天津市滨海新区2016-2017学年高一上学期期末统考数学试卷Word版含答案

合集下载

2017-2018学年天津市部分区高一(上)期末数学试卷

2017-2018学年天津市部分区高一(上)期末数学试卷

2017-2018 学年天津市部分区高一(上)期末数学试卷一、选择题(本题共 10 小题,每小题 4 分,共 40 分)1.(4.00 分)设集合 U={1,2,3,4,5},集合 A={1,2,3},则 U A=( )A .{1,2,3}B .{4,5}C .{1,2,3,4,5}D .∁24.00 60°=1 =2 •= .(分)已知向量 , 的夹角为 ,且| || ,则 ( ) ,| ∅ A . B .C .1 D .23.(4.00 分)下列运算的结果正确的是()A .log 43=2log 23B .(﹣a 2)3=﹣a 6C .( ﹣1)0=0 D .lg2+lg3=lg54.(4.00 分)函数 f (x )= ﹣x +1 的零点所在的区间是( ) A .(0,1) B .(1,2) C .(2,3) D .(3,4)5.(4.00 分)将函数 y=sin2x 的图象上所有点向左平移个单位长度,再把所得各点的横坐标伸长为原来的 2 倍(纵坐标不变),所得图象对应的函数解析式是( )A .y=sin (x +)B .y=sin (2x +) C .y=sin (x +) D .y=sin (x +)6.(4.00 分)已知函数 f (x )=a x(a >0,a ≠1),若 f (﹣2)<f (﹣3),则 a的取值范围是( )A .2<a <3B .<a <C .a >1D .0<a <17.(4.00 分)若非零向量 , 满足| + |=| ﹣ |,则( )A . ⊥B . ∥C .| |=| |D .| |≥| |8.(4.00 分)若α为第二象限的角,且 tanα=﹣ ,则 cosα=( )A .B .﹣C .D .﹣9.(4.00 分)已知集合 P={x |y= },Q={x |y=lg (x ﹣1)},则 P ∩Q=() A .{x |1≤x ≤3}B .{x |1<x <3}C .{x |1<x ≤3}D .{x |x <1,或 x ≥3}10.(4.00 分)已知偶函数 f (x )在[0,+∞)上单调递减,若 a=f (ln2.1),b=f(1.11.1),c=f (﹣3),则 a ,b ,c 的大小关系是( )A.a<b<c B.c<b<a C.c<a<b D.b<a<c二、填空题(本大题共 5 小题,每小题 4 分,共 20 分)11.(4.00 分)sin(﹣)= .12.(4.00 分)已知幂函数 f(x)经过点(2,8),则 f(3)= .13.(4.00 分)设集合 A={x|2<x<3},B={x|x>a},若 A∪B=B,则实数 a 的取值范围是.14.(4.00 分)已知 sin(α﹣)=,则sin(﹣α)=.15.(4.00 分)在平行四边形 ABCD 中,AB=8,AD=6,∠BAD=60°,点 P 在 CD 上,且=3,则•=.三、解答题(本大题共 60 分)16.(12.00 分)已知向量=(1,2),=(2,λ),=(﹣3,2).(1)若∥,求实数λ的值;(2)若 k+与﹣2垂直,求实数k的值.17.(12.00 分)已知函数 f(x)=.(1)求 f(2)及 f(f(﹣1))的值;(2)若 f(x)≥4,求 x 的取值范围.18.(12.00 分)已知在△ABC 中,sinA=,cosB=﹣.(1)求 sin2A 的值;(2)求 cosC 的值.19.(12.00 分)已知函数 f(x)=是奇函数,且f(1)=1.(1)求 a,b 的值;(2)判断函数 f(x)在(0,+∞)上的单调性,并用定义证明.20.(12.00 分)已知函数 f(x)=2sinxcos(x+)+.(1)求 f(x)的最小正周期;(2)求 f(x)在区间[﹣,]上的最大值.2017-2018 学年天津市部分区高一(上)期末数学试卷参考答案与试题解析一、选择题(本题共 10 小题,每小题 4 分,共 40 分)∅1.(4.00 分)设集合 U={1,2,3,4,5},集合 A={1,2,3},则U A=()A.{1,2,3} B.{4,5} C.{1,2,3,4,5} D.∁【分析】由集合的补集的定义,即由 U 中不属于 A 的元素构成的集合,即可得到所求.【解答】解:集合 U={1,2,3,4,5},集∁合A={1,2,3},则U A={4,5}.故选:B.2.(4.00 分)已知向量,的夹角为60°,且||=1,||=2,则•=()A. B. C.1D.2【分析】利用已知条件,通过向量的数量积公式求解即可.【解答】解:向量,的夹角为60°,且| |=1,| |=2,则•===1.故选:C.3.(4.00 分)下列运算的结果正确的是()A.log43=2log23 B.(﹣a2)3=﹣a6C.(﹣1)0=0D.lg2+lg3=lg5【分析】利用有理指数幂的运算性质及对数的运算性质逐一核对四个选项得答案.【解答】解:∵log43=,∴选项A错误;∵(﹣a2)3=﹣(a2)3=﹣a6,∴选项 B 正确;由 a0=1(a≠0),可得(﹣1)0=1,故C错误;∵lg2+lg3=lg(2×3)=lg6,∴D 错误.∴计算结果正确的是(﹣a2)3=﹣a6,故选:B.4.(4.00 分)函数 f(x)=﹣x+1的零点所在的区间是()A.(0,1) B.(1,2) C.(2,3) D.(3,4)【分析】据函数零点的判定定理,判断 f(2),f(3)的符号,即可求得结论.【解答】解:函数 f(x)=﹣x+1是连续函数,f(2)=﹣2+1>0,f(3)=<0,故有 f(2)•f(3)<0,由零点的存在性定理可知:函数 f(x)=﹣x+1的零点所在的区间是(2,3)故选:C.5.(4.00 分)将函数 y=sin2x 的图象上所有点向左平移个单位长度,再把所得各点的横坐标伸长为原来的 2 倍(纵坐标不变),所得图象对应的函数解析式是()A.y=sin(x+)B.y=sin(2x+)C.y=sin(x+)D.y=sin(x+)【分析】按照题目所给条件,先求把函数y=sin2x 的图象向左平移个单位长度,函数解析式,再把所得图象上所有点的横坐标伸长到原来的 2 倍(纵坐标不变),求出解析式即可.【解答】解:把函数 y=sin2x 的图象向左平移个单位长度,得y=sin2(x+)=sin(2x+)的图象,再把所得各点的横坐标伸长到原来的 2 倍(纵坐标不变),得到 y=sin(x+)的图象;故选:A.6.(4.00 分)已知函数 f(x)=a x(a>0,a≠1),若 f(﹣2)<f(﹣3),则 a 的取值范围是()A.2<a<3 B.<a< C.a>1D.0<a<1【分析】根据指数函数的单调性即可得出 a 的取值范围.【解答】解:函数 f(x)=a x(a>0,a≠1),若f(﹣2)<f(﹣3),则 f(x)是单调减函数,∴a 的取值范围是 0<a<1.故选:D.7.(4.00 分)若非零向量,满足|+|=|﹣|,则()A.⊥ B.∥ C.||=||D.||≥||【分析】利用向量的几何意义解答.【解答】解:如图,设=,=,则|+|=||,|﹣|=||,则||=||,所以四边形 ABCD 为矩形,所以 AB⊥BC,所以⊥.故选:A.8.(4.00 分)若α为第二象限的角,且tanα=﹣,则cosα=()A. B.﹣ C. D.﹣【分析】利用同角三角函数的基本关系,以及三角函数在各个象限中的符号,求得cosα的值.【解答】解:∵α是第二象限角,且tanα==﹣,∴sinα=﹣cosα,∵cosα<0,sinα>0,sin2α+cos2α=1,∴(﹣cosα)2+cos2α=1,可得:cosα=﹣,故选:D.9.(4.00 分)已知集合 P={x|y=},Q={x|y=lg(x﹣1)},则P∩Q=()A.{x|1≤x≤3}B.{x|1<x<3}C.{x|1<x≤3}D.{x|x<1,或 x≥3}【分析】由偶次根式被开方式非负,化简集合 P,对数的真数大于 0,化简集合Q,再由交集的定义,即可得到所求集合.【解答】解:集合 P={x|y=}={x|3﹣x≥0}={x|x≤3},Q={x|y=lg(x﹣1)}={x|x﹣1>0}={x|x>1},则P∩Q={x|1<x≤3},故选:C.10.(4.00 分)已知偶函数 f(x)在[0,+∞)上单调递减,若 a=f(ln2.1),b=f (1.11.1),c=f(﹣3),则 a,b,c 的大小关系是()A.a<b<c B.c<b<a C.c<a<b D.b<a<c【分析】根据函数奇偶性和单调性的性质,进行转化求解即可.【解答】解:∵偶函数 f(x)在[0,+∞)上单调递减,∴a=f(ln2.1),b=f(1.11.1),c=f(﹣3)=f(3),∵0<ln2.1<1,1<1.11.1<3,则0<ln2.1<1.11.1<3,∴f(ln2.1)<f(1.11.1)<f(3),即f(ln2.1)<f(1.11.1)<f(﹣3),则 c<b<a,故选:B.二、填空题(本大题共 5 小题,每小题 4 分,共 20 分)11.(4.00 分)sin(﹣)=﹣.【分析】由条件利用诱导公式化简所给的三角函数式,可得结果.【解答】解:sin(﹣)=sin(﹣)=﹣sin=﹣,故答案为:﹣.12.(4.00 分)已知幂函数 f(x)经过点(2,8),则 f(3)= 27.【分析】设 f(x)=x n,代入(2,8),求得 n,再计算 f(3),即可得到所求值.【解答】解:设 f(x)=x n,由题意可得2n=8,解得 n=3,则f(x)=x3,f(3)=33=27,故答案为:27.13.(4.00 分)设集合 A={x|2<x<3},B={x|x>a},若 A∪B=B,则实数 a 的取值范围是a≤2.⊆【分析】根据 A∪B=B 得出 A B,从而写出实数 a 的取值范围.【解答】解:集合⊆ A={x|2<x<3},B={x|x>a},若 A∪B=B,则A B,∴a≤2,∴实数 a 的取值范围是 a≤2.故答案为:a≤2.14.(4.00 分)已知 sin(α﹣)=,则sin(﹣α)= .【分析】由已知直接利用三角函数的诱导公式化简求值.【解答】解:∵sin(α﹣)=,∴sin(﹣α)=sin(π+﹣α)=﹣sin()=sin(α﹣)=,故答案为:.15.(4.00 分)在平行四边形 ABCD 中,AB=8,AD=6,∠BAD=60°,点 P 在 CD上,且=3,则•=12.【分析】建立坐标系,求出各向量坐标,再计算数量积.【解答】解:以 A 为原点建立坐标系,则 A(0,0),B(8,0),D(3,3),∵=3,∴DP=2,即P(5,3),∴=(5,3),=(﹣3,3),∴=﹣15+27=12.故答案为:12.三、解答题(本大题共 60 分)16.(12.00 分)已知向量=(1,2),=(2,λ),=(﹣3,2).(1)若∥,求实数λ的值;(2)若 k+与﹣2垂直,求实数k的值.【分析】(1)利用向量平行的性质能出实数λ的值;(2)先利用平面向量坐标运算法则求出 k+,﹣2,由此利用向量垂直的性质能求出实数 k 的值.【解答】解:(1)∵向量=(1,2),=(2,λ),=(﹣3,2).∥,∴,解得实数λ=4.(2)k+=(k﹣3,2k+2),=(7,﹣2),∵k+与﹣2垂直,∴(k)•()=7k﹣21﹣4k﹣4=0,解得实数 k=.17.(12.00 分)已知函数 f(x)=.(1)求 f(2)及 f(f(﹣1))的值;(2)若 f(x)≥4,求 x 的取值范围.【分析】(1)根据分段函数的表达式,利用代入法进行求解即可.(2)根据分段函数的表达式,讨论 x 的取值范围进行求解即可.【解答】解:(1)f(2)=﹣2×2+8=﹣4+8=4,f(f(﹣1))=f(﹣1+5)=f(4)= ﹣2×4+8=0.(2)若 x≤1,由 f(x)≥4 得 x+5≥4,即 x≥﹣1,此时﹣1≤x≤1,若x>1,由 f(x)≥4 得﹣2x+8≥4,即 x≤2,此时 1<x≤2,综上﹣1≤x≤2.18.(12.00 分)已知在△ABC 中,sinA=,cosB=﹣.(1)求 sin2A 的值;(2)求 cosC 的值.【分析】(1)由已知可得 B 为钝角,分别求出 sinB,cosA 的值,由二倍角公式求得 sin2A;(2)利用三角形内角和定理可得 cosC=cos[π﹣(A+B)]=﹣cos(A+B),展开两角和的余弦得答案.【解答】解:( 1 )在△ ABC 中,由 cosB= ﹣,可知B为钝角,且sinB=,又sinA=,得cosA=.∴sin2A=2sinAcosA=2×;(2)cosC=cos[π﹣(A+B)]=﹣cos(A+B)=﹣cosAcocB+sinAsinB=﹣+=.19.(12.00 分)已知函数 f(x)=是奇函数,且f(1)=1.(1)求 a,b 的值;(2)判断函数 f(x)在(0,+∞)上的单调性,并用定义证明.【分析】(1)根据函数奇偶性的性质和定义建立方程进行求解即可.(2)根据函数单调性的定义进行证明即可.【解答】解:(1)∵f(1)=1,∴f(1)==1,即 a﹣1=1+b,则 a=2+b,则f(﹣x)=﹣f(x),即=﹣,即﹣x+b=﹣x﹣b,则b=﹣b,b=0,得a=2.(2)∵b=0,a=2,∴f(x)==2x1﹣﹣2x2+=2(x1﹣x2)+=(x1﹣x2)(2+)∵x1,x2为(0,+∞)上任意两个自变量,且 x1<x2∴x1﹣x2<0,2+>0,∴(x1﹣x2)(2+)<0,∴f(x1)﹣f(x2)<0,即 f(x1)<f(x2)第 11页(共 12页)∴函数 f(x)在(0,+∞)上为增函数.20.(12.00 分)已知函数 f(x)=2sinxcos(x+)+.(1)求 f(x)的最小正周期;(2)求 f(x)在区间[﹣,]上的最大值.【分析】展开两角和的余弦,再由辅助角公式化积.(1)直接利用周期公式求周期;(2)由 x 的范围求得相位的取值范围,则 f(x)在区间[﹣,]上的最大值可求.【解答】解:f(x)=2sinxcos(x+)+=2sinx(cosxcos)+=2sinx()=sin2x﹣===.(1)f(x)的最小正周期 T=;(2)由,得0,∴sin()∈[0,1],则∈[﹣,1﹣],∈则 f(x)在区间[﹣,]上的最大值为.第 12页(共 12页)。

2016-2017学年天津市新人教版高一上期末数学试卷(含答案解析)

2016-2017学年天津市新人教版高一上期末数学试卷(含答案解析)

2016-2017学年天津高一(上)期末数学试卷■选择题:每小题给出的四个选项中,只有一个是符合要求的 cos 「等于( 3B.- 1C. 12 2(5分)为了得到周期y=sin (2x+ )的图象,只需把函数y=sin 6的图象( )A .向左平移"个单位长度B .向右平移 个单位长度 44 C •向左平移——个单位长度D .向右平移——个单位长度 2 25. (5分)设平面向量◎二(5, 3), b = (1,- 2),则目-2匚等于(A . (3, 7) B. (7, 7) C. (7, 1) D. (3, 1)6. (5分)若平面向量;与匸的夹角为120° a =(罠-%, |可=2, 5 57. (5分)如图,在平行四边形ABCD 中,疋=(3, 2), BD = (- 1, 2),则疋?AD A . 1 B. 6 C. - 7 D . 798. (5 分)已知 sin a +cos a=,贝U sin2 o 的值为( )(5 分)A . 2. A. 3. 已知' '=2,则tan a 的值为( )3sin 口 +5cos CtB.-匚C. 2 D .-5 5 12 12 (5分)函数f (x ) = :sin (十+ ) (x € R )的最小正周期是( (5 分) A . B n C 2n D ・ 4n (2x -…) 等于() A .二 B. 2 二 C. 4D . 12 4. 等于(C )A.巴B.±§C.—巴D. 0 99 99. (5分)计算cos ?cos 的结果等于()o 8A.丄B. -C.—丄D.—-2 4 2 4 10. (5 分)已知a, p€(0,弓_),且满足sin , cos 5,贝U o+B的值为()A.二B.二C. —D.三或二4 2 4 4 4二■填空题(本大题共5小题,每小题4分,共20分)11. (4分)函数f (x)=2sin 0)在[0,飞-]上单调递增,且在这个区间上的最大值是匚,贝U 3的值为______ .12. (4分)已知向量目=(-1,2),b = (2,—3),若向量话+ 匸与向量心=(—4, 7)共线,贝U入的值为_____ .JT13. (4分)已知函数y=3cos(x+妨—1的图象关于直线x= 对称,其中长[0, n,贝u ©的值为 ______ .14. (4 分)若tan a =, tan B=,则tan (a— B 等于 ______ .15. (4分)如图,在矩形ABCD中,AB=3, BC=2若点E为BC的中点,点F在CD上,? -1=6,贝U二?I的值为三■解答题(本大题5小题,共40分)16. (6分)已知向量;与匚共线,E = (1 , —2), a?匸=-10(I)求向量才的坐标;(U)若c= (6,—7),求| 口+匚|17. (8分)已知函数f (x)=cos2x+2sinx(I)求f (-三)的值;6(n)求f(x)的值域.18. (8 分)已知sin a=, a€(f n)5 2(I)求sin ( a-—)的值;(n) 求tan2 a的值.19. (8 分)已知—(1, 2), ■= (-2, 6)(I)求1与「的夹角9;(n)若与•共线,且1 - ■与I垂直,求■ ■.20. (10 分)已知函数f (x) =sinx (2;『:cosx— sinx) +1(I)求f (x)的最小正周期;(n)讨论f(x)在区间[-二,二]上的单调性.4 42016-20仃学年天津市和平区高一(上)期末数学试卷 参考答案与试题解析 一 ■选择题:每小题给出的四个选项中,只有一个是符合要求的 1. (5分)cos 虽二等于( ) A .-二 B .- 1 C. 1 D .二 2 2 2 2 【解答】 解:cos =cos (2 n-——)=cos =. 3 3 3 2 故选:C.故选:B.3. (5分)函数f (x )=匚sin + ) (x € R )的最小正周期是( ) JI A . — B. n C. 2 n D . 4 n【解答】解:函数f (x ) =>sin (初+ ) (x € R )的最小正周期是:T= =i =4 n 3 1_~2故选:D .兀 兀4. (5分)为了得到周期y=sin (2x+ )的图象,只需把函数y=sin (2x -) 2. (5分)已知 3sina+5cosa A .「 B.-「 C. D . 5 5 12 【解答】解:••二丁…n- =2,则 tan a 勺值为( 3sin +5cos 3tan +5 =2,则 tan 12a =的图象()71 兀A.向左平移——个单位长度B.向右平移个单位长度C•向左平移二个单位长度D•向右平移二个单位长度2 2【解答】解:I y=sin(2x+ ) =sin[2 (x+ )-一],6 4 3•••只需把函数y=sin (2x-宀)的图象向左平移个单位长度即可得到y=sin3 4(2x+ )的图象.6故选:A.5. (5 分)设平面向量1= (5, 3), '■= (1,- 2),则1- 2「等于( )A. (3, 7)B. (7, 7)C. (7, 1)D. (3, 1)【解答】解:•••平面向量a= (5, 3), b = (1 , - 2),••• - 2 = (5, 3)-( 2,- 4) = (3, 7).故选:A.6. (5分)若平面向量;与匸的夹角为120°二(辛,-半),|可=2,则|2;-b |5 5等于( )A.二B. 2 二C. 4D. 12【解答】解:•••平面向量;与匸的夹角为120°, a =(二-学),币=2,5 5•」1=1,-1=| J ?| J ?cos120° =12X 「=- 1,2| 2 1 - | 2=4| J 2+| -| 2- 4• =4+4 - 4X(—1) =12,••• |2 1- | =2 乙故选:B7. (5分)如图,在平行四边形ABCD中,•「=(3, 2), ' ''= ( - 1,2),贝厂;?汕等于( )A . 1 B. 6C. - 7 D . 7. , , . 【解答】解:T AC =AD +AB = (3, 2), BD =AD -隠=(-1, 2),•-2小=(2, 4),••• ;?:1= (3, 2) ? (1, 2) =3+4=7,故选:D 故选:C.f 缶77 W 缶77 兀 C R 兀 C / TT TT 、 ■兀 C 兀 1 ・【解答】 解:cos ?cos =cos ? I : = - sin ?cos =- = si S 8 8 2 8 o o 2故选:D .8. (5 分) 已知sin A-i B. 土: C 【解答】 解: T sin +cos a=, 3—D. 0g +COS a=, 3 则sin2 a 勺值为( )平方可得 1+2sin a cos a +s1n2 a=, 9 则 sin2 5 a -—, 9'9. (5分)计算的结果等于( A< B-:cos ?cos — 8 8C. -D.-" 2 410. (5分)已知a,B€( 0, £"),且满足sin 0==。

2016-2017学年天津市和平区高一(上)期末数学试卷

2016-2017学年天津市和平区高一(上)期末数学试卷

2016-2017学年天津市和平区高一(上)期末数学试卷一.选择题:每小题给出的四个选项中,只有一个是符合要求的1.(5分)cos等于()A.﹣B.﹣C.D.2.(5分)已知=2,则tanα的值为()A.B.﹣C.D.﹣3.(5分)函数f(x)=sin(+)(x∈R)的最小正周期是()A.B.πC.2πD.4π4.(5分)为了得到周期y=sin(2x+)的图象,只需把函数y=sin(2x﹣)的图象()A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度5.(5分)设平面向量=(5,3),=(1,﹣2),则﹣2等于()A.(3,7)B.(7,7)C.(7,1)D.(3,1)6.(5分)若平面向量与的夹角为120°,=(,﹣),||=2,则|2﹣|等于()A.B.2 C.4 D.127.(5分)如图,在平行四边形ABCD中,=(3,2),=(﹣1,2),则•等于()A.1 B.6 C.﹣7 D.78.(5分)已知sinα+cosα=,则sin2α的值为()A.B.±C.﹣ D.09.(5分)计算cos•cos的结果等于()A.B.C.﹣ D.﹣10.(5分)已知α,β∈(0,),且满足sinα=,cosβ=,则α+β的值为()A.B.C. D.或二.填空题(本大题共5小题,每小题4分,共20分)11.(4分)函数f(x)=2sinωx(ω>0)在[0,]上单调递增,且在这个区间上的最大值是,则ω的值为.12.(4分)已知向量=(﹣1,2),=(2,﹣3),若向量λ+与向量=(﹣4,7)共线,则λ的值为.13.(4分)已知函数y=3cos(x+φ)﹣1的图象关于直线x=对称,其中φ∈[0,π],则φ的值为.14.(4分)若tanα=2,tanβ=,则tan(α﹣β)等于.15.(4分)如图,在矩形ABCD中,AB=3,BC=2,若点E为BC的中点,点F在CD上,•=6,则•的值为三.解答题(本大题5小题,共40分)16.(6分)已知向量与共线,=(1,﹣2),•=﹣10(Ⅰ)求向量的坐标;(Ⅱ)若=(6,﹣7),求|+|17.(8分)已知函数f(x)=cos2x+2sinx(Ⅰ)求f(﹣)的值;(Ⅱ)求f(x)的值域.18.(8分)已知sinα=,α∈(,π)(Ⅰ)求sin(α﹣)的值;(Ⅱ)求tan2α的值.19.(8分)已知=(1,2),=(﹣2,6)(Ⅰ)求与的夹角θ;(Ⅱ)若与共线,且﹣与垂直,求.20.(10分)已知函数f(x)=sinx(2cosx﹣sinx)+1 (Ⅰ)求f(x)的最小正周期;(Ⅱ)讨论f(x)在区间[﹣,]上的单调性.2016-2017学年天津市和平区高一(上)期末数学试卷参考答案与试题解析一.选择题:每小题给出的四个选项中,只有一个是符合要求的1.(5分)cos等于()A.﹣B.﹣C.D.【解答】解:cos=cos(2π﹣)=cos=.故选:C.2.(5分)已知=2,则tanα的值为()A.B.﹣C.D.﹣【解答】解:∵==2,则tanα=﹣,故选:B.3.(5分)函数f(x)=sin(+)(x∈R)的最小正周期是()A.B.πC.2πD.4π【解答】解:函数f(x)=sin(+)(x∈R)的最小正周期是:T===4π.故选:D.4.(5分)为了得到周期y=sin(2x+)的图象,只需把函数y=sin(2x﹣)的图象()A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度【解答】解:∵y=sin(2x+)=sin[2(x+)﹣],∴只需把函数y=sin(2x﹣)的图象向左平移个单位长度即可得到y=sin(2x+)的图象.故选:A.5.(5分)设平面向量=(5,3),=(1,﹣2),则﹣2等于()A.(3,7)B.(7,7)C.(7,1)D.(3,1)【解答】解:∵平面向量=(5,3),=(1,﹣2),∴﹣2=(5,3)﹣(2,﹣4)=(3,7).故选:A.6.(5分)若平面向量与的夹角为120°,=(,﹣),||=2,则|2﹣|等于()A.B.2 C.4 D.12【解答】解:∵平面向量与的夹角为120°,=(,﹣),||=2,∴||=1,∴=||•||•cos120°=1×2×=﹣1,∴|2﹣|2=4||2+||2﹣4=4+4﹣4×(﹣1)=12,∴|2﹣|=2故选:B7.(5分)如图,在平行四边形ABCD中,=(3,2),=(﹣1,2),则•等于()A.1 B.6 C.﹣7 D.7【解答】解:∵=+=(3,2),=﹣=(﹣1,2),∴2=(2,4),∴=(1,2),∴•=(3,2)•(1,2)=3+4=7,故选:D8.(5分)已知sinα+cosα=,则sin2α的值为()A.B.±C.﹣ D.0【解答】解:∵sinα+cosα=,平方可得1+2sinαcosα=1+sin2α=,则sin2α=﹣,故选:C.9.(5分)计算cos•cos的结果等于()A.B.C.﹣ D.﹣【解答】解:cos•cos=cos•=﹣sin•cos=﹣sin=﹣.故选:D.10.(5分)已知α,β∈(0,),且满足sinα=,cosβ=,则α+β的值为()A.B.C. D.或【解答】解:由α,β∈(0,),sinα=,cosβ=,∴cosα>0,sinβ>0,cosα=,sinβ=,∴cos(α+β)=cosαcosβ﹣sinαsinβ=,由α,β∈(0,)可得0<α+β<π,∴α+β=.故选:A.二.填空题(本大题共5小题,每小题4分,共20分)11.(4分)函数f(x)=2sinωx(ω>0)在[0,]上单调递增,且在这个区间上的最大值是,则ω的值为.【解答】解:∵函数f(x)=2sinωx(ω>0)在[0,]上单调递增,∴≤.再根据在这个区间上f(x)的最大值是,可得ω•=,则ω=,故答案为:.12.(4分)已知向量=(﹣1,2),=(2,﹣3),若向量λ+与向量=(﹣4,7)共线,则λ的值为﹣2 .【解答】解:向量=(﹣1,2),=(2,﹣3),向量λ+=(﹣λ+2,2λ﹣3),向量λ+与向量=(﹣4,7)共线,可得:﹣7λ+14=﹣8λ+12,解得λ=﹣2.故答案为:﹣2.13.(4分)已知函数y=3cos(x+φ)﹣1的图象关于直线x=对称,其中φ∈[0,π],则φ的值为.【解答】解:∵函数y=3cos(x+φ)﹣1的图象关于直线x=对称,其中φ∈[0,π],∴+φ=kπ,即φ=kπ﹣,k∈Z,则φ的最小正值为,故答案为:.14.(4分)若tanα=2,tanβ=,则tan(α﹣β)等于.【解答】解:∵tanα=2,tanβ=,∴tan(α﹣β)===.故答案为:.15.(4分)如图,在矩形ABCD中,AB=3,BC=2,若点E为BC的中点,点F在CD上,•=6,则•的值为﹣1【解答】解:以A为原点,AB为x轴、AD为y轴建系如图,∵AB=3,BC=2,∴A(0,0),B(3,0),C(3,2),D(0,2),∵点E为BC的中点,∴E(3,1),∵点F在CD上,∴可设F(x,2),∴=(3,0),=(x,2),∵•=6,∴3x=6,解得x=2,∴F(2,2),∴=(﹣1,2),∵=(3,1),∴•=﹣3+2=﹣1,故答案为:﹣1三.解答题(本大题5小题,共40分)16.(6分)已知向量与共线,=(1,﹣2),•=﹣10 (Ⅰ)求向量的坐标;(Ⅱ)若=(6,﹣7),求|+|【解答】解:(Ⅰ)∵向量与共线,=(1,﹣2),∴可设=λ=(λ,﹣2λ),∵•=﹣10,∴λ+4λ=﹣10,解得λ=﹣2,∴(﹣2,4),(Ⅱ)∵=(6,﹣7),∴+=(4,﹣3),∴|+|==5.17.(8分)已知函数f(x)=cos2x+2sinx(Ⅰ)求f (﹣)的值;(Ⅱ)求f(x)的值域.【解答】解:函数f(x)=cos2x+2sinx,(Ⅰ)f (﹣)=cos (﹣)+2sin (﹣)=+2×(﹣)=﹣;(Ⅱ)f(x)=(1﹣2sin2x)+2sinx=﹣2+,∴当x=+2kπ或x=+2kπ,k∈Z时,f(x )取得最大值;当x=﹣+2kπ,k∈Z时,f(x)取得最小值﹣3;∴f(x)的值域是[﹣3,].18.(8分)已知sinα=,α∈(,π)(Ⅰ)求sin(α﹣)的值;(Ⅱ)求tan2α的值.【解答】解:(Ⅰ)∵sinα=,α∈(,π),∴.∴sin(α﹣)==;(Ⅱ)∵,∴tan2α=.第11页(共13页)19.(8分)已知=(1,2),=(﹣2,6)(Ⅰ)求与的夹角θ;(Ⅱ)若与共线,且﹣与垂直,求.【解答】解:(Ⅰ)∵=(1,2),=(﹣2,6),∴||==,||==2,=﹣2+12=10,∴cosθ===,∴θ=45°(Ⅱ)∵与共线,∴可设=λ=(﹣2λ,6λ),∴﹣=(1+2λ,2﹣6λ),∵﹣与垂直,∴(1+2λ)+2(2﹣6λ)=0,解得λ=,∴=(﹣1,3)20.(10分)已知函数f(x)=sinx(2cosx﹣sinx)+1 (Ⅰ)求f(x)的最小正周期;(Ⅱ)讨论f(x)在区间[﹣,]上的单调性.【解答】解:(Ⅰ)函数f(x)=sinx(2cosx﹣sinx)+1 =2sinxcosx﹣2sin2x+1=(2sinxcosx)+(1﹣2sin2x)=sin2x+cos2x第12页(共13页)=2(sin2x+cos2x)=2sin(2x+),∴f(x)的最小正周期T==π;(Ⅱ)令z=2x+,则函数y=2sinz在区间[﹣+2kπ,+2kπ],k∈Z上单调递增;令﹣+2kπ≤2x+≤+2kπ,k∈Z,解得﹣+kπ≤x ≤+kπ,k∈Z,令A=[﹣,],B=[﹣+kπ,+kπ],k∈Z,则A∩B=[﹣,];∴当x∈[﹣,]时,f(x)在区间[﹣,]上单调递增,在区间[,]上的单调递减.第13页(共13页)。

天津市滨海新区2016-2017学年高二上学期期末数学试卷Word版含解析

天津市滨海新区2016-2017学年高二上学期期末数学试卷Word版含解析

天津市滨海新区2016-2017学年高二上学期期末数学试卷一、选择题1.若抛物线的准线方程为x=﹣7,则抛物线的标准方程为()A.x2=﹣28y B.x2=28y C.y2=﹣28x D.y2=28x2.以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x,y的值分别为()A.2,5 B.5,5 C.5,8 D.8,83.阅读如图所示的程序框图,运行相应的程序,如果输入某个正整数n后,输出的S∈(10,20),那么n 的值为()A.3 B.4 C.5 D.64.记集合A={(x,y)|x2+y2≤16}和集合B={(x,y|)x+y﹣4≤0,x≥0,y≥0}表示的平面区域分别为Ω1,Ω2,若在区域Ω1内任取一点M(x,y),则点M落在区域Ω2内的概率为()A.B.C.D.5.若某公司从五位大学毕业生甲、乙、丙、丁、戌中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为()A.B.C.D.6.下列命题中,说法正确的个数是()(1)若p∨q为真命题,则p,q均为真命题(2)命题“∃x0∈R,2≤0”的否定是“∀x∈R,2x>0”(3)“a≥5”是“∀x∈[1,2],x2﹣a≤0恒成立”的充分条件(4)在△ABC中,“a>b”是“sinA>sinB”的必要不充分条件(5)命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1”A.1 B.2 C.3 D.47.已知抛物线y2=2px的焦点F与双曲线的右焦点重合,抛物线的准线与x轴的交点为K,点A在抛物线上且|AK|=|AF|,则△AFK的面积为()A.4 B.8 C.16 D.328.设F1,F2是双曲线的两个焦点,P是C上一点,若|PF1|+|PF2|=6a,且△PF1F2的最小内角为30°,则C的离心率为()A.B.C.D.二、填空题9.一个单位共有职工200人,其中不超过45岁的有120人,超过45岁的有80人.为了调查职工的健康状况,用分层抽样的方法从全体职工中抽取一个容量为25的样本,应抽取超过45岁的职工人.10.阅读如图所示的程序框图,运行相应的程序,输出S的值为.根据上表可得回归直线方程:=0.56x+,据此模型预报身高为172cm的高三男生的体重为.12.已知双曲线(a>0,b>0)的离心率为,则C的渐近线方程为.13.已知命题p:实数m满足m﹣1≤0,命题q:函数y=(9﹣4m)x是增函数.若p∨q为真命题,p∧q为假命题,则实数m的取值范围为.14.已知椭圆E:+=1(a>b>0)的右焦点为F.短轴的一个端点为M,直线l:3x﹣4y=0交椭圆E于A,B两点.若|AF|+|BF|=4,点M到直线l的距离不小于,则椭圆E的离心率的取值范围是.三、解答题15.已知圆C的圆心在直线y=x上,半径为5且过点A(4,5),B(1,6)两点(1)求圆C的方程;(2)过点M(﹣2,3)的直线l被圆C所截得的线段的长为8,求直线l的方程.16.某校从参加高三模拟考试的学生中随机抽取部分学生,将其数学成绩(均为整数)分成六组[90,100),[100,110),…,[140,150]后得到如下部分频率分布直方图,图中从左到右各小长方形的高之比是2:3:3:x:5:1,最后一组的频率数3,观察图形的信息,回答下列问题:(1)求分数落在[120,130)的频率及从参加高三模拟考试的学生中随机抽取的学生的人数;(2)估计本次考试的中位数;(3)用分层抽样的方法在分数段为[110,130)的学生中抽取一个容量为6的样本,将该样本看成一个总体,从中任取2人,求至多有1人在分数段[120,130)内的概率.17.设点,动圆P经过点F且和直线相切.记动圆的圆心P的轨迹为曲线W.(Ⅰ)求曲线W的方程;(Ⅱ)过点F作互相垂直的直线l1,l2,分别交曲线W于A,B和C,D.求四边形ACBD面积的最小值.18.过椭圆Γ:+=1(a>b>0)右焦点F2的直线交椭圆于A,B两点,F1为其左焦点,已知△AF1B的周长为8,椭圆的离心率为.(Ⅰ)求椭圆Γ的方程;(Ⅱ)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆Γ恒有两个交点P,Q,且⊥?若存在,求出该圆的方程;若不存在,请说明理由.天津市滨海新区2016-2017学年高二上学期期末数学试卷参考答案与试题解析一、选择题1.若抛物线的准线方程为x=﹣7,则抛物线的标准方程为()A.x2=﹣28y B.x2=28y C.y2=﹣28x D.y2=28x【考点】椭圆的标准方程.【专题】计算题.【分析】根据准线方程求得p,则抛物线方程可得.【解答】解:∵准线方程为x=﹣7∴﹣=﹣7p=14∴抛物线方程为y2=28x故选D.【点评】本题主要考查了抛物线的标准方程.属基础题.2.以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x,y的值分别为()A.2,5 B.5,5 C.5,8 D.8,8【考点】茎叶图.【专题】概率与统计.【分析】求乙组数据的平均数就是把所有乙组数据加起来,再除以5.找甲组数据的中位数要把甲组数据按从小到大的顺序排列,位于最中间的一个数为中位数.据此列式求解即可.【解答】解:乙组数据平均数=(9+15+18+24+10+y)÷5=16.8;∴y=8;甲组数据可排列成:9,12,10+x,24,27.所以中位数为:10+x=15,∴x=5.故选:C.【点评】本题考查了中位数和平均数的计算.平均数是指在一组数据中所有数据之和再除以数据的个数.将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.3.阅读如图所示的程序框图,运行相应的程序,如果输入某个正整数n后,输出的S∈(10,20),那么n 的值为()A.3 B.4 C.5 D.6【考点】循环结构.【专题】算法和程序框图.【分析】框图在输入n的值后,根据对S和k的赋值执行运算,S=1+2S,k=k+1,然后判断k是否大于n,不满足继续执行循环,满足跳出循环,由题意,说明当算出的值S∈(10,20)后进行判断时判断框中的条件满足,即可求出此时的n值.【解答】解:框图首先给累加变量S赋值0,给循环变量k赋值1,输入n的值后,执行S=1+2×0=1,k=1+1=2;判断2>n不成立,执行S=1+2×1=3,k=2+1=3;判断3>n不成立,执行S=1+2×3=7,k=3+1=4;判断4>n不成立,执行S=1+2×7=15,k=4+1=5.此时S=15∈(10,20),是输出的值,说明下一步执行判断时判断框中的条件应该满足,即5>n满足,所以正整数n的值应为4.故选:B.【点评】本题考查了程序框图中的循环结构,是直到型循环,即先执行后判断,不满足条件继续执行循环,直到条件满足跳出循环,算法结束,是基础题.4.记集合A={(x,y)|x2+y2≤16}和集合B={(x,y|)x+y﹣4≤0,x≥0,y≥0}表示的平面区域分别为Ω1,Ω2,若在区域Ω1内任取一点M(x,y),则点M落在区域Ω2内的概率为()A.B.C.D.【考点】几何概型.【专题】数形结合;概率与统计.【分析】根据题意可知,是与面积有关的几何概率,要求M落在区域Ω2内的概率,只要求A、B所表示区域的面积,然后代入概率公式P=,计算即可得答案.【解答】解:根据题意可得集合A={(x,y)|x2+y2≤16}所表示的区域即为如图所表示的圆及内部的平面区域,面积为16π,集合B={(x,y)|x+y﹣4≤0,x≥0,y≥0}表示的平面区域即为图中的Rt△AOB,S△AOB=×4×4=8,根据几何概率的计算公式可得P==,故选A.【点评】本题主要考查了几何概率的计算,本题是与面积有关的几何概率模型.解决本题的关键是要准确求出两区域的面积.5.若某公司从五位大学毕业生甲、乙、丙、丁、戌中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为()A.B.C.D.【考点】互斥事件的概率加法公式.【专题】概率与统计.【分析】设“甲或乙被录用”为事件A,则其对立事件表示“甲乙两人都没有被录取”,先求出,再利用P(A)=1﹣P()即可得出.【解答】解:设“甲或乙被录用”为事件A,则其对立事件表示“甲乙两人都没有被录取”,则==.因此P(A)=1﹣P()=1﹣=.故选D.【点评】熟练掌握互为对立事件的概率之间的关系是解题的关键.6.下列命题中,说法正确的个数是()(1)若p∨q为真命题,则p,q均为真命题(2)命题“∃x0∈R,2≤0”的否定是“∀x∈R,2x>0”(3)“a≥5”是“∀x∈[1,2],x2﹣a≤0恒成立”的充分条件(4)在△ABC中,“a>b”是“sinA>sinB”的必要不充分条件(5)命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1”A.1 B.2 C.3 D.4【考点】命题的真假判断与应用.【专题】计算题;转化思想;函数的性质及应用;简易逻辑.【分析】(1)若p∨q为真命题,则p,q至少有一个为真命题,即可判断出正误;(2)利用命题的否定即可判断出正误;(3)∀x∈[1,2],x2﹣a≤0恒成立,可得a≥{x2}max,即可判断出正误;(4)在△ABC中,由正弦定理可得:“a>b”⇔“sinA>sinB”,即可判断出正误;(5)利用命题的否命题即可判断出正误.【解答】解:(1)若p∨q为真命题,则p,q至少有一个为真命题,因此不正确;(2)命题“∃x0∈R,2≤0”的否定是“∀x∈R,2x>0”,正确;(3)∀x∈[1,2],x2﹣a≤0恒成立,∴a≥{x2}max=4,∴“a≥5”是“∀x∈[1,2],x2﹣a≤0恒成立”的充分不必要条件,正确;(4)在△ABC中,由正弦定理可得:“a>b”⇔“sinA>sinB”,因此在△ABC中,“a>b”是“sinA>sinB”的充要条件,不正确;(5)命题“若x2=1,则x=1”的否命题为:“若x2≠1,则x≠1”,不正确.综上可得:正确的命题个数是2.故选:B.【点评】本题考查了简易逻辑的判定方法、函数的性质、正弦定理,考查了推理能力与计算能力,属于中档题.7.已知抛物线y2=2px的焦点F与双曲线的右焦点重合,抛物线的准线与x轴的交点为K,点A在抛物线上且|AK|=|AF|,则△AFK的面积为()A.4 B.8 C.16 D.32【考点】抛物线的简单性质;双曲线的简单性质.【专题】圆锥曲线的定义、性质与方程.【分析】由双曲线得右焦点为(4,0)即为抛物线y2=2px的焦点,可得p.进而得到抛物线的方程和其准线方程,可得K坐标.过点A作AM⊥准线,垂足为点M.则|AM|=|AF|.可得|AK|=|AM|.可得|KF|=|AF|.进而得到面积.【解答】解:由双曲线得右焦点为(4,0)即为抛物线y2=2px的焦点,∴,解得p=8.∴抛物线的方程为y2=16x.其准线方程为x=﹣4,∴K(﹣4,0).过点A作AM⊥准线,垂足为点M.则|AM|=|AF|.∴|AK|=|AM|.∴∠MAK=45°.∴|KF|=|AF|.∴=32.故选D.【点评】熟练掌握双曲线、抛物线的标准方程及其性质是解题的关键.8.设F1,F2是双曲线的两个焦点,P是C上一点,若|PF1|+|PF2|=6a,且△PF1F2的最小内角为30°,则C的离心率为()A.B.C.D.【考点】双曲线的简单性质.【专题】圆锥曲线的定义、性质与方程.【分析】利用双曲线的定义和已知即可得出|PF1|,|PF2|,进而确定最小内角,再利用余弦定理和离心率计算公式即可得出.【解答】解:不妨设|PF1|>|PF2|,则|PF1|﹣|PF2|=2a,又|PF1|+|PF2|=6a,解得|PF1|=4a,|PF2|=2a.则∠PF1F2是△PF1F2的最小内角为30°,∴﹣,∴(2a)2=(4a)2+(2c)2﹣,化为=0,解得.故选C.【点评】熟练掌握双曲线的定义、离心率计算公式、余弦定理是解题的关键.二、填空题9.一个单位共有职工200人,其中不超过45岁的有120人,超过45岁的有80人.为了调查职工的健康状况,用分层抽样的方法从全体职工中抽取一个容量为25的样本,应抽取超过45岁的职工10 人.【考点】分层抽样方法.【专题】压轴题.【分析】本题是一个分层抽样,根据单位共有职工200人,要取一个容量为25的样本,得到本单位每个职工被抽到的概率,从而知道超过45岁的职工被抽到的概率,得到结果.【解答】解:本题是一个分层抽样,∵单位共有职工200人,取一个容量为25的样本,∴依题意知抽取超过45岁的职工为.故答案为:10.【点评】本题主要考查分层抽样,分层抽样的优点是:使样本具有较强的代表性,并且抽样过程中可综合选用各种抽样方法,因此分层抽样是一种实用、操作性强、应用比较广泛的抽样方法.10.阅读如图所示的程序框图,运行相应的程序,输出S的值为105 .【考点】程序框图.【专题】计算题;阅读型;定义法;算法和程序框图.【分析】根据条件,进行模拟运行,找到满足条件i≥4时即可.【解答】解:第一次循环,S=1,i=1,T=3,S=1×3=3,i=2不满足条件,第二次循环,S=3,i=2,T=5,S=3×5=15,i=3不满足条件,第三次循环,S=15,i=3,T=7,S=15×7=105,i=4不满足条件,第四次循环,i=4,满足条件,输出S=105,故答案为:105【点评】本题主要考查程序框图的识别和判断,根据程序条件进行模拟是解决本题的关键.根据上表可得回归直线方程:=0.56x+,据此模型预报身高为172cm的高三男生的体重为70.12kg .【考点】线性回归方程.【专题】概率与统计.【分析】根据所给的表格做出本组数据的样本中心点,根据样本中心点在线性回归直线上,利用待定系数法做出a的值,得到线性回归方程,根据所给的x的值,代入线性回归方程,预报身高为172cm的高三男生的体重.【解答】解:由表中数据可得==170,==69,∵(,)一定在回归直线方程y=0.56x+a上,∴69=0.56×170+a,解得a=﹣26.2∴y=0.56x﹣26.2,当x=172时,y=0.56×172﹣26.2=70.12.故答案为:70.12kg.【点评】本题考查线性回归方程,解题的关键是线性回归直线一定过样本中心点,这是求解线性回归方程的步骤之一.利用线性回归方程预测函数值,题目的条件告诉了线性回归方程的系数,省去了利用最小二乘法来计算的过程.属于基础题.12.已知双曲线(a>0,b>0)的离心率为,则C的渐近线方程为y=.【考点】双曲线的简单性质.【专题】圆锥曲线的定义、性质与方程.【分析】由双曲线的离心率,利用题设条件,结合离心率的变形公式能求出的值,由此能求出双曲线的渐近线的方程.【解答】解:∵双曲线(a>0,b>0)的离心率为,∴===,∴1+=,∴=,解得,∴C的渐近线方程为y==.故答案为:y=.【点评】本题考查双曲线的渐近线方程的求法,是基础题,解题时要熟练掌握双曲线的简单性质.13.已知命题p:实数m满足m﹣1≤0,命题q:函数y=(9﹣4m)x是增函数.若p∨q为真命题,p∧q为假命题,则实数m的取值范围为(1,2).【考点】复合命题的真假.【专题】计算题.【分析】由题设知命题p:m≤1,命题q:m<2,由p∨q为真命题,p∧q为假命题,知p真q假,或p假q真.由此能求出m的取值.【解答】解:∵命题p:实数m满足m﹣1≤0,命题q:函数y=(9﹣4m)x是增函数,∴命题p:m≤1,命题q:9﹣4m>1,m<2,∵p∨q为真命题,p∧q为假命题,∴p真q假,或p假q真.当p真q假时,,无解;当p假q真时,,故1<m<2.故答案为:(1,2).【点评】本题考查复合命题的真假判断,是基础题.解题时要认真审题,仔细解答.14.已知椭圆E:+=1(a>b>0)的右焦点为F.短轴的一个端点为M,直线l:3x﹣4y=0交椭圆E于A,B两点.若|AF|+|BF|=4,点M到直线l的距离不小于,则椭圆E的离心率的取值范围是.【考点】椭圆的简单性质.【专题】综合题;方程思想;综合法;圆锥曲线的定义、性质与方程.【分析】如图所示,设F′为椭圆的左焦点,连接AF′,BF′,则四边形AFBF′是平行四边形,可得4=|AF|+|BF|=|AF′|+|BF|=2a.取M(0,b),由点M到直线l的距离不小于,得到关于b的不等式,求出b的范围.再利用离心率计算公式e=即可得出.【解答】解:如图所示,设F′为椭圆的左焦点,连接AF′,BF′,则四边形AFBF′是平行四边形,∴4=|AF|+|BF|=|AF′|+|AF|=2a,∴a=2.取M(0,b),∵点M到直线l的距离不小于,∴≥,解得b≥1.∴e==≤=.∴椭圆E的离心率的取值范围是(0,].故答案为:.【点评】本题考查了椭圆的定义标准方程及其性质、点到直线的距离公式、不等式的性质,考查了推理能力与计算能力,属于中档题.三、解答题15.已知圆C的圆心在直线y=x上,半径为5且过点A(4,5),B(1,6)两点(1)求圆C的方程;(2)过点M(﹣2,3)的直线l被圆C所截得的线段的长为8,求直线l的方程.【考点】直线与圆的位置关系.【专题】计算题;方程思想;综合法;直线与圆.【分析】(1)设圆心坐标为(a,a),则(a﹣1)2+(a﹣6)2=(a﹣4)2+(a﹣5)2=25,求出a,即可求圆C的方程;(2)设出直线方程,利用圆心到直线的距离,半径与半弦长满足的勾股定理,求出直线l的方程.【解答】解:(1)由题意,设圆心坐标为(a,a),则(a﹣1)2+(a﹣6)2=(a﹣4)2+(a﹣5)2=25∴a=1∴圆C的方程(x﹣1)2+(y﹣1)2=25.(2)当直线l的斜率不存在时,过点A(﹣2,3)的直线l:x=﹣2,此时过点A(﹣2,3)的直线l被圆所截得的线段的长为:2=8,∴l:x=﹣2符合题意.当直线l的斜率存在时,设过点A(﹣2,3)的直线l的方程为y﹣3=k(x+2),即kx﹣y+2k+3=0,圆心到l的距离d=,由题意,得()2+42=52,解得k=.∴直线l的方程为x﹣y+=0.即5x﹣12y+46=0.综上,直线l的方程为x=﹣2,或5x﹣12y+46=0.【点评】本题考查曲线轨迹方程的求法,直线与圆的位置关系的应用,考查计算能力.16.某校从参加高三模拟考试的学生中随机抽取部分学生,将其数学成绩(均为整数)分成六组[90,100),[100,110),…,[140,150]后得到如下部分频率分布直方图,图中从左到右各小长方形的高之比是2:3:3:x:5:1,最后一组的频率数3,观察图形的信息,回答下列问题:(1)求分数落在[120,130)的频率及从参加高三模拟考试的学生中随机抽取的学生的人数;(2)估计本次考试的中位数;(3)用分层抽样的方法在分数段为[110,130)的学生中抽取一个容量为6的样本,将该样本看成一个总体,从中任取2人,求至多有1人在分数段[120,130)内的概率.【考点】列举法计算基本事件数及事件发生的概率;频率分布直方图.【专题】计算题;转化思想;综合法;概率与统计.【分析】(1)由题意及频率分布直方图的性质能求出分数在[120,130)内的频率.(2)由题意,[110,120)分数段的人数为9人,[120,130)分数段的人数为18人.用分层抽样的方法在分数段为[110,130)的学生中抽取一个容量为6的样本,利用分层抽样定义所以需在分数段[110,120)内抽取2人,在[120,130)内抽取4人,由此能求出至多有1人在分数段[120,130)内的概率.(3)由频率分布直方图估计样本数据的中位数规律是中位数出现在在概率是0.5的地方【解答】解:(1)由已知得分数落在[100,110)的频数为3×3=9人,频率为0.015×10=0.15,∴分数落在[120,130)的频率为:1﹣(2×+0.15+0.15+5×+1×)=0.30.参加高三模拟考试的学生中随机抽取的学生的人数为:=60(人).(2)由题意,[110,120)分数段的人数为60×0.15=9(人)[120,130)分数段的人数为60×0.3=18(人).∵用分层抽样的方法在分数段为[110,130)的学生中抽取一个容量为6的样本∴需在分数段[110,120)内抽取2人,在[120,130)内抽取4人,至多有1人在分数段[120,130)内的概率:p=1﹣=1﹣=.(3)由频率分布直方图,得最高的小矩形的面积是0.3,其左边各小组的面积和是0.4,右边各小组的面积和是0.3.故中位数是120+×10≈123.33.【点评】本题主要考查了频率及频率分布直方图,以及概率和中位数的有关问题,考查运用统计知识解决简单实际问题的能力,数据处理能力和运用意识.17.设点,动圆P经过点F且和直线相切.记动圆的圆心P的轨迹为曲线W.(Ⅰ)求曲线W的方程;(Ⅱ)过点F作互相垂直的直线l1,l2,分别交曲线W于A,B和C,D.求四边形ACBD面积的最小值.【考点】直线与圆锥曲线的关系;抛物线的标准方程.【专题】计算题.【分析】(1)由题意可知,动圆到定点的距离与到定直线的距离相等,其轨迹为抛物线,写出其方程.(2)设出l1的方程y=kx+,联立l1和抛物线的方程,将AB的长度用k表示出来,同理,l2的方程为y=,将CD的长度也用k表示出来.再由四边形面积公式|AB|•|CD|,算出表达式,再用不等式放缩即得.【解答】解:(Ⅰ)过点P作PN垂直直线于点N.依题意得|PF|=|PN|,所以动点P的轨迹为是以为焦点,直线为准线的抛物线,即曲线W的方程是x2=6y(Ⅱ)依题意,直线l1,l2的斜率存在且不为0,设直线l1的方程为,由l1⊥l2得l2的方程为.将代入x2=6y,化简得x2﹣6kx﹣9=0设A(x1,y1),B(x2,y2),则x1+x2=6k,x1x2=﹣9.∴,同理可得.∴四边形ACBD的面积,当且仅当,即k=±1时,S min=72.故四边形ACBD面积的最小值是72.【点评】高考中对圆锥曲线基本定义的考查仍是一个重点,本题中,对于对角线互相垂直的四边形的面积,可用两条对角线长的乘积的表示.18.过椭圆Γ:+=1(a>b>0)右焦点F2的直线交椭圆于A,B两点,F1为其左焦点,已知△AF1B的周长为8,椭圆的离心率为.(Ⅰ)求椭圆Γ的方程;(Ⅱ)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆Γ恒有两个交点P,Q,且⊥?若存在,求出该圆的方程;若不存在,请说明理由.【考点】直线与圆锥曲线的关系;椭圆的标准方程.【专题】圆锥曲线的定义、性质与方程.【分析】(Ⅰ)由题意列关于a,c的方程组,求解方程组的a,c的值,由b2=a2﹣c2求得b的值,则椭圆方程可求;(Ⅱ)假设满足条件的圆存在,设出圆的方程,分直线PQ的斜率存在和不存在讨论,当直线PQ的斜率存在时,设其方程为y=kx+t,和椭圆方程联立后化为关于x的一元二次方程,利用根与系数关系求出P,Q两点横纵坐标的积,由⊥得其数量积等于0,代入坐标的乘积得到k和t的关系,再由圆心到直线的距离等于半径求出圆的半径,然后验证直线斜率不存在时成立.从而得到满足条件的圆存在.【解答】解:(Ⅰ)由已知,得,解得:,∴b2=a2﹣c2=4﹣3=1.故椭圆Γ的方程为;(Ⅱ)假设满足条件的圆存在,其方程为x2+y2=r2(0<r<1).当直线PQ的斜率存在时,设其方程为y=kx+t,由,得(1+4k2)x2+8ktx+4t2﹣4=0.设P(x1,y1),Q(x2,y2),则,①∵,∴x1x2+y1y2=0,又y1=kx1+t,y2=kx2+t,∴x1x2+(kx1+t)(kx2+t)=0,即(1+k2)x1x2+kt(x1+x2)+t2=0.②将①代入②,得,即t2=(1+k2).∵直线PQ与圆x2+y2=r2相切,∴r==∈(0,1),∴存在圆x2+y2=满足条件.当直线PQ的斜率不存在时,易得=,代入椭圆Γ的方程,得=,满足.综上所述,存在圆心在原点的圆x2+y2=满足条件.【点评】本题考查了椭圆的标准方程,考查了直线和圆锥曲线的关系,体现了分类讨论的数学思想方法,涉及直线和圆锥曲线的关系问题,常采用把直线和圆锥曲线联立,利用根与系数的关系求解,考查了计算能力,属高考试卷中的压轴题.。

2016-2017学年新课标人教版高一(上)期末统考数学试卷及答案

2016-2017学年新课标人教版高一(上)期末统考数学试卷及答案

2016-2017学年第一学期期末统考高一数学试卷 一、选择题: (本大题共12小题,每小题5分,共60分,)1.集合U={}6,5,4,3,2,1,A={}5,3,1,B={}5,4,2,则A ⋂()B C U 等于 A.()6,3,1 B {}3,1 C. {}1 D.{}5,4,2 2.已知集合A=[]6,0,集合B=[]3,0,则下列对应关系中,不能看作从A 到B 的映射的是( )A. f: x →y=61x B. f: x →y=31x C. f: x →y=21x D. f: x →y=x3.已知A(2,0,1),B(1,-3,1),点M 在x 轴上,且到A 、B 两点间的距离相等,则M 的坐标为( ) A.(-3,0,0) B.(0,-3,0) C.(0,0,-3) D.(0,0,3)4.函数y=x 2+2(m-1)x+3在区间()2,-∞-上是单调递减的,则m 的取值范围是( )A. m ≤3B. m ≥3C. m ≤-3D. m ≥-3 5.函数f(x)=log 2x+2x-1的零点必落在区间( ) A.(81,41) B. (41,21) C.(21,1) D.(1,2) 6.一个四棱锥的底面为正方形,其三视图如图所示,其中主视图和左视图均为等腰三角形,俯视图是一个正方形,则这个四棱锥的体积是( ) A.1 B. 2 C . 3 D.47.已知二次函数f(x)=x 2-x+a(a>0),若f(m)<0,则f(m-1)的值是( ) A.正数 B.负数 C.零 D.符号与a 有关8.直线x+y+6=0截圆x 2+y 2=4得劣弧所对圆心角为( )A.6π B. 3π C. 2πD. 32π9.如图,在正四棱柱ABCD-A 1B 1C 1D 1中,E 、F 分别是AB 1、BC 1A.EF与BB 1垂直 B. EF 与A 1C 1异面 C.EF 与CD 异面D.EF 与BD 垂直10.已知偶函数f(x)在[]2,0单调递减,若a=f(0.54),b=f(log 214),c=f(26.0),则a, b, c 的大小关系是( ) A. a>b>c B. c>a>b C. a>c>b D .b>c>a11.已知圆C 与直线3x-4y=0及3x-4y=10都相切,圆心在直线4x+3y=0上,则圆C 的方程为( )A. (x-53)2+(y+54)2=1B. (x+53)2+(y+54)2=1 C.(x+53)2+(y-54)2=1 D. (x-53)2+(y-54)2=112.对于函数f(x),若任给实数a,b,c ,f(a),f(b),f(c)为某一三角形的三边长,则称f(x)为 “可构造三角形函数”。

【精品】2016-2017年天津市红桥区高一(上)期末数学试卷带解析

【精品】2016-2017年天津市红桥区高一(上)期末数学试卷带解析

2016-2017学年天津市红桥区高一(上)期末数学试卷一、选择题:本大题共8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(4分)已知向量=(﹣1,6),=(3,﹣2),则+=()A.(4,4) B.(2,4) C.(﹣2,4)D.(﹣4,4)2.(4分)把216°化为弧度是()A. B. C. D.3.(4分)sin的值为()A.B.C.﹣D.﹣4.(4分)如图,平行四边形ABCD的两条对角线相交于点M,且=,=,则=()A.+ B.﹣﹣C.﹣D.﹣+5.(4分)函数y=cos的最小正周期是()A.B.πC.2πD.4π6.(4分)已知a=sin210°,b=sin110°,c=cos180°,则a,b,c的大小关系是()A.a>b>c B.b>a>c C.a>c>b D.c>b>a7.(4分)已知点A(﹣1,2),B(1,﹣3),点P在线段AB的延长线上,且=3,则点P的坐标为()A.(3,﹣)B.(,﹣)C.(2,﹣) D.(,﹣)8.(4分)已知函数f(x)=sin(x+)+cos(x﹣)+m的最大值为2,则实数m的值为()A.2 B.C.D.2二、填空题:本大题共5小题,每小题4分,共20分)9.(4分)在0°~180°范围内,与﹣950°终边相同的角是.10.(4分)在半径为12mm的圆上,弧长为144mm的弧所对的圆心角的弧度数为.11.(4分)函数的定义域为.12.(4分)已知向量=(2,5),=(x,﹣2),且∥,则x=.13.(4分)在△ABC中,点M,N满足=2,=.若=x+y,则x+y=.三、解答题:本大题共4小题,共48分.解答写出文字说明、证明过程或演算过程.14.(12分)已知向量=(﹣3,4),=(2,2).(Ⅰ)求与夹角的余弦值;(Ⅱ)λ为何值时,+λ与垂直.15.(12分)已知sinα=,α∈(,π).(Ⅰ)求cosα,tanα;(Ⅱ)sin(α+);(Ⅲ)cos2α.16.(12分)已知函数f(x)=cos2x+sinxcosx﹣,x∈R.(Ⅰ)求函数f(x)的图象的对称轴方程;(Ⅱ)求函数f(x)的单调增区间;(Ⅲ)求f(x)在区间[0,]上的最小值.17.(12分)函数f(x)=Asin(ωx+φ),x∈R,(ω>0,﹣<φ<)的部分图象如图所示.(Ⅰ)确定A,ω,φ的值,并写出函数f(x)的解析式;(Ⅱ)描述函数y=f(x)的图象可由函数y=sinx的图象经过怎样的变换而得到;(Ⅲ)若f()=(<α<),求tan2(α﹣).2016-2017学年天津市红桥区高一(上)期末数学试卷参考答案与试题解析一、选择题:本大题共8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(4分)已知向量=(﹣1,6),=(3,﹣2),则+=()A.(4,4) B.(2,4) C.(﹣2,4)D.(﹣4,4)【解答】解:因为向量=(﹣1,6),=(3,﹣2),则+=(2,4),故选:B.2.(4分)把216°化为弧度是()A. B. C. D.【解答】解:216°=π=π,故选:A.3.(4分)sin的值为()A.B.C.﹣D.﹣【解答】解:sin=sin(2π﹣)=﹣sin=﹣,故选:C.4.(4分)如图,平行四边形ABCD的两条对角线相交于点M,且=,=,则=()A.+ B.﹣﹣C.﹣D.﹣+【解答】解:∵平行四边形ABCD中,=,=,∴=﹣=﹣,∵两条对角线相交于点M,可得M是AC、BD的中点∴==(﹣)=﹣=﹣+,故选:D.5.(4分)函数y=cos的最小正周期是()A.B.πC.2πD.4π【解答】解:函数y=cos的最小正周期是=4π,故选:D.6.(4分)已知a=sin210°,b=sin110°,c=cos180°,则a,b,c的大小关系是()A.a>b>c B.b>a>c C.a>c>b D.c>b>a【解答】解:∵a=sin210°=,b=sin110°=sin(180°﹣70°)=sin70°>0,c=cos180°=﹣1,∴b>a>c.故选:B.7.(4分)已知点A(﹣1,2),B(1,﹣3),点P在线段AB的延长线上,且=3,则点P的坐标为()A.(3,﹣)B.(,﹣)C.(2,﹣) D.(,﹣)【解答】解:点A(﹣1,2),B(1,﹣3),点P在线段AB的延长线上,且=3,如图所示;设点P的坐标为(x,y),则=(x+1,y﹣2),=(1﹣x,﹣3﹣y);且=﹣3,即,解得x=2,y=﹣,所以点P为(2,﹣).故选:C.8.(4分)已知函数f(x)=sin(x+)+cos(x﹣)+m的最大值为2,则实数m的值为()A.2 B.C.D.2【解答】解:∵函数f(x)=sin(x+)+cos(x﹣)+m=cosx+sinx+m=sin (x+)+m的最大值为+m=2,则实数m=,故选:B.二、填空题:本大题共5小题,每小题4分,共20分)9.(4分)在0°~180°范围内,与﹣950°终边相同的角是130°.【解答】解:∵﹣950°=﹣1080°+130°=﹣3×360°+130°.∴在0°~180°范围内,与﹣1050°的角终边相同的角是130°.故答案为:130°.10.(4分)在半径为12mm的圆上,弧长为144mm的弧所对的圆心角的弧度数为12.【解答】解:由题意可得:L=144mm,R=12mm,∵L=Rθ,∴θ===12rad.故答案为:12.11.(4分)函数的定义域为.【解答】解:要使函数有意义,需,解得故答案为.12.(4分)已知向量=(2,5),=(x,﹣2),且∥,则x=.【解答】解:∵向量=(2,5),=(x,﹣2),且∥,∴﹣4﹣5x=0,解得x=,故答案为:.13.(4分)在△ABC中,点M,N满足=2,=.若=x+y,则x+y=.【解答】解:∵在△ABC中,点M,N满足=2,=,∴====,∴x=,y=﹣,∴x+y=.故答案为:.三、解答题:本大题共4小题,共48分.解答写出文字说明、证明过程或演算过程.14.(12分)已知向量=(﹣3,4),=(2,2).(Ⅰ)求与夹角的余弦值;(Ⅱ)λ为何值时,+λ与垂直.【解答】解:(Ⅰ)由题意可得,,=x1x2+y1y2=﹣6+8=2,∴,即与夹角的余弦值为.(Ⅱ)+λ=(﹣3+2λ,4+2λ),∵+λ与垂直,则(+λ)•=(﹣3)(﹣3+2λ)+4(4+2λ)=0,解得.15.(12分)已知sinα=,α∈(,π).(Ⅰ)求cosα,tanα;(Ⅱ)sin(α+);(Ⅲ)cos2α.【解答】解:(Ⅰ)因为,所以,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2分);﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)(Ⅱ)﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)=﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)(Ⅲ).﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)16.(12分)已知函数f(x)=cos2x+sinxcosx﹣,x∈R.(Ⅰ)求函数f(x)的图象的对称轴方程;(Ⅱ)求函数f(x)的单调增区间;(Ⅲ)求f(x)在区间[0,]上的最小值.【解答】解:(Ⅰ)=﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)其对称轴方程为,k∈Z;﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)(Ⅱ)令,k∈Z,得,k∈Z,故f(x)的单调递增区间为k∈Z﹣﹣﹣﹣﹣﹣﹣﹣(9分)(Ⅲ)f(x)在区间上单调递增,在上单调递减,故f(x)在时取得最小值为﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)17.(12分)函数f(x)=Asin(ωx+φ),x∈R,(ω>0,﹣<φ<)的部分图象如图所示.(Ⅰ)确定A,ω,φ的值,并写出函数f(x)的解析式;(Ⅱ)描述函数y=f(x)的图象可由函数y=sinx的图象经过怎样的变换而得到;(Ⅲ)若f()=(<α<),求tan2(α﹣).【解答】解:(Ⅰ)根据函数f(x)=Asin(ωx+φ)的图象知A=2.∵=﹣(),∴T=π.∴ω=2.由五点法作图知当x=时,ωx+φ=,即2×π+φ=,∴φ=﹣.故.(Ⅱ)先把y=sinx的图象向右平移个单位长度得到的图象,使曲线上各点的横坐标变为原来的,得到函数的图象,最后把曲线上各点的纵坐标变为原来的2倍,得到.(Ⅲ)由得,因为所以,得,故,∴.赠送初中数学几何模型【模型三】双垂型:图形特征:60°运用举例:1.在Rt△ABC中,∠ACB=90°,以斜边AB为底边向外作等腰三角形PAB,连接PC. (1)如图,当∠APB=90°时,若AC=5,PC=62,求BC的长;(2)当∠APB=90°时,若AB=45APBC的面积是36,求△ACB的周长.P2.已知:如图,B、C、E三点在一条直线上,AB=AD,BC=CD.(1)若∠B=90°,AB=6,BC=23,求∠A的值;(2)若∠BAD+∠BCD=180°,cos∠DCE=35,求ABBC的值.3.如图,在四边形ABCD中,AB=AD,∠DAB=∠BCD=90°,(1)若AB=3,BC+CD=5,求四边形ABCD的面积(2)若p= BC+CD,四边形ABCD的面积为S,试探究S与p之间的关系。

天津市2016-2017学年高一上学期六校联考数学 含解析

天津市2016-2017学年第一学期六校联考高一数学一.选择题1.已知集合A={0,1},B={﹣1,0,a+3},且A⊆B,则a等于( ) A.1 B.0 C.﹣2 D.﹣32.设全集U=R,A={x∈N|1≤x≤5},B=x∈R|x2﹣x﹣2=0},则图中阴影表示的集合为( )A.{﹣1}B.{2}C.{3,4,5}D.{3,4}3.函数f(x)=+lg(x﹣1)+(x﹣3)0的定义域为()A.{x|1<x≤4} B.{x|1<x≤4且x≠3} C.{x|1≤x≤4且x ≠3} D.{x|x≥4}4.已知a=log0.60.5,b=ln0.5,c=0.60.5.则( )A.a>b>c B.a>c>b C.c>a>b D.c>b>a5.设函数f(x)=ln(1﹣x)﹣ln(1+x),则f(x)是( )A.奇函数,且在(0,1)上是增函数B.奇函数,且在(0,1)上是减函数C.偶函数,且在(0,1)上是增函数D.偶函数,且在(0,1)上是减函数6.函数y=2x﹣1+x﹣1的零点为x0,则x0∈( )A.(﹣1,0)B.(0,) C.(,1)D.(1,)7.已知f(x)=log(x2﹣2x)的单调递增区间是()A.(1,+∞)B.(2,+∞)C.(﹣∞,0)D.(﹣∞,1)8.已知函数f(x)=,若存在x1∈(0,+∞),x2∈(﹣∞,0],使得f(x1)=f(x2),则x1的最小值为()A.log23 B.log32 C.1 D.2二.填空题9.已知集合A={1,2a},B={a,b},若A∩B={},则A∪B为.10.设函数f(x)=,则f(2)= .11.已知定义域为的奇函数f(x)=2016x3﹣5x+b+2,则f(a)+f(b)的值为.12.若幂函数在(0,+∞)上是增函数,则m= .13.已知函数f(x)=log a x+b(a>0,a≠1)的定义域、值域都是,则a+b= .14.已知函数f(x)是定义在R上的奇函数,若f(x)=,则关于x的方程f(x)+a=0(0<a<1)的所有根之和为.三。

天津市滨海新区2016-2017学年高一上学期期末数学试卷Word版含解析 (2)

天津市滨海新区2016-2017学年高一上学期期末数学试卷一、选择题1.设全集U=R,集合A={x|x2﹣1<0},B={x|x(x﹣2)>0},则A∩(∁uB)=()A.{x|0<x<2} B.{x|0<x<1} C.{x|0≤x<1} D.{x|﹣1<x<0}2.设x,y∈R,向量=(x,1),=(1,y),=(2,﹣4),且⊥,∥,则|+|=()A.B.C.D.103.已知f(x)是定义在R上的偶函数,且在(0,+∞)上是增函数,设a=f(﹣),b=f(log3),c=f(),则a、b、c的大小关系是()A.a<c<b B.b<a<c C.b<c<a D.c<b<a4.要得到函数y=3cosx的图象,只需将函数y=3sin(2x﹣)的图象上所有点的()A.横坐标缩短到原来的(纵坐标不变),所得图象再向左平移个单位长度B.横坐标缩短到原来的(纵坐标不变),所得图象再向右平移个单位长度C.横坐标伸长到原来的2倍(纵坐标不变),所得图象再向左平移个单位长度D.横坐标伸长到原来的2倍(纵坐标不变),所得图象再向右平移个单位长度5.函数f(x)=2sin(ωx+φ)(ω>0,﹣<φ)的部分图象如图所示,则ω,φ的值分别是()A.2,﹣B.2,﹣C.4,﹣D.4,6.设sin(+θ)=,则sin2θ=()A.﹣B.﹣C.D.7.已知函数f(x)=,当x1≠x2时,<0,则a的取值范围是()A.(0,] B.[,] C.(0,] D.[,]8.已知函数有3个零点,则实数a的取值范围是()A.a<1 B.a>0 C.a≥1 D.0<a<1二、填空题9.已知函数f(x)=,则f(f())的值是.10.的增区间为.11.如图,边长为l的菱形ABCD中,∠DAB=60°,,则= .12.已知f(x)是R上的奇函数,满足f(x+2)=f(x),当x∈(0,1)时,f(x)=2x﹣2,则f(log6)= .13.已知函数f(x)=2x﹣2﹣x,若对任意的x∈[1,3],不等式f(x2+tx)+f(4﹣x)>0恒成立,则实数t的取值范围是.14.给出下列五个命题:①函数的一条对称轴是x=;②函数y=tanx的图象关于点(,0)对称;③正弦函数在第一象限为增函数;④若,则x1﹣x2=kπ,其中k∈Z;⑤函数f(x)=sinx+2|sinx|,x∈[0,2π]的图象与直线y=k有且仅有两个不同的交点,则k 的取值范围为(1,3).以上五个命题中正确的有(填写所有正确命题的序号)三、解答题:(共64分)15.(10分)已知,与的夹角为120°.(Ⅰ)求的值;(Ⅱ)当实数x 为何值时,与垂直?16.(13分)己知3sin (π﹣α)+cos (2π﹣α)=0.(1)求(2)求(3)求.17.(13分)已知函数f (x )=4cos ωx•sin(ωx+)+a (ω>0)图象上最高点的纵坐标为2,且图象上相邻两个最高点的距离为π. (Ⅰ)求a 和ω的值;(Ⅱ)求函数f (x )在[0,π]上的单调递减区间.18.(14分)已知函数(1)求函数f (x )在上的最大值与最小值;(2)已知,x 0∈(,),求cos4x 0的值.19.(14分)已知函数f(x)=ax2﹣x+2a﹣1(a>0).(1)若f(x)在区间[1,2]为单调增函数,求a的取值范围;(2)设函数f(x)在区间[1,2]上的最小值为g(a),求g(a)的表达式;(3)设函数,若对任意x1,x2∈[1,2],不等式f(x1)≥h(x2)恒成立,求实数a的取值范围.天津市滨海新区2016-2017学年高一上学期期末数学试卷卷参考答案与试题解析一、选择题1.设全集U=R,集合A={x|x2﹣1<0},B={x|x(x﹣2)>0},则A∩(∁uB)=()A.{x|0<x<2} B.{x|0<x<1} C.{x|0≤x<1} D.{x|﹣1<x<0}【考点】交、并、补集的混合运算.【分析】先分别求出集合A,B,CU B,由此利用交集定义能求出A∩(∁uB).【解答】解:∵全集U=R,集合A={x|x2﹣1<0}={x|﹣1<x<1},B={x|x(x﹣2)>0}={x|x<0或x>2},∴CUB={x|0≤x≤2},∴A∩(∁uB)={x|0≤x<1}.故选:C.【点评】本题考查补集、交集的求法,是基础题,解题时要认真审题,注意补集、交集的定义的合理运用.2.设x,y∈R,向量=(x,1),=(1,y),=(2,﹣4),且⊥,∥,则|+|=()A.B.C.D.10【考点】平行向量与共线向量;向量的模.【分析】由向量平行与垂直的充要条件建立关于x、y的等式,解出x、y的值求出向量的坐标,从而得到向量的坐标,再由向量模的公式加以计算,可得答案.【解答】解:∵,且,∴x•2+1•(﹣4)=0,解得x=2.又∵,且,∴1•(﹣4)=y•2,解之得y=﹣2,由此可得,,∴=(3,﹣1),可得==.故选:B【点评】本题给出向量互相平行与垂直,求向量的模.着重考查了向量平行、垂直的充要条件和向量模的公式等知识,属于基础题.3.已知f (x )是定义在R 上的偶函数,且在(0,+∞)上是增函数,设a=f (﹣),b=f(log 3),c=f (),则a 、b 、c 的大小关系是( ) A .a <c <b B .b <a <c C .b <c <a D .c <b <a 【考点】奇偶性与单调性的综合.【分析】利用f (x )是定义在R 上的偶函数,化简a ,b ,利用函数在(0,+∞)上是增函数,可得a ,b ,c 的大小关系.【解答】解:a=f (﹣)=f (),b=f (log 3)=f (log 32),c=f (),∵0<log 32<1,1<<,∴>>log 32.∵f (x )在(0,+∞)上是增函数, ∴a >c >b , 故选C .【点评】本题考查函数单调性与奇偶性的结合,考查学生分析解决问题的能力,属于基础题.4.要得到函数y=3cosx 的图象,只需将函数y=3sin (2x ﹣)的图象上所有点的( )A .横坐标缩短到原来的(纵坐标不变),所得图象再向左平移个单位长度B .横坐标缩短到原来的(纵坐标不变),所得图象再向右平移个单位长度C .横坐标伸长到原来的2倍(纵坐标不变),所得图象再向左平移个单位长度D .横坐标伸长到原来的2倍(纵坐标不变),所得图象再向右平移个单位长度【考点】函数y=Asin (ωx+φ)的图象变换.【分析】利用诱导公式将y=3cosx 转化为:y=3sin (+x ),再利用函数y=Asin (ωx+φ)的图象的伸缩变换与平移变换即可得到答案.【解答】解:∵y=3cosx=3sin(+x),令y=f(x)=3sin(+x),要得到y=f(x)=3sin(+x)的图象,需将函数y=3sin(2x﹣)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到g(x)=3sin(x﹣);∵g(x+)=3sin[(x+)﹣]=3sin(+x)=f(x),即:将g(x)=3sin(x﹣)的图象再向左平移个单位长度,可得到y=f(x)=3sin(+x)的图象.故选C.【点评】本题考查函数y=Asin(ωx+φ)的图象的伸缩变换与平移变换,考查诱导公式的应用,属于中档题.5.函数f(x)=2sin(ωx+φ)(ω>0,﹣<φ)的部分图象如图所示,则ω,φ的值分别是()A.2,﹣B.2,﹣C.4,﹣D.4,【考点】由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】由函数的最小正周期的公式即可求出ω,由五点法作图可得φ的值.【解答】解:由图象知=,即函数的周期T=π,由T=得ω=2,∵f()=2sin(2×+φ)=2,得sin(+φ)=1,即+φ=,则φ=kπ﹣,k∈Z,∵﹣<φ,∴k=0时,φ=﹣,故选:B【点评】本题考查有部分图象确定函数的解析式,本题解题的关键是确定初相的值,这里利用代入点的坐标求出初相.6.设sin(+θ)=,则sin2θ=()A.﹣B.﹣C.D.【考点】二倍角的余弦;三角函数的恒等变换及化简求值.【分析】根据两角和的正弦函数公式和特殊角的三角函数值化简已知条件,然后两边平方利用同角三角函数间的基本关系及二倍角的正弦函数公式化简,即可sin2θ的值.【解答】解:由sin(+θ)=sin cosθ+cos sinθ=(sinθ+cosθ)=,两边平方得:1+2sinθcosθ=,即2sinθcosθ=﹣,则sin2θ=2sinθcosθ=﹣.故选A【点评】此题考查学生灵活运用二倍角的正弦函数公式、两角和与差的正弦函数公式及特殊角的三角函数值化简求值,是一道基础题.7.已知函数f(x)=,当x1≠x2时,<0,则a的取值范围是()A.(0,] B.[,] C.(0,] D.[,]【考点】函数单调性的性质;分段函数的应用.【分析】由题意可得,函数是定义域内的减函数,故有,由此解得a 的范围.【解答】解:∵当x 1≠x 2时,<0,∴f (x )是R 上的单调减函数,∵f (x )=,∴,∴0<a ≤, 故选:A .【点评】本题主要考查函数的单调性的判断和单调性的性质,属于中档题.8.已知函数有3个零点,则实数a 的取值范围是( ) A .a <1B .a >0C .a ≥1D .0<a <1【考点】根的存在性及根的个数判断.【分析】作出函数f (x )的图象,利用函数f (x )有3个零点,建立条件关系即可求出a 的取值范围.【解答】解:函数f (x )有3个零点,须满足,即,即0<a <1,故选D.【点评】本题主要考查函数零点的应用,利用数形结合是解决本题的关键.二、填空题9.已知函数f(x)=,则f(f())的值是.【考点】分段函数的应用.【分析】由已知中函数f(x)=,代入可得答案.【解答】解:∵函数f(x)=,∴f()=﹣2,f(f())=f(﹣2)=,故答案为:【点评】本题考查的知识点是分段函数的应用,函数求值,难度基础.10.的增区间为(﹣1,1).【考点】复合函数的单调性.【分析】由对数型复合函数的真数大于0求出函数的定义域,进一步求出内函数的减区间得答案.【解答】解:由3﹣2x﹣x2>0,得x2+2x﹣3<0,解得﹣3<x<1.当x∈(﹣1,1)时,内函数t=﹣x2﹣2x+3为减函数,而外函数y=为减函数,由复合函数的单调性可得,的增区间为(﹣1,1).故答案为:(﹣1,1).【点评】本题主要考查了复合函数的单调性以及单调区间的求法.对应复合函数的单调性,一要注意先确定函数的定义域,二要利用复合函数与内层函数和外层函数单调性之间的关系进行判断,判断的依据是“同增异减”,是基础题.11.如图,边长为l的菱形ABCD中,∠DAB=60°,,则= .【考点】平面向量数量积的运算.【分析】以A为原点,AB所在直线为x轴,建立如图坐标系,可得A、B、C、D各点的坐标,结合题中数据和等式,可得向量、的坐标,最后用向量数量积的坐标公式,可算出的值.【解答】解:以A为原点,AB所在直线为x轴,建立如图坐标系∵菱形ABCD边长为1,∠DAB=60°,∴D(cos60°,sin60°),即D(,),C(,)∵,∴M为CD的中点,得=(+)=(2+)=(1,)又∵,∴ =+=(,)∴=1×+×=故答案为:【点评】本题在含有60度角的菱形中,计算向量的数量积,着重考查了向量的数量积坐标运算和向量在平面几何中的应用等知识,属于基础题.12.已知f(x)是R上的奇函数,满足f(x+2)=f(x),当x∈(0,1)时,f(x)=2x﹣2,则f(log6)= .【考点】抽象函数及其应用.【分析】由题意先判断﹣3<log6<﹣2,从而可知先用f(x+2)=f(x)转化到(﹣1,0),再用奇偶性求函数值即可.【解答】解:∵﹣3<log6<﹣2,又∵f(x+2)=f(x),∴f(log6)=f(log6+2)=f(log),∵﹣1<log<0,<1,∴0<log2又∵f(x)是R上的奇函数,)∴f(log)=﹣f(log2=﹣(﹣2)=﹣(﹣2)=,故答案为:.【点评】本题考查了抽象函数的应用,属于中档题.13.已知函数f(x)=2x﹣2﹣x,若对任意的x∈[1,3],不等式f(x2+tx)+f(4﹣x)>0恒成立,则实数t 的取值范围是 (﹣3.+∞) . 【考点】函数恒成立问题.【分析】通过判定函数f (x )=2x ﹣2﹣x )=2x ﹣x在R 上单调递增、奇函数,脱掉”f“,转化为恒成立问题,分离参数求解.【解答】解:∵函数f (x )=2x ﹣2﹣x )=2x ﹣x在R 上单调递增,又∵f (﹣x )=﹣(2x ﹣2﹣x)=﹣f (x ),故f (x )是奇函数,若对任意的x ∈[1,3],不等式f (x 2+tx )+f (4﹣x )>0恒成立,⇒对任意的x ∈[1,3],不等式f (x 2+tx )>f (﹣4+x )恒成立,⇒对任意的x ∈[1,3],x 2+(t ﹣1)x+4>0⇒(t ﹣1)x >﹣x 2﹣4⇒t ﹣1>﹣(x+,∵,∴t ﹣1>﹣4,即t >﹣3.故答案为:(﹣3.+∞)【点评】本题考查了函数的单调性、奇函数,恒成立问题,分离参数法,属于中档题.14.给出下列五个命题:①函数的一条对称轴是x=;②函数y=tanx 的图象关于点(,0)对称;③正弦函数在第一象限为增函数;④若,则x 1﹣x 2=k π,其中k ∈Z ;⑤函数f (x )=sinx+2|sinx|,x ∈[0,2π]的图象与直线y=k 有且仅有两个不同的交点,则k 的取值范围为(1,3).以上五个命题中正确的有 ①② (填写所有正确命题的序号) 【考点】正弦函数的图象;余弦函数的图象;正切函数的图象.【分析】①计算2sin (2×﹣)是否为最值±2进行判断;②根据正切函数的性质判断;③根据正弦函数的图象判断;④由得2x 1﹣和2x 2﹣关于对称轴对称或相差周期的整数倍;⑤作出函数图象,借助图象判断.【解答】解:当x=时,sin (2x ﹣)=sin=1,∴①正确;当x=时,tanx 无意义,∴②正确;当x >0时,y=sinx 的图象为“波浪形“曲线,故③错误;若,则2x 1﹣=2x 2﹣+2k π或2x 1﹣+(2x 2﹣)=2()=π+2k π,∴x 1﹣x 2=k π或x 1+x 2=+k π,k ∈Z .故④错误.作出f (x )=sinx+2|sinx|在[0,2π]上的函数图象,如图所示:则f (x )在[0,π]上过原点得切线为y=3x ,设f (x )在[π,2π]上过原点得切线为y=k 1x ,有图象可知当k 1<k <3时,直线y=kx 与f (x )有2个不同交点, ∵y=sinx 在[0,π]上过原点得切线为y=x ,∴k 1<1,故⑤不正确. 故答案为:①②.【点评】本题考查了三角函数的图象与性质,熟练掌握三角函数的性质是解题关键,属于基础题.三、解答题:(共64分)15.(10分)(2016秋•蓟县期末)已知,与的夹角为120°.(Ⅰ)求的值;(Ⅱ)当实数x 为何值时,与垂直?【考点】平面向量数量积的运算.【分析】(I )根据平面向量数量积的运算律计算;(II )令()•()=0,列方程解出x .【解答】解:(Ⅰ),,,∴.(Ⅱ)∵()⊥(),∴=0,即4x ﹣3(3x ﹣1)﹣27=0,解得.【点评】本题考查了平面向量的数量积运算,向量垂直与数量积的关系,属于中档题.16.(13分)(2016秋•蓟县期末)己知3sin (π﹣α)+cos (2π﹣α)=0.(1)求(2)求(3)求.【考点】三角函数的化简求值.【分析】根据同角三角函数关系式和万能公式化简后代入求值即可. 【解答】解:己知3sin (π﹣α)+cos (2π﹣α)=0.可得:3sin α+cos α=0,即tan α=;(1)=;(2)==;(3)tan2α==,∴.【点评】本题主要考察了同角三角函数关系式和万能公式的应用,属于基本知识的考查.17.(13分)(2016•河北区二模)已知函数f (x )=4cos ωx•sin(ωx+)+a (ω>0)图象上最高点的纵坐标为2,且图象上相邻两个最高点的距离为π.(Ⅰ)求a和ω的值;(Ⅱ)求函数f(x)在[0,π]上的单调递减区间.【考点】正弦函数的单调性;两角和与差的正弦函数.【分析】(Ⅰ)根据条件确定函数最值和周期,利用三角函数的公式进行化简即可求a和ω的值;(Ⅱ)根据三角函数的单调性即可求出函数的单调递减区间.【解答】解:(Ⅰ)==.当时,f(x)取得最大值2+1+a=3+a又f(x)最高点的纵坐标为2,∴3+a=2,即a=﹣1.又f(x)图象上相邻两个最高点的距离为π,∴f(x)的最小正周期为T=π故,ω=1(Ⅱ)由(Ⅰ)得由.得.令k=0,得:.故函数f(x)在[0,π]上的单调递减区间为【点评】本题主要考查三角函数的图象和性质,利用三角函数的图象以及三角函数的辅助角公式求出函数的解析式是解决本题的关键.18.(14分)(2016秋•蓟县期末)已知函数(1)求函数f(x)在上的最大值与最小值;(2)已知,x 0∈(,),求cos4x 0的值.【考点】三角函数中的恒等变换应用;正弦函数的图象.【分析】(1)利用二倍角和辅助角公式基本公式将函数化为y=Asin (ωx+φ)的形式,求出内层函数的取值范围,结合三角函数的图象和性质,求出f (x )的取值最大和最小值;(2)利用,x 0∈(,),代入化简,找出与cos4x 0的值关系,可求解.【解答】解:函数化简可得:3+sin2x ﹣=﹣cos2x ×+×sin2x+sin2x ﹣﹣cos2x=sin2x ﹣cos2x+=2sin (2x ﹣)+.∵x ∈上,∴2x ﹣∈[,].∴sin (2x ﹣)∈[,1].函数f (x )在上的最大值为,最小值为.(2)∵,即2sin (4x 0﹣)+=⇔sin (4x 0﹣)=∵x 0∈(,),4x 0﹣∈[,π],∴cos (4x 0﹣)=.cos4x 0=cos[4x 0﹣)]=cos (4x 0﹣)cos﹣sin (4x 0﹣)sin=×﹣=.【点评】本题主要考查对三角函数的化简能力和三角函数的图象和性质的运用,利用三角函数公式将函数进行化简是解决本题的关键.属于中档题.19.(14分)(2016秋•蓟县期末)已知函数f(x)=ax2﹣x+2a﹣1(a>0).(1)若f(x)在区间[1,2]为单调增函数,求a的取值范围;(2)设函数f(x)在区间[1,2]上的最小值为g(a),求g(a)的表达式;(3)设函数,若对任意x1,x2∈[1,2],不等式f(x1)≥h(x2)恒成立,求实数a的取值范围.【考点】二次函数的性质;函数的最值及其几何意义.【分析】(1)若f(x)在区间[1,2]为单调增函数,则,解得a的取值范围;(2)分类讨论给定区间与对称轴的关系,分析出各种情况下g(x)的表达式,综合讨论结果,可得答案;(3)不等式f(x1)≥h(x2)恒成立,即f(x)min≥h(x)max,分类讨论各种情况下实数a的取值,综合讨论结果,可得答案.【解答】解:(1)∵函数f(x)=ax2﹣x+2a﹣1(a>0)的图象是开口朝上,且以直线x=为对称轴的抛物线,若f(x)在区间[1,2]为单调增函数则,解得:…(2分)(2)①当0<<1,即a>时,f(x)在区间[1,2]上为增函数,此时g(a)=f(1)=3a﹣2…②当1≤≤2,即时,f(x)在区间[1,]是减函数,在区间[,2]上为增函数,此时g(a)=f()=…(7分)③当>2,即0<a<时,f(x)在区间[1,2]上是减函数,此时g(a)=f(2)=6a﹣3…(8分)综上所述:…(10分)(3)对任意x1,x2∈[1,2],不等式f(x1)≥h(x2)恒成立,即f(x)min ≥h(x)max,由(2)知,f(x)min=g(a)又因为函数,所以函数h(x)在[1,2]上为单调减函数,所以,…(12分)①当时,由g(a)≥h(x)max得:,解得,(舍去)…(13分)②当时,由g(a)≥h(x)max得:,即8a2﹣2a﹣1≥0,∴(4a+1)(2a﹣1)≥0,解得所以。

天津市滨海新区2016-2017学年度第一学期期末质量检测A卷·高二年级数学(理)试卷PDF


2 22
2
∴ cos DNM DN 2 MN 2 DM 2 3 即为所求
2DN MN
3
(Ⅲ)连接 AC 与 BD 交于点 K
∵平面 ACE∩平面 BDF=FP
∴EC∥FP
又∵△APB∽△CPD ∴ EF CP CD 1
FA PA AB 2 ∴ EF 1
EA 3
高二数学(理)答案 第 2页(共 3页)
,则
Q(
x1
2
x2
,
y1
2
y2
)

x12 32 x22
32

y12 16 y22 16
1
1
y2 y1 x2 x1
y1 y2
2 x1 x2
2
1 k yQ
2
xQ


1 2

yQ


xQ 2k
…… ①

Q(xQ ,
xQ 2k
)
代入直线
ABCD 的中心,E、F 分别是 CC1、AD 的中点,那么
异面直线 OE 和 FD1 所成角的余弦值等于 ▲ .
2 正视图
(12)抛物线 y2=4x 的焦点为 F,点 P 为抛物线上的动点,
1
点 M 为其准线上的动点,当△FPM 为等边三角形时, 其面积为 ▲ .
1
2 俯视图
1 2
2 侧视图
(13)已知 p: x [1,2] , x2 a 0 成立;q: x0 R , x02 2ax0 2 a 0 成立.若命
2b2 18
令 NP max 2b2 18 5 2 ,得 b 4 ,符合条件

天津市和平区2016-2017学年高一上学期期末数学试卷Word版含解析

天津市和平区2016-2017学年高一上学期期末数学试卷一.选择题:每小题给出的四个选项中,只有一个是符合要求的1.cos等于()A.﹣B.﹣C.D.2.已知=2,则tanα的值为()A.B.﹣C.D.﹣3.函数f(x)=sin(+)(x∈R)的最小正周期是()A.B.πC.2π D.4π4.为了得到周期y=sin(2x+)的图象,只需把函数y=sin(2x﹣)的图象()A.向左平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度5.设平面向量=(5,3),=(1,﹣2),则﹣2等于()A.(3,7)B.(7,7)C.(7,1)D.(3,1)6.若平面向量与的夹角为120°,=(,﹣),||=2,则|2﹣|等于()A.B.2C.4 D.127.如图,在平行四边形ABCD中, =(3,2),=(﹣1,2),则•等于()A.1 B.6 C.﹣7 D.78.已知sinα+cosα=,则sin2α的值为()A.B.±C.﹣D.09.计算cos•cos的结果等于()A.B. C.﹣D.﹣10.已知α,β∈(0,),且满足sinα=,cosβ=,则α+β的值为()A.B.C.D.或二.填空题(本大题共5小题,每小题4分,共20分)11.函数f(x)=2sinωx(ω>0)在[0,]上单调递增,且在这个区间上的最大值是,则ω的值为.12.已知向量=(﹣1,2),=(2,﹣3),若向量λ+与向量=(﹣4,7)共线,则λ的值为.13.已知函数y=3cos(x+φ)﹣1的图象关于直线x=对称,其中φ∈[0,π],则φ的值为.14.若tanα=2,tanβ=,则tan(α﹣β)等于.15.如图,在矩形ABCD中,AB=3,BC=2,若点E为BC的中点,点F在CD上,•=6,则•的值为三.解答题(本大题5小题,共40分)16.已知向量与共线, =(1,﹣2),•=﹣10(Ⅰ)求向量的坐标;(Ⅱ)若=(6,﹣7),求|+|17.已知函数f(x)=cos2x+2sinx(Ⅰ)求f(﹣)的值;(Ⅱ)求f(x)的值域.18.已知sinα=,α∈(,π)(Ⅰ)求sin(α﹣)的值;(Ⅱ)求tan2α的值.19.已知=(1,2),=(﹣2,6)(Ⅰ)求与的夹角θ;(Ⅱ)若与共线,且﹣与垂直,求.20.已知函数f(x)=sinx(2cosx﹣sinx)+1 (Ⅰ)求f(x)的最小正周期;(Ⅱ)讨论f(x)在区间[﹣,]上的单调性.天津市和平区2016-2017学年高一上学期期末数学试卷参考答案与试题解析一.选择题:每小题给出的四个选项中,只有一个是符合要求的1.cos 等于( )A .﹣B .﹣C .D .【考点】运用诱导公式化简求值.【分析】利用诱导公式,特殊角的三角函数值即可计算得解.【解答】解:cos =cos (2π﹣)=cos=.故选:C .2.已知=2,则tan α的值为( )A .B .﹣C .D .﹣【考点】同角三角函数基本关系的运用.【分析】利用同角三角函数的基本关系,求得tan α的值.【解答】解:∵==2,则tan α=﹣,故选:B .3.函数f (x )=sin (+)(x ∈R )的最小正周期是( )A .B .πC .2πD .4π【考点】三角函数的周期性及其求法.【分析】根据正弦型函数y=Asin (ωx+φ)的最小正周期是T=,写出答案即可.【解答】解:函数f (x )=sin (+)(x ∈R )的最小正周期是:T===4π.故选:D.4.为了得到周期y=sin(2x+)的图象,只需把函数y=sin(2x﹣)的图象()A.向左平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度【考点】函数y=Asin(ωx+φ)的图象变换.【分析】由于sin(2x+)=sin[2(x+)﹣],根据函数y=Asin(ωx+φ)的图象变换规律即可得解.【解答】解:∵y=sin(2x+)=sin[2(x+)﹣],∴只需把函数y=sin(2x﹣)的图象向左平移个单位长度即可得到y=sin(2x+)的图象.故选:A.5.设平面向量=(5,3),=(1,﹣2),则﹣2等于()A.(3,7)B.(7,7)C.(7,1)D.(3,1)【考点】平面向量的坐标运算.【分析】利用平面向量坐标运算法则求解.【解答】解:∵平面向量=(5,3),=(1,﹣2),∴﹣2=(5,3)﹣(2,﹣4)=(3,7).故选:A.6.若平面向量与的夹角为120°,=(,﹣),||=2,则|2﹣|等于()A.B.2C.4 D.12【考点】平面向量数量积的运算.【分析】根据向量的模,以及向量的数量积公式计算即可.【解答】解:∵平面向量与的夹角为120°,=(,﹣),||=2,∴||=1,∴=||•||•cos120°=1×2×=﹣1,∴|2﹣|2=4||2+||2﹣4=4+4﹣4×(﹣1)=12,∴|2﹣|=2故选:B7.如图,在平行四边形ABCD中, =(3,2),=(﹣1,2),则•等于()A.1 B.6 C.﹣7 D.7【考点】平面向量数量积的运算.【分析】利用平行四边形的性质,表示出向量,从而求出数量积【解答】解:∵=+=(3,2),=﹣=(﹣1,2),∴2=(2,4),∴=(1,2),∴•=(3,2)•(1,2)=3+4=7,故选:D8.已知sinα+cosα=,则sin2α的值为()A.B.±C.﹣D.0【考点】同角三角函数基本关系的运用.【分析】利用同角三角函数的基本关系,求得sin2α的值.【解答】解:∵sinα+cosα=,平方可得1+2sinαcosα=1+sin2α=,则sin2α=﹣,故选:C.9.计算cos•cos的结果等于()A.B. C.﹣D.﹣【考点】三角函数的化简求值.【分析】直接利用三角函数的诱导公式以及二倍角的正弦函数求解即可.【解答】解:cos•cos=cos•=﹣sin•cos=﹣sin=﹣.故选:D.10.已知α,β∈(0,),且满足sinα=,cosβ=,则α+β的值为()A.B.C.D.或【考点】三角函数的化简求值.【分析】根据αβ的取值范围,利用同角三角函数的基本关系分别求得cosα和sinβ,由两角和的余弦公式求得cos(α+β),则α+β的值可求.【解答】解:由α,β∈(0,),sinα=,cosβ=,∴cosα>0,sinβ>0,cosα=,sinβ=,∴cos(α+β)=cosαcosβ﹣sinαsinβ=,由α,β∈(0,)可得0<α+β<π,∴α+β=.故选:A.二.填空题(本大题共5小题,每小题4分,共20分)11.函数f(x)=2sinωx(ω>0)在[0,]上单调递增,且在这个区间上的最大值是,则ω的值为.【考点】正弦函数的图象.【分析】由题意可得≤,且ω•=,由此求得ω的值.【解答】解:∵函数f(x)=2sinωx(ω>0)在[0,]上单调递增,∴≤.再根据在这个区间上f(x)的最大值是,可得ω•=,则ω=,故答案为:.12.已知向量=(﹣1,2),=(2,﹣3),若向量λ+与向量=(﹣4,7)共线,则λ的值为﹣2 .【考点】平面向量共线(平行)的坐标表示.【分析】利用已知向量表示向量λ+,然后利用向量共线列出方程求解即可.【解答】解:向量=(﹣1,2),=(2,﹣3),向量λ+=(﹣λ+2,2λ﹣3),向量λ+与向量=(﹣4,7)共线,可得:﹣7λ+14=﹣8λ+12,解得λ=﹣2.故答案为:﹣2.13.已知函数y=3cos(x+φ)﹣1的图象关于直线x=对称,其中φ∈[0,π],则φ的值为.【考点】余弦函数的图象.【分析】由条件利用余弦函数的图象的对称性可得+φ=kπ,由此求得φ的最小正值.【解答】解:∵函数y=3cos(x+φ)﹣1的图象关于直线x=对称,其中φ∈[0,π],∴+φ=kπ,即φ=kπ﹣,k∈Z,则φ的最小正值为,故答案为:.14.若tan α=2,tan β=,则tan (α﹣β)等于 .【考点】两角和与差的正切函数.【分析】由已知利用两角差的正切函数公式即可计算得解.【解答】解:∵tan α=2,tan β=,∴tan (α﹣β)===.故答案为:.15.如图,在矩形ABCD 中,AB=3,BC=2,若点E 为BC 的中点,点F 在CD 上,•=6,则•的值为 ﹣1【考点】平面向量数量积的运算.【分析】通过以A 为原点,AB 为x 轴、AD 为y 轴建系,利用向量的坐标形式计算即可. 【解答】解:以A 为原点,AB 为x 轴、AD 为y 轴建系如图, ∵AB=3,BC=2,∴A (0,0),B (3,0),C (3,2), D (0,2),∵点E 为BC 的中点, ∴E (3,1), ∵点F 在CD 上, ∴可设F (x ,2),∴=(3,0),=(x ,2),∵•=6,∴3x=6, 解得x=2, ∴F (2,2),∴=(﹣1,2),∵=(3,1),∴•=﹣3+2=﹣1,故答案为:﹣1三.解答题(本大题5小题,共40分)16.已知向量与共线, =(1,﹣2),•=﹣10(Ⅰ)求向量的坐标;(Ⅱ)若=(6,﹣7),求|+|【考点】平面向量数量积的运算.【分析】(Ⅰ)根据向量共线和向量的数量积公式,即可求出,(Ⅱ)根据向量的坐标运算和的模,计算即可.【解答】解:(Ⅰ)∵向量与共线, =(1,﹣2),∴可设=λ=(λ,﹣2λ),∵•=﹣10,∴λ+4λ=﹣10,解得λ=﹣2,∴(﹣2,4),(Ⅱ)∵=(6,﹣7),∴+=(4,﹣3),∴|+|==5.17.已知函数f(x)=cos2x+2sinx(Ⅰ)求f(﹣)的值;(Ⅱ)求f(x)的值域.【考点】三角函数中的恒等变换应用.【分析】(Ⅰ)根据函数解析式计算f(﹣)即可;(Ⅱ)化f(x)为sinx的二次函数,利用三角函数的有界性和二次函数的性质求出f(x)的最值即可.【解答】解:函数f(x)=cos2x+2sinx,(Ⅰ)f(﹣)=cos(﹣)+2sin(﹣)=+2×(﹣)=﹣;(Ⅱ)f(x)=(1﹣2sin2x)+2sinx=﹣2+,∴当x=+2kπ或x=+2kπ,k∈Z时,f(x)取得最大值;当x=﹣+2kπ,k∈Z时,f(x)取得最小值﹣3;∴f(x)的值域是[﹣3,].18.已知sinα=,α∈(,π)(Ⅰ)求sin(α﹣)的值;(Ⅱ)求tan2α的值.【考点】三角函数的化简求值.【分析】(Ⅰ)由sinα的值及α的范围,利用同角三角函数间的基本关系求出cosα的值,再由正弦函数的和差化积公式计算得答案;(Ⅱ)由sinα,cosα的值求出tanα的值,然后代入正切函数的二倍角公式计算得答案.【解答】解:(Ⅰ)∵sinα=,α∈(,π),∴.∴sin(α﹣)==;(Ⅱ)∵,∴tan2α=.19.已知=(1,2),=(﹣2,6)(Ⅰ)求与的夹角θ;(Ⅱ)若与共线,且﹣与垂直,求.【考点】平面向量数量积的运算.【分析】(Ⅰ)由向量的夹角公式计算即可,(Ⅱ)根据共线和向量垂直即可求出.【解答】解:(Ⅰ)∵=(1,2),=(﹣2,6),∴||==,||==2, =﹣2+12=10,∴cosθ===,∴θ=45°(Ⅱ)∵与共线,∴可设=λ=(﹣2λ,6λ),∴﹣=(1+2λ,2﹣6λ),∵﹣与垂直,∴(1+2λ)+2(2﹣6λ)=0,解得λ=,∴=(﹣1,3)20.已知函数f(x)=sinx(2cosx﹣sinx)+1(Ⅰ)求f(x)的最小正周期;(Ⅱ)讨论f(x)在区间[﹣,]上的单调性.【考点】三角函数中的恒等变换应用;正弦函数的图象.【分析】(Ⅰ)化函数f(x)为正弦型函数,求出它的最小正周期T即可;(Ⅱ)根据正弦函数的单调性,求出f(x)在区间[﹣,]上单调递增,[,]上的单调递减.【解答】解:(Ⅰ)函数f(x)=sinx(2cosx﹣sinx)+1=2sinxcosx﹣2sin2x+1=(2sinxcosx)+(1﹣2sin2x)=sin2x+cos2x=2(sin2x+cos2x)=2sin(2x+),∴f(x)的最小正周期T==π;(Ⅱ)令z=2x+,则函数y=2sinz在区间[﹣+2kπ, +2kπ],k∈Z上单调递增;令﹣+2kπ≤2x+≤+2kπ,k∈Z,解得﹣+kπ≤x≤+kπ,k∈Z,令A=[﹣,],B=[﹣+kπ, +kπ],k∈Z,则A∩B=[﹣,];∴当x∈[﹣,]时,f(x)在区间[﹣,]上单调递增,在区间[,]上的单调递减.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

. ; B. ; . ; . A C D ππππ向左平移个单位长度向左平移个单位长度412向右平移个单位长度向右平移个单位长度.412天津市滨海新区2016-2017学年高一上学期期末统考数学试卷说明:本试卷分为Ⅰ卷(客观题)和Ⅱ卷(主观题)两部分,共120分。

考试时间100分钟.请将Ⅰ卷答案填涂在答题卡上,Ⅱ卷答案写在答题纸上。

祝大家考试顺利!第Ⅰ卷(客观题 共70分)一、选择题:本大题共10个小题,每小题4分,共40分.1.设集合U={}1,2,3,4,{}1,2,3,M =,{}2,3,4N =,则()U C M N ⋂=( )A .{}1,4B .{}23,C .{}2,4D .{}12,2.三个数20.3120.31,log 0.31,2a b c ===之间的大小关系是( )A .b c a <<B .c a b <<C .c b a <<D .a c b <<3.函数x x y cos -=的部分图象是( )A. B. C. D. 4.为了得到函数sin 34y x π⎛⎫=- ⎪⎝⎭的图象,只需把函数sin3y x =的图象上所有的点( )5.已知函数)sin(2)(ϕω+=x x f 对任意的x 都有()()66f x f x ππ+=-,则()6f π=( ) A .2或0 B .2-或0 C .2 或2- D .06.已知0x 是函数xx f x -+=112)(的一个零点,若),1(01x x ∈,),(02+∞∈x x ,则有( ) A .0)(,0)(21<<x f x f B .0)(,0)(21><x f x fC .0)(,0)(21<>x f x fD .0)(,0)(21>>x f x f7.在正三角形ABC 中,D 是BC 上的点,AB=3,BD=1,则⋅=( )A .25B .2315C .215 D .235 8.如图所示为函数π()2sin()(0,0)2f x x ωϕωϕ=+>≤≤的 部分图像,相邻两对称轴之间的距离为3,那么(1)f -=( )A .-1 B. CD .19.已知0ω>,函数()cos()4f x x πω=+在(,)2ππ上单调递增, 则ω的取值范围是( ) A .15[,]24 B .17[,]24 C .39[,]44 D .37[,]2410.已知()||1f x x =-,关于x 的方程0)()(2=+-k x f x f ,则下列四个结论错误..的是..:( ) A .存在实数k ,使方程恰有2个不同的实根;B .存在实数k ,使方程恰有3个不同的实根;C .存在实数k ,使方程恰有5个不同的实根;D .存在实数k ,使方程恰有8个不同的实根.二、填空题:本大题共6个小题,每小题5分,共30分,答案填写在答题纸相应的横线上.11.函数()()2log 1f x x =-的定义域为 . 12.已知函数()sin 58(1)5x x f x f x x π⎧<⎪=⎨⎪-≥⎩,则()6f = . 13、设)(x f 为定义在R 上的奇函数,当0≥x 时,b x x f x ++=22)((b 为常数),则=-)1(f ___________.14.已知3,(,)4αβππ∈, 3sin 5αβ+()=-,12sin 413πβ⎛⎫-= ⎪⎝⎭ ,cos 4πα⎛⎫+ ⎪⎝⎭= _. 15.已知向量a →、b →,满足||1a →=,a →与b →的夹角为3π,若对一切实数x ,|2|||x a b a b →→→→+≥+恒成立,则||b →的取值范围为 .16.下列6个结论中:(1)第一象限角是锐角;(2) 角α的终边经过点)0)(,(≠a a a 时,2cos sin =+αα;(3) 若1)cos(-=+βα,则0sin )2sin(=++ββα;(4)若∥,则有且只有一个实数λ,使λ=;(5) 若定义在R 上函数)(x f 满足)()1(x f x f -=+,则)(x f y =是周期函数.请写出正确结论的序号 . 二、填空题:本大题共6个小题,每小题5分,共30分,请将答案填写在下面相应题号的横线上. 11. 12. 13. 14. 15. 16.第Ⅱ卷 主观题 (共 50分)17.(10分)已知tan 22α=,求 (1)tan()4πα+的值;(2)6sin cos 3sin 2cos αααα+-的值.18.(12分)已知,,a b c 是同一平面内的三个向量,其中(1,2)a =(1)若||25c =,且//c a ,求:c 的坐标;(2)若5||2b =,且2a b +与2a b -垂直,求a 与b 的夹角.19.(14分)已知3(3sin(),cos ),(sin(),cos )02a x x b x x πωωπωωω=+=-->, . 设b a x f ∙=)(的最小正周期为π.(Ⅰ)求()f x 的单调增区间;(Ⅱ)当(,)36x ππ∈-时,求()f x 的值域; (Ⅲ)求满足()0f α=且0απ<<的角α的值.20.(14分)已知函数c x ax x f +-=21)(2(a 、R c ∈),满足0)1(=f ,()104f =成立. (1)求a 、c 的值;(2)若41243)(2-+-=b bx x x h ,解不等式0)()(<+x h x f ; (3)是否存在实数m ,使函数mx x f x g -=)()(在区间]2,[+m m 上有最小值5-?若存在,请求出m 的值;若不存在,请说明理由.天津市滨海新区2016-2017学年高一上学期期末统考数学试卷答案一、选择题1、A 2、B 3、D 4、D 5、C 6、B 7、 C 8、A 9、D 10、B二、填空题11、{}2>x x 12、1 13、-3 14、 6556- 15、[)+∞,1 16、3)、5) 三、解答题17、解:(1)∵tan=2, ∴ 2分所以 = 5分(2)由(1)知, tan α=-,所以= 8分= 10分18、解:设(,)c x y =由//||25c a c =及得2212022,4420y x x x y y x y ⋅-⋅===-⎧⎧⎧∴⎨⎨⎨==-+=⎩⎩⎩或 2分 12022,4420y x x x y y x y ⋅-⋅===-⎧⎧⎧∴⎨⎨⎨==-+=⎩⎩⎩或 4分所以,(2,4)(2,4)c c ==--或 6分(2)∵2a b +与2a b -垂直,∴(2)(2)0a b a b +⋅-= 7分即222320a a b b +⋅-=;∴52a b ⋅=-9分 ∴cos 1||||a b a b θ⋅==-,∵[0,]θπ∈∴θπ= 12分 19、解:23())sin()cos 2f x x x xπωπωω=+--2cos cos x x x ωωω=-11sin 2cos 2222x x ωω=--1sin 262x πω⎛⎫=-- ⎪⎝⎭ ……3分 ∵ ()y f x =的最小正周期为T π=,0ω>,∴ 22ππω= 解得1ω=,∴()1sin 262f x x π⎛⎫=-- ⎪⎝⎭; ……4分 由222,262k x k k Z πππππ-≤-≤+∈,得,63k x k k Z ππππ-≤≤+∈, 所以()f x 的单调递增区间为,,63k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦. ……6分 (Ⅱ)∵ 36x ππ-<<,∴52666x πππ-<-< ,∴11sin(2)62x π-≤-<,……8分 ∴31sin(2)0262x π-≤--< ,∴3(),02f x ⎡⎫∈-⎪⎢⎣⎭; ……10分 (Ⅲ)∵()0f α=,∴1sin 2062πα⎛⎫--= ⎪⎝⎭,∴1sin 262πα⎛⎫-= ⎪⎝⎭, ∵0απ<<,∴112666πππα-<-<, ……12分 ∴5266πππα或6-=,∴ =62ππα或.……14分20、(1)由0)1(=f ,得21=+c a ,()104f =,即41=c ,所以41==c a .………2分 (2)由(1)得412141)(2+-=x x x f ,由0)()(<+x h x f ,得 02212<+⎪⎭⎫ ⎝⎛+-b x b x ,即021)(<⎪⎭⎫ ⎝⎛--x b x ,………………4分 所以,当21<b 时,原不等式解集为)21,(b ;当21>b 时,原不等式解集为),21(b ; 当21=b 时,原不等式解集为空集 . ………………7分 (3)412141)(2+⎪⎭⎫ ⎝⎛+-=x m x x g , )(x g 的图像是开口向上的抛物线,对称轴为直线12+=m x . ………………8分 假设存在实数m ,使函数)(x g 在区间]2,[+m m 上有最小值5-.① 当m m <+12,即1-<m 时,函数)(x g 在区间]2,[+m m 上是增函数,所以5)(-=m g ,即54121412-=+⎪⎭⎫ ⎝⎛+-m m m ,解得3-=m 或37=m , 因为1-<m ,所以3-=m ; ………………10分②当212+≤+≤m m m ,即11≤≤-m 时,函数)(x g 的最小值为5)12(-=+m g ,即541)12(21)12(412-=++⎪⎭⎫ ⎝⎛+-+m m m ,解得22121--=m 或22121+-=m ,均舍去;……12分 ③当212+>+m m ,即1>m 时,)(x g 在区间]2,[+m m 上是减函数,所以5)2(-=+m g ,即541)2(21)2(412-=++⎪⎭⎫ ⎝⎛+-+m m m ,解得221--=m 或221+-=m ,因1>m , 所以221+-=m .综上,存在实数m ,3-=m 或221+-=m 时,函数)(x g 在区间]2,[+m m 上有最小值5-.…14分。

相关文档
最新文档