BAD ∠=︒,2AB =,所以1AF =,BF =,所以BF CG ==,2FG BC ==,在Rt CDG △中,30CDG ∠=︒,3GD ==.所以AG GD =,因为ADE △为正三角形,所以GE AD ⊥,因为CG EG G ⋂=,所以AD ⊥平面CGE ,所以AD CE ⊥.(Ⅱ)由(Ⅰ)可知GE ,GD ,GC 两两互相垂直,以G 为坐标原点,GE ,GD ,GC所在直线为x ,y ,z 轴建立空间坐标系,如图所示.则(C,(0,B -,(0,3,0)D,()E ,所以(CE = ,(0,2,0)CB =-,(0,3,CD = ,设平面BCE 的法向量为(,,)n x y z = ,所以0,20,y ⎧-=⎪⎨-=⎪⎩取1x =,可得(1,0,3)n = ,所以cos,20||||CD nCD nCD n⋅〈〉===-,所以直线CD与平面BCE所成角的正弦值为20.20.解(Ⅰ)由正弦定理及条件得sin cos sin sin2AB A B=,因为(0,)Bπ∈,sin0B≠,所以cos sin2sin cos222A A AA==,又(0,)Aπ∈,cos02A≠,所以1sin22A=,从而3Aπ=.(Ⅱ)因为ABC△的面积等于ABD△和ACD△的面积之和,得111sin sin sin22222BAC BACbc BAC c AD b AD∠∠∠=⋅+⋅,又因为3BACπ∠=,233AD=,所以32()bc b c=+,所以32()bc b c=+≥,得169bc≥(当且仅当43b c==时等号成立)所以ABC△的面积1343sin249S bc A bc==≥.所以ABC△面积的最小值为439.21.解(Ⅰ)由题意知当0x=时,2m=,则2102k=-,解得16k=,16102mx=-+.利润9.6685 1.6my m m x m xm+=⨯---=+-,又因为16102mx=-+,所以161.611.62y m x xx=+-=--+,[0,)x∈+∞.(Ⅱ)由(Ⅰ)知1613.6(2)2y xx=--++,因为0x≥时,22x+≥,因为16(2)82xx++≥=+,当且仅当2x=时等号成立.所以13.68 5.6y≤-=,故月促销费用为2万元时,该产品的月利润最大,最大为5.6万元.22.解(Ⅰ)依题意1222F F c ==,所以1c =.由123MF MF =,122MF MF a +=,得132MF a =,212MF a =,于是122F F ====,所以a =,所以2221b a c =-=,因此椭圆C 的方程为2212x y +=.(Ⅱ)当直线l 的斜率存在时,设直线:AB y kx m =+,()11,A x y ,()22,B x y ,由2222,x y y kx m⎧+=⎨=+⎩消去y 得()222124220k x kmx m +++-=,由题意,0∆>,则12221224,1222,12km x x k m x x k -⎧+=⎪⎪+⎨-⎪=⎪+⎩因为OA OB ⊥,所以12120x x y y +=,即()()12120x x kx m kx m +++=,整理得()22321m k =+.而22222222211||||||||||||||||||OA OB AB OA OB OA OB OA OB ++==,设h 为原点到直线l 的距离,则OA OB AB h =⋅,所以222111||||OA OB h+=,而h =22221113||||2k OA OB m ++==.当直线l 的斜率不存在时,设()11,A x y ,则有1OA k =±,不妨设1OA k =,则11x y =,代入椭圆方程得2123x =,所以224||||3OA OB ==,所以22113||||2OA OB +=.综上22113||||2OA OB +=.。
天津微山路中学2021年高二数学理上学期期末试卷含解析

天津微山路中学2021年高二数学理上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 如图,已知椭圆C的中心为原点O,F(﹣2,0)为C的左焦点,P为C上一点,满足|OP|=|OF|且|PF|=4,则椭圆C的方程为()A. +=1 B. +=1C. +=1 D. +=1参考答案:B【考点】K4:椭圆的简单性质.【分析】第一步:设椭圆的标准方程为,右焦点为F′,由|OP|=|OF|及椭圆的对称性知,△PFF′为直角三角形;第二步:由勾股定理,得|PF′|;第三步:由椭圆的定义,得a2;第四步:由b2=a2﹣c2,得b2;第五步:根据椭圆标准方程的形式,直接写出椭圆的方程.【解答】解:设椭圆标准方程为,焦距为2c,右焦点为F′,连接PF′,如右图所示.因为F(﹣2,0)为C的左焦点,所以c=2.由|OP|=|OF|=|OF′|知,∠PFF′=∠FPO,∠OF′P=∠OPF′,所以∠PFF′+∠OF′P=∠FPO+∠OPF′,由∠PFF′+∠OF′P+∠FPO+∠OPF′=180°知,∠FPO+∠OPF′=90°,即PF⊥PF′.在Rt△PFF′中,由勾股定理,得|PF′|=,由椭圆定义,得|PF|+|PF′|=2a=4+8=12,从而a=6,得a2=36,于是,所以椭圆的方程为.故选B.2. 已知函数满足,且是偶函数,当时,,若在区间内,函数有4个零点,则实数的取值范围是A. B. C. D.参考答案:C略3. 在△ABC中,AB=5,BC=7,AC=8,则的值为( )A.79 B.69C.5 D.-5参考答案:D4. 若的图象是中心对称图形,则a=()A. 4B.C.2 D.参考答案:左侧的一段抛物线方程为f(x)=(x+a)(a+4-2x),对称轴为x=,中间一条线段的方程为 f(x)=(x+a)|a-x+x-4|=(x+a)?|a-4|,线段中点的横坐标:,右侧的一段抛物线方程为f(x)=(x+a)(2x-4-a),对称轴为x=.令=,解得a=.故选B.考点:1.绝对值的函数;2.函数图象的对称性应用.5. 在某次测量中得到的A样本数据如下:42,43,46,52,42,50,若B样本数据恰好是A 样本数据每个都减5后所得数据,则A、B两样本的下列数字特征对应相同的是A. 平均数B. 标准差C. 众数D. 中位数参考答案:B6. 若复数(i为虚数单位)是纯虚数,则实数a的值是()A. -1和1B. 1C. -1D. 0参考答案:B【分析】根据纯虚数概念,即可求得的值.【详解】因为复数是纯虚数所以实部为0,即解得又因为纯虚数,即所以所以选B【点睛】本题考查了复数的基本概念,纯虚数的定义,属于基础题。
哈尔滨市第九中学2020-2021学年高二上学期期末考试理科数学试题-含答案

哈尔滨市第九中学2020--2021学年度.上学期期末学业阶段性评价考试高二学年数学学科(理)试卷(考试时间:120分钟满分:150分共2页第I 卷(选择题共60分)一、选择题(本大题共12小题,每小题5分,每小题给出的四个选项中,只有一项符合题目要求)1.过点M(-4,3)和N(-2,1)的直线方程是A.x -y+3=0B.x+y+1=0C.x -y -1=0D.x+y -3=02.双曲线221169y x -=的虚半轴长是 A.3 B.4 C.6 D.83.直线x+y=0被圆22|6240x y x y +-++=截得的弦长等于A.4B.2 .C .D 4.唐代诗人李颀的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河."诗中隐含着一个有趣的数学问题--“将军饮马”问题,即将军在观望烽火之后从山脚下某处出发,先到河边饮马后再回军营,怎样走才能使总路程最短?在平面直角坐标系中,设军营所在区域为221,x y +≤若将军从点A(4,-3)处出发,河岸线所在直线方程为x+y=4,并假定将军只要到达军营所在区域即回到军营,则“将军饮马"的最短总路程为A.8B.7C.6D.55.已知抛物线2:4C y x =的焦点为F,过点F 的直线与抛物线交于A,B 两点,满足|AB|=6,则线段AB 的中点的横坐标为A.2B.4C.5D.66.直线kx -y+2k+1=0与x+2y -4=0的交点在第四象限,则k 的取值范围为A.(-6,-2) 1.(,0)6B - 11.(,)26C -- 11.(,)62D -- 7.设12,F F 分别为双曲线22134x y -=的左,右焦点,点P 为双曲线上的一点.若12120,F PF ︒∠=则点P 到x 轴的距离为.A .B .C .D 8.已知点A(-2,3)在抛物线C 2:2y px =的准线上,过点A 的直线与C 在第一象限相切于点B,记C 的焦点为F,则直线BF 的斜率为1.2A2.3B3.4C4.3D 9.已知点(x,y)满足:221,,0x y x y +=≥,则x+y 的取值范围是.[A B.[-1,1] .C .D10.设双曲线221916x y -=的右顶点为A,右焦点为F,过点F 平行于双曲线的一条渐近线的直线与双曲线交于点B,则△AFB 的面积为32.15A 34.15B 17.5C 19.5D 11.已知椭圆22221(0)x y a b a b+=>>上一点A 关于原点的对称点为点B,F 为其右焦点,若AF ⊥BF,设∠ABF=α,且[,]64ππα∈则该椭圆的离心率e 的取值范围是.A .1]B .C .D12.如图,,AB 、CD 是底面圆O 的两条互相垂直的直径,E 是母线PB 的中点,已知过CD 与E 的平面与圆锥侧面的交线是以E 为顶点的抛物线的一部分,则该抛物线的焦点到圆锥顶点P 的距离等于1.2A B.1.C.D 第II 卷(非选择题共90分)二、填空题(本大题共4小题,每小题5分)13.圆222200x y x y ++--=与圆2225x y +=相交所得的公共弦所在直线方程为___.14.若三个点(-2,1),(-2,3),(2,-1)中恰有两个点在双曲线222:1(0)x C y a a-=>上,则双曲线C 的渐近线方程为___. 15.椭圆221123x y +=的焦点分别是12,F F 点P 在椭圆上,如果线段1PF 的中点在y 轴上,那么1||PF 是2||PF 的___倍.16.过抛物线2:2(0)C y px p =>的焦点F 的直线l 与C 相交于A,B 两点,且A,B 两点在准线上的射影分别为M,N ,,,MFN BFN AFM MFN S S S S λμ∆∆∆==则λμ=___. 三、解答题(解答应写出文字说明,证明过程或演算步骤)17.(本题满分10分)在①圆经过C(3,4),②圆心在直线x+y -2=0上,③圆截y 轴所得弦长为8且圆心E 的坐标为整数;这三个条件中任选一个,补充在下面的问题中,进行求解.已知圆E 经过点A(-1,2),B(6,3)且___;(1)求圆E 的方程;(2)求以(2,1)为中点的弦所在的直线方程.18.(本题满分12分)已知抛物线C:22(0)y px p =>,焦点为F,准线为1,抛物线C 上一点M 的横坐标为3,且点M 到焦点的距离为4.(1)求抛物线的方程;(2)设过点P(6,0)的直线'l 与抛物线交于A,B 两点,若以AB 为直径的圆过点F,求直线'l 的方程.19.(本题满分12分)在平面直角坐标系xOy 中,直线l的参数方程为12x y t ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数).以O 为极点,x 轴的正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为ρ=2acosθ(a>0),且曲线C 与直线l 有且仅有一个公共点.(1)求a;(2)设A,B 为曲线C.上的两点,且,3AOB π∠=求|OA|+|OB|的最大值.20.(本题满分12分)在平面直角坐标系xOy 中,曲线1C 的参数方程为1cos ,sin .x t y t αα=+⎧⎨=⎩(t 为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2:4cos .C ρθ=(1)求曲线2C 的直角坐标方程;(2)若点A(1,0),且1C 和2C 的交点分别为点M,N,求11||||AM AN +的取值范围.21.(本题满分12分)已知椭圆2222:1(0)x y C a b a b+=>>的焦点为12(F F 且过点1).2 (1)求椭圆C 的方程;(2)设椭圆的上顶点为B,过点(-2,-1)作直线交椭圆于M,N 两点,记直线MB,NB 的斜率分别为,,MB NB k k 试判断MB NB k k +是否为定值?若为定值,求出该定值;若不是定值,说明理由.22.(本题满分12分)已知点F 是椭圆2222:1(0)x y C a b a b+=>>的右焦点,过点F 的直线l 交椭圆于M,N 两点,当直线l 过C 的下顶点时,l当直线l垂直于C的长轴时,△OMN的面积为3 . 2(1)求椭圆C的标准方程;(2)当|MF|=2|FN|时,求直线l的方程;(3)若直线l上存在点P满足|PM|,|PF|,|PN|成等比数列,且点P在椭圆外,证明:点P在定直线上.。
安徽省淮北市第一中学20212021学年高二数学上学期期末考试试题理(含解析)

〔1〕求角 的大小;
〔2〕假设 , , 为 的中点,求 的长.
【答案】〔1〕 ;〔2〕 .
【解析】试题分析:〔1〕由,利用正弦定理可得 a2= b2+ c2-2b,再利用余弦定理即可得出cosA,结合A的范围即可得解A的值.
〔2〕△ABC中,先由正弦定理求得AC的值,再由余弦定理求得AB的值,△ABD中,由余弦定理求得BD的值.
∴函数 在 上单调递增.
①当 时, ,不等式 可化为 ,
∴ ;
②当 时, ,,不等式 可化为 ,
∴ .
综上可得不等式的解集为 .
答案:
...........................
三、解答题 〔本大题共6小题,共70分.解允许写出文字说明、证明进程或演算步骤.〕
17. 等比数列 的各项均为正数,且 .
∵ ,
∴ ,
整理得 ,
∵ ,
∴ .
∴ ,
∴当 时, .
故 最大,且 .选B.
点睛:求等差数列前n项和最值的常常利用方式:
①利用等差数列的单调性,求出其正负转折项,即可求得和的最值;
②将等差数列的前n项和 (A、B为常数)看做关于n的二次函数,按照二次函数的性质求最值.
9. 如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,那么该多面体的外表积为〔 〕
2021-2021学年上学期高二年级期末考试
数学〔理科〕试题
第一卷〔共60分〕
一、选择题:本大题共12个小题,每题5分,共60分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的.
1. 集合 , ,那么〔 〕
A. B. C. D.
【答案】A
2021-2022年高二上学期期末考试数学(理)含答案

2021-2022年高二上学期期末考试数学(理)含答案说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号,不能答在试题卷上.一、本题共20小题,每小题6分,共120分,在每小题给出的四个选项中选出一个符合题目要求的选项.1、不在.. < 6 表示的平面区域内的一个点是A.(0,0)B.(1,1)C.(0,2)D. (2,0)2、已知△ABC的三内角A,B,C成等差数列,且AB=1,BC=4,则该三角形面积为A. B.2 C.2 D.43、设命题甲:的解集是实数集;命题乙:,则命题甲是命题乙成立的A . 充分不必要条件 B. 充要条件C. 必要不充分条件D. 既非充分又非必要条件4、与圆及圆都外切的动圆的圆心在A. 一个圆上B. 一个椭圆上C. 双曲线的一支上D. 一条抛物线上5、已知为等比数列,是它的前项和。
若,且与2的等差中项为,则等于A. 31B. 32C. 33D. 346、如图,在平行六面体中,底面是边长为2的正方形,若,且,则的长为A .B .C .D .7、设抛物线的焦点为F ,准线为,P 为抛物线上一点,PA ⊥,A 为垂足.如果直线AF 的斜率为,那么|PF|等于A . B. 8 C. D. 48、已知、是椭圆的两个焦点,若椭圆上存在点P 使,则A. B. C. D.9.已知变量x ,y 满足120x y x y ≥⎧⎪≤⎨⎪-≤⎩则的最小值是A .4B .3C .2D .110.若函数f (x )和g (x )的定义域、值域都是R ,则不等式f (x )> g (x )有解的充要条件是A .x ∈R ,f (x )>g (x )B .有无穷多个x (x ∈R ),使得f (x )>g (x )C .x ∈R ,f (x )>g (x )D .{ x ∈R| f (x )≤g (x )}=11.数列的通项公式,则数列的前10项和为A .B .C .D .12.中,,,则A .B .C .D . 13.设O -ABC 是正三棱锥,G 1是△ABC 的重心,G 是OG 1上的一点,且OG =3GG 1,若OG →=xOA →+yOB →+zOC →,则(x ,y ,z )为A .⎝⎛⎭⎫14,14,14B .⎝⎛⎭⎫34,34,34C .⎝⎛⎭⎫13,13,13D .⎝⎛⎭⎫23,23,2314.等差数列的前n 项和,若,,则=A .153B .182C .242D .27315.已知A (,,),B (1,,),当||取最小值时,的值等于A .B .-C .19D .16.设椭圆的左、右焦点分别为是上的点 ,,则椭圆的离心率为A .B .C .D .17.已知 且,则A .有最大值2B .等于4C .有最小值3D .有最大值418.已知向量,,且与互相垂直,则的值是A .B .C .D .19.等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若=,则=A .B .C .D .20.已知抛物线的焦点F 与双曲的右焦点重合,抛物线的准 线与x 轴的交点为K ,点A 在抛物线上且,则A 点的横坐标为(A) (B)3 (C) (D)4第Ⅱ卷(非选择题,共105分)二、填空题:本大题共6小题,每小题6分,共36分,把答案填在答案纸中横线上.21.若抛物线的焦点坐标为(1,0)则准线方程为_____;22.若等比数列满足,则前项=_____;23.已知集合,{|(4)(2)0}B x x x =+->,则______;24.已知的内角、、所对的边分别是,,.若,则角的大小是 ;25.已知空间三点,,,,若向量分别与,垂直则向量的坐标为_ ;26.下列命题中,真命题的有________。
2021年高二上学期期末考试 数学理 含答案

2021年高二上学期期末考试 数学理 含答案人:许桂期一、选择题(本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集U =R ,集合A ={x |3≤x <7},B ={x |x 2-7x +10<0},则∁R (A ∩B )等于 ( ).A .(-∞,3)∪(5,+∞)B .(-∞,3)∪[5,+∞)C .(-∞,3]∪[5,+∞)D .(-∞,3]∪(5,+∞)2.若,则下列结论不正确...的是 A . B . C . D .3.一个几何体的三视图如图所示,已知这个几何体的体积为,则 ( )A . B. C. D.4. 设{a n }是由正数组成的等比数列,S n 为其前n 项和.已知a 2a 4=1, S 3=7,则S 5=( )A.152B. 172C. 314D. 334 5. 已知如右程序框图,则输出的是( )A .9B .11C .13D .6.已知是三角形的一个内角,且,则方程表示( ) A.焦点在轴上的椭圆 B.焦点在轴上的椭圆C.焦点在轴上的双曲线D.焦点在轴上的双曲线7.方程|x |(x -1)-k =0有三个不相等的实根,则k 的取值范围是 ( )A. B.⎝ ⎛⎭⎪⎫0,14 C. D . ⎝ ⎛⎭⎪⎫-14,08.对于任意实数,符号[]表示的整数部分,即[]是不超过的最大整数,例[2]=2; []=2;[]=, 这个函数[]叫做“取整函数”,它在数学本身和生产实践中有开始1S =结束3i =1000?S ≥i输出2i i =+*S S i=是否广泛的应用。
那么]64[log ]4[log ]3[log ]2[log ]1[log 22222+++++ 的值为( ) A .21 B .76C .264D .642二、填空题( 每小题5分,共30分)9.在△ABC 中∠A=60°,b=1,S △ABC =,则=________.10. 为了调查某班学生做数学题的基本能力,随机抽查了部分学生某次做一份满分为100分的数学试题,他们所得分数的分组区间为,,,由此得到频率分布直方图如右上图,则这些学生的平均分为 .11. 已知,则不等式的解集是12. 设等差数列的前项和为,若,则的最大值为_______.13. 设点为坐标原点,,且点坐标满足 ,则的最大值为 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年高二上学期期末考试数学理试卷含答案本试卷共100分,考试时长120分钟。
一、选择题(本大题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的)
1. 已知,则直线AB的斜率为()
A. 2
B. 1
C.
D. 不存在
2. 圆心为且过点的圆的方程是()
A. B.
C. D.
3. 已知直线与直线互相垂直,则()
A. -1
B.
C. 1
D. 4
4. 已知表示两条不同直线,表示平面,下列说法正确的是()
A. 若∥,n∥,则m∥n
B. 若m⊥,,则m⊥n
C. 若m⊥,m⊥n,则n∥
D. 若m∥,m⊥n,则n⊥
5. 双曲线的实轴长是()
A. 2
B.
C. 4
D.
6. 一个四棱锥的底面为正方形,其三视图如图所示,则这个四棱锥的体积是()
A. 1
B. 2
C. 3
D. 4
7. 在平面直角坐标系中,M为不等式组,所表示的区域上一动点,则直线OM斜率的最
小值为()
A. B. C. 1 D. 2
8. 已知抛物线的焦点为F,是C上一点,,则=()
A. 1
B. 2
C. 4
D. 8
9. 过点的直线与圆有公共点,则直线的倾斜角的取值范围是()
A. B. C. D.
10. 点P到图形C上每一个点的距离的最小值称为点P到图形C的距离,那么平面内到定
圆C的距离与到定点A的距离相等的点的轨迹不可能
...是()
A. 圆
B. 椭圆
C. 双曲线的一支
D. 直线
二、填空题(本大题共6小题,每小题3分,共18分)
11. 双曲线的两条渐近线的方程为__________。
12. 以等腰直角三角形的一条直角边所在直线为旋转轴,将该三角形旋转一周,若等腰直角三角形的直角边长为1,则所得圆锥的侧面积等于__________。
13. 已知,则__________。
14. 如图是抛物线形拱桥,当水面在时,拱顶离水面2米,水面宽4米,水位下降1米后,水面宽________米。
15. 设椭圆的左、右焦点分别为,,P为直线上一点,△是底角为30°的等腰三角形,则C 的离心率为___________。
16. 如图,在棱长为1的正方体中,点E、F分别是棱BC,的中点,P是侧面内一点,若∥平面AEF,则线段长度的取值范围是_________。
三、解答题(本大题共5小题,共52分。
解答应写出文字说明,证明过程或演算步骤)
17. (本小题满分10分)
如图,在四棱锥中,底面ABCD是菱形,PA=PB,且侧面PAB⊥平面ABCD,点E是AB 的中点。
(Ⅰ)求证:CD∥平面PAB;
(Ⅱ)求证:PE⊥AD。
18.(本小题满分10分)
已知圆C经过两点,且圆心在直线上。
(Ⅰ)求圆C的方程;
(Ⅱ)设直线经过点(2,-2),且与圆C相交所得弦长为,求直线的方程。
19.(本小题满分10分)
已知平行四边形的两条边所在直线的方程分别为,且它的对角线的交点为,求这个平行四边形其他两边所在直线的方程。
20.(本小题满分11分)
如图,PA⊥平面ABC,AB⊥BC,为PB的中点。
(Ⅰ)求证:AM⊥平面PBC;
(Ⅱ)求二面角的余弦值;
(Ⅲ)证明:在线段PC上存在点D,使得BD⊥AC,并求的值。
21.(本小题满分11分)
已知椭圆的中心在坐标原点O,焦点在x轴上,短轴长为2,且两个焦点和短轴的两个端点恰为一个正方形的顶点,过右焦点F与x轴不垂直的直线交椭圆于P,Q两点。
(Ⅰ)求椭圆的方程;
(Ⅱ)当直线的斜率为1时,求△POQ的面积;
(Ⅲ)在线段OF上是否存在点,使得以MP,MQ为邻边的平行四边形是菱形?若存在,
求出m的取值范围;若不存在,请说明理由。
【试题答案】
一、选择题
1. A
2. D
3. C
4. B
5. C
6. B
7. A 8. A 9. D 10. D
二、填空题
11.
12. 13. 14.
15. 16.
三、解答题
17. 解:(Ⅰ)因为底面ABCD 是菱形,
所以CD ∥AB 。
2分 又因为平面PAB ,
4分 且平面PAB ,
所以CD ∥平面PAB 。
5分
(Ⅱ)因为PA =PB ,点E 是AB 的中点,
所以PE ⊥AB 。
6分
因为平面PAB ⊥平面ABCD ,
平面平面ABCD =AB ,
平面PAB ,
8分 所以PE ⊥平面ABCD 。
9分 因为平面ABCD ,
所以PE ⊥AD 。
10分
18. 解:(Ⅰ)设圆C 的圆心坐标为, 依题意,有2222)1()1()3()1(-++=
-+-a a a a , 即,解得,
2分 所以, 4分
所以圆C 的方程为。
5分
(Ⅱ)依题意,圆C的圆心到直线的距离为1,所以直线符合题意。
6分设直线方程为,即,
则,解得,
所以直线的方程为,即。
9分
综上,直线的方程为或。
10分19. 解:联立两条直线的方程,得到方程组
解此方程组,得
如图,平行四边形ABCD的一个顶点是。
2分
设,由题意,点M(3,3)是线段AC的中点,所以,4分
解得。
5分
由已知,直线AD的斜率,
因为直线BC∥AD,
所以,直线BC的方程为,
即。
7分
由已知,直线AB的斜率为。
因为直线CD∥AB,
所以,直线CD的方程为,
即。
9分
因此,其他两边所在直线的方程是。
10分20. 解:(Ⅰ)因为PA⊥平面ABC,平面ABC,
所以PA⊥BC,
因为BC⊥AB,,
所以BC⊥平面PAB,
又平面PAB,
所以AM⊥BC,
因为PA=AB,M为PB的中点,
所以AM⊥PB,
又,
所以AM⊥平面PBC。
3分
(Ⅱ)如图,在平面ABC内,作AZ∥BC,则两两互相垂直,建立空间直角坐标系,
则,。
,
设平面APC的法向量为,则
即
令,则,
所以。
5分
由(Ⅰ)可知为平面BPC的法向量,
设的夹角为,则,
因为二面角为锐角,
所以二面角的余弦值为。
7分
(Ⅱ)设是线段PC上一点,且,
即,
所以,
所以,
由,得。
9分
因为,所以在线段PC上存在点D,使得BD⊥AC,
此时,。
11分
21. 解:(Ⅰ)由已知,椭圆方程可设为。
1分
因为两个焦点和短轴的两个端点恰为正方形的顶点,且短轴长为2,
所以。
所求椭圆方程为。
3分
(Ⅱ)因为直线过椭圆右焦点,且斜率为1,所以直线的方程为。
4分
设。
由得,解得, 所以32||21||||212121=-=-⋅=∆y y y y OF S POQ 。
6分
(Ⅲ)假设在线段OF 上存在点,使得以MP ,MQ 为邻边的平行四边形是菱形。
因为直线与x 轴不垂直,所以设直线的方程为。
由可得,
因为0)1(8)22)(21(4162
224>+=-+-=∆k k k k ,
所以。
8分 设的中点为
所以,
因为以MP ,MQ 为邻边的平行四边形是菱形,
所以MN ⊥PQ ,,
所以,
整理得,。
所以,
10分 所以。
11分。