历届中考解答第3大题 方程与不等式的应用
中考总复习三:方程组与不等式的应用

专题提升三 函数的图象和性质的综合应用一、选择题1.(·德州)下列函数中,满足y 的值随x 的值增大而增大的是( B ) A .y =-2x B .y =3x -1C .y =1xD .y =x 22.(·广州)对于二次函数y =-14x 2+x -4,下列说法正确的是( B )A .当x >0时,y 随x 的增大而增大B .当x =2时,y 有最大值-3C .图象的顶点坐标为(-2,-7)D .图象与x 轴有两个交点3.(·赤峰)函数y =k(x -k)与y =kx 2,y =kx(k ≠0),在同一坐标系上的图象正确的是( C )4.(·天津)若点A(-5,y 1),B(-3,y 2),C(2,y 3)在反比例函数y =3x的图象上,则y 1,y 2,y 3的大小关系是( D )A .y 1<y 3<y 2B .y 1<y 2<y 3C .y 3<y 2<y 1D .y 2<y 1<y 35.(·云南)位于第一象限的点E 在反比例函数y =kx的图象上,点F 在x 轴的正半轴上,O 是坐标原点.若EO =EF ,△EOF 的面积等于2,则k =( B )A .4B .2C .1D .-26.(·广安)已知二次函数y =ax 2+bx +c(a ≠0)的图象如图所示,并且关于x 的一元二次方程ax 2+bx +c -m =0有两个不相等的实数根,下列结论:①b 2-4ac<0;②abc>0;③a -b +c<0;④m>-2.其中,正确的个数有( B )A .1B .2C .3D .4 二、填空题7.(·广安)若反比例函数y =kx(k ≠0)的图象经过点(1,-3),则一次函数y =kx -k(k ≠0)的图象经过__一、二、四__象限.8.(·泰安)将抛物线y =2(x -1)2+2向左平移3个单位,再向下平移4个单位,那么得到的抛物线的表达式为__y =2(x +2)2-2__.9.(·齐齐哈尔)如图,已知点P(6,3),过点P 作PM ⊥x 轴于点M ,PN ⊥y 轴于点N ,反比例函数y =kx的图象交PM 于点A ,交PN 于点B.若四边形OAPB 的面积为12,则k =__6__.,第9题图) ,第10题图)10.(·德州)如图,在平面直角坐标系中,函数y =2x 和y =-x 的图象分别为直线l 1,l 2,过点(1,0)作x 轴的垂线交l 1于点A 1,过点A 1作y 轴的垂线交l 2于点A 2,过点A 2作x 轴的垂线交l 1于点A 3,过点A 3作y 轴的垂线交l 2于点A 4,…依次进行下去,则点A 的坐标为__(21008,21009)__.三、解答题11.(·陕西)昨天早晨7点,小明乘车从家出发,去西安参加中学生科技创新大赛,赛后,他当天按原路返回,如图是小明昨天出行的过程中,他距西安的距离y(千米)与他离家的时间x(时)之间的函数图象.根据下面图象,回答下列问题:(1)求线段AB 所表示的函数关系式;(2)已知昨天下午3点时,小明距西安112千米,求他何时到家?解:(1)设线段AB 所表示的函数关系式为:y =kx +b ,依题意有⎩⎨⎧b =192,2k +b =0,解得⎩⎨⎧k =-96,b =192,∴y =-96x +192(0≤x ≤2) (2)12+3-(7+6.6)=15-13.6=1.4(小时),112÷1.4=80(千米/时),(192-112)÷80=80÷80=1(小时),3+1=4(时).答:他下午4时到家.12.(·自贡)如图,已知A(-4,n),B(2,-4)是一次函数y =kx +b 和反比例函数y =mx的图象的两个交点. (1)求一次函数和反比例函数的解析式;(2)观察图象,直接写出方程kx +b -mx=0的解;(3)求△AOB 的面积;(4)观察图象,直接写出不等式kx +b -mx<0的解集.解:(1)y =-x -2,y =-8x(2)x 1=-4,x 2=2(3)设y =kx +b 与y 轴交点为C ,∴当x =0时,y =-2,∴C (0,-2),∴OC =2,∴S △AOB =S △ACO +S △BCO =12×2×4+12×2×2=6 (4)-4<x<0或x>213.(·乐山)如图,反比例函数y =k x 与一次函数y =ax +b 的图象交于点A(2,2),B(12,n).(1)求这两个函数解析式;(2)将一次函数y =ax +b 的图象沿y 轴向下平移m 个单位,使平移后的图象与反比例函数y =kx的图象有且只有一个交点,求m 的值.解:(1)y =-4x +10,y =4x(2)将直线y =-4x +10向下平移m 个单位得直线的解析式为y =-4x +10-m ,∵直线y =-4x +10-m 与双曲线y =4x有且只有一个交点,令-4x+10-m =4x ,得4x 2+(m -10)x +4=0,∴(m -10)2-64=0,解得m =2或m =1814.(·盐城)我市某蔬菜生产基地用装有恒温系统的大棚栽培一种适宜生长温度为15~20℃的新品种,如图是某天恒温系统从开启到关闭及关闭后,大棚里温度y(℃)随时间x(时)变化的函数图象,其中AB 段是恒温阶段,BC 段是双曲线y =kx的一部分,请根据图中信息解答下列问题:(1)求k 的值;(2)恒温系统在一天内保持大棚里温度在15℃及15℃以上的时间有多少小时?解:(1)把B (12,20)代入y =kx中得k =12×20=240(2)设AD 的解析式为y =mx +n ,把(0,10),(2,20)代入y =mx +n 中得⎩⎨⎧n =10,2m +n =20,解得⎩⎨⎧m =5,n =10,∴AD 的解析式为y =5x +10,当y =15时,15=5x +10,x =1;15=240x ,x =24015=16,∴16-1=15.答:恒温系统在一天内保持大棚里温度在15℃及15℃以上的时间有15小时.15.(·安徽)如图,二次函数y =ax 2+bx 的图象经过点A(2,4)与B(6,0). (1)求a ,b 的值;(2)点C 是该二次函数图象上A ,B 两点之间的一动点,横坐标为x(2<x <6),写出四边形OACB 的面积S 关于点C 的横坐标x 的函数表达式,并求S 的最大值.解:(1)将A (2,4)与B (6,0)代入y =ax 2+bx ,得⎩⎨⎧4a +2b =4,36a +6b =0,解得:⎩⎪⎨⎪⎧a =-12,b =3(2)如图,过A 作x 轴的垂直,垂足为D (2,0),连结CD ,过C 作CE ⊥AD ,CF ⊥x 轴,垂足分别为E ,F ,S △OAD =12OD ·AD =12×2×4=4;S △ACD =12AD ·CE =12×4×(x -2)=2x -4;S △BCD =12BD ·CF =12×4×(-12x 2+3x )=-x 2+6x ,则S =S △OAD +S △ACD +S △BCD =4+2x -4-x 2+6x =-x 2+8x ,∴S 关于x 的函数表达式为S =-x 2+8x (2<x <6),∵S =-x 2+8x =-(x -4)2+16,∴当x =4时,四边形OACB 的面积S 有最大值,最大值为16.16.(·十堰)一茶叶专卖店经销某种品牌的茶叶,该茶叶的成本价是80元/kg ,销售单价不低于120元/kg ,且不高于180元/kg ,经销一段时间后得到如下数据:销售单价x(元/kg ) 120 130 ... 180 每天销量y(kg ) 100 95 (70)设y 与x (1)直接写出y 与x 的函数关系式,并指出自变量x 的取值范围; (2)当销售单价为多少时,销售利润最大?最大利润是多少? 解:(1)∵由表格可知:销售单价每涨10元,就少销售5 kg ,∴y 与x 是一次函数关系,∴y 与x 的函数关系式为:y =100-0.5(x -120)=-0.5x +160,∵销售单价不低于120元/kg ,且不高于180元/kg ,∴自变量x 的取值范围为:120≤x ≤180(2)设销售利润为w 元,则w =(x -80)(-0.5x +160)=-12x 2+200x -12 800=-12(x -200)2+7 200,∵a =-12<0,∴当x <200时,y 随x 的增大而增大,∴当x =180时,销售利润最大,最大利润是:w =-12(180-200)2+7 200=7 000(元),答:当销售单价为180元时,销售利润最大,最大利润是7 000元17.(2016·泉州)某进口专营店销售一种“特产”,其成本价是20元/千克,根据以往的销售情况描出销量y(千克/天)与售价x(元/千克)的关系,如图所示.(1)试求出y 与x 之间的一个函数关系式; (2)利用(1)的结论:①求每千克售价为多少元时,每天可以获得最大的销售利润;②进口产品检验、运输等过程需耗时5天,该“特产”最长的保存期为一个月(30天),若售价不低于30元/千克,则一次进货最多只能多少千克?解:(1)设y 与x 之间的一个函数关系式为y =kx +b ,则{38=37k +b ,34=39k +b ,解得{k =-2,b =112.故函数关系式为y =-2x +112 (2)依题意有w =(x -20)(-2x +112)=-2(x -38)2+324,故每千克售价为38元时,每天可以获得最大的销售利润(3)由题意可得,售价越低,销量越大,即能最多的进货,设一次进货最多m 千克,则m-2×30+112≤30-5,解得m ≤1300,故一次进货最多只能是1300千克.18.(·舟山)小明的爸爸和妈妈分别驾车从家同时出发去上班,爸爸行驶到甲处时,看到前面路口时红灯,他立即刹车减速并在乙处停车等待,爸爸驾车从家到乙处的过程中,速度v(m /s )与时间t(s )的关系如图①中的实线所示,行驶路程s(m )与时间t(s )的关系如图②所示,在加速过程中,s 与t 满足表达式s =at 2(1)根据图中的信息,写出小明家到乙处的路程,并求a 的值; (2)求图2中A 点的纵坐标h ,并说明它的实际意义; (3)爸爸在乙处等待了7秒后绿灯亮起继续前行,为了节约能源,减少刹车,妈妈驾车从家出发的行驶过程中,速度v(m /s )与时间t(s )的关系如图1中的折线O -B -C 所示,行驶路程s(m )与时间t(s )的关系也满足s =at 2,当她行驶到甲处时,前方的绿灯刚好亮起,求此时妈妈驾车的行驶速度.解:(1)由图象得:小明家到乙处的路程为180 m ,∵点(8,48)在抛物线s =at 2上,∴48=a ×82,解得:a =34(2)由图及已知得:h =48+12×(17-8)=156,故A 点的纵坐标为:156,表示小明家到甲处的路程为156 m (3)设OB 所在直线的表达式为:v =kt ,∵(8,12)在直线v =kt 上,则12=8k ,解得:k =32,∴OB 所在直线的表达式为:v =32t ,设妈妈加速所用时间为:x 秒,由题意可得:34 x 2+32x (21+7-x )=156,整理得:x 2-56x +208=0,解得:x 1=4,x 2=52(不符合题意,舍去),∴x =4,∴v =32×4=6(m/s ),答:此时妈妈驾车的行驶速度为6 m/s.。
2023年安徽中考数学总复习专题:方程(组)与不等式(组)的实际应用(PDF版,有答案)

2023年安徽中考数学总复习专题:方程(组)与不等式(组)的实际应用1.我国古代数学名著《九章算术》一书中记载了这样一个问题:“今有共买牛,七家共出一百九十,不足三百三十:九家共出二百七十,盈三十.问家数、牛价各几何?”大意为:今有若干户人家共同买牛,若每7家共出190个钱,则少330个钱;若每9家共出270个钱,则多30个钱,问共同买牛的家数和牛价各是多少?请你解决上述问题.2.我校为了提高线上教学效果,计划投资8000元建设几间直播教室,为了保证教学质量,实际每间建设费用增加了20%,并比原计划多建设了一间直播教室,总投资追加了4000元.实际每间直播教室的建设费用是多少?3.某省公布的居民用电阶梯电价听证方案如下:项目第一档第二档第三档用电量(度)210度以下210至350350度以上价格(元)0.52比第一档提价0.05元比第一档提价0.3元例:若某户月用电量400度,则需交电费为210×0.52+(350﹣210)×(0.52+0.05)+(400﹣350)×(0.52+0.30)=230(元).(1)如果按此方案计算,小华家5月份的电费为138.84元,请你求出小华家5月份的用电量;(2)以此方案请你回答:若小华家某月的电费为a元,则小华家该月用电量属于第几档?4.某农场要建一个饲养场(矩形ABCD),两面靠墙(AD位置的墙最大可用长度为27米,AB位置的墙最大可用长度为15米),另两边用木栏围成,中间也用木栏隔开,分成两个场地及一处通道,并在EH、FG、BC上各留1米宽的门(不用木栏),建成后木栏总长45米.(1)若饲养场(矩形ABCD)的一边CD长为7米,求BC= 米.(2)若饲养场(矩形ABCD)的面积为192平方米,求边CD的长.5.某中学为了响应习主席提出的“足球进校园”的号召,开设了“足球大课间活动”,为此购买A种品牌的足球25个,B种品牌的足球50个,共花费4500元;已知A种品牌足球的单价比B种品牌足球的单价高30元.(1)求A、B两种品牌足球的单价各多少元?(2)根据需要,学校决定再次购进A、B两种品牌的足球50个,正逢体育用品商店“优惠促销”活动,A种品牌的足球单价打8折,B种品牌的足球单价优惠4元.如果此次学校购买A、B两种品牌足球的总费用不超过2750元,且购买A种品牌的足球不少于23个,则有几种购买方案?为了节约资金,学校应选择哪种方案?为什么?6.随着“低碳生活,绿色出行”理念的普及,新能源汽车正逐渐成为人们喜爱的交通工具.某汽车销售公司计划购进一批新能源汽车尝试进行销售,据了解2辆A型汽车、3辆B型汽车的进价共计80万元;3辆A型汽车、2辆B型汽车的进价共计95万元.(1)求A、B两种型号的汽车每辆进价分别为多少万元?(列方程组解应用题)(2)若该公司计划正好用200万元购进以上两种型号的新能源汽车(两种型号的汽车均购买)则该公司共有 种购买方案;(3)若该汽车销售公司销售1辆A型汽车可获利8000元,销售1辆B型汽车可获利5000元,在(2)中的购买方案中,假如这些新能源汽车全部售出,最大利润是 元.参考答案1.解:设共有x户人家共同买牛,牛的价格为y钱,依题意得:y―190×x7=330 270×x9―y=30,解得:x=126y=3750.答:共有126户人家共同买牛,牛的价格为3750钱.2.解:设原计划每间直播教室的建设费用是x元,则实际每间建设费用为1.2x元,根据题意得:8000+40001.2x ―8000x=1,解得:x=2000,经检验:x=2000是原方程的解,1.2x=2400,答:实际每间直播教室的建设费用是2400元.3.解:(1)∵0.52×210=109.2(元),0.52×210+(0.52+0.05)×(350﹣210)=189(元),∴用电210度和用电350度的电费分别为109.2元和189元,∵109.2<138.84<189,∴小华家5月份的用电量大于210度而小于350度,设小华家5月份的用电量是x度,根据题意得109.2+(0.52+0.05)(x﹣210)=138.84,解得x=262,答:小华家5月份的用电量是262度.(2)由(1)可知,当0<a≤109.2时,小华家该月用电量属于第一档;当109.2<a≤189时,小华家该月用电量属于第二档;当a>189时,小华家该月用电量属于第三档.4.解:(1)当CD=7米时,BC=45+3﹣3×7=27(米).故答案为:27.(2)设边CD的长为x米,则BC的长为(45+3﹣3x)米,依题意得:x(45+3﹣3x)=192,整理得:x2﹣16x+64=0,解得:x1=x2=8,当x=8时,45+3﹣3x=45+3﹣3×8=24<27,符合题意.答:边CD的长为8米.5.解:(1)设A种品牌足球的单价是x元,B种品牌足球的单价是y元,依题意得:25x+50y=4500 x―y=30,解得:x=80 y=50.答:A种品牌足球的单价是80元,B种品牌足球的单价是50元.(2)设购买A种品牌的足球m个,则购买B种品牌的足球(50﹣m)个,依题意得:80×0.8m+(50―4)(50―m)≤2750 m≥23,解得:23≤m≤25,又∵m为正整数,∴m可以为23,24,25,∴共有3种购买方案,方案1:购买A种品牌的足球23个,B种品牌的足球27个,所需总费用为80×0.8×23+(50﹣4)×27=2714(元);方案2:购买A种品牌的足球24个,B种品牌的足球26个,所需总费用为80×0.8×24+(50﹣4)×26=2732(元);方案3:购买A种品牌的足球25个,B种品牌的足球25个,所需总费用为80×0.8×25+(50﹣4)×25=2750(元).∵2714<2732<2750,∴为了节约资金,学校应选择方案1:购买A种品牌的足球23个,B种品牌的足球27个.6.解:(1)设A种型号的汽车每辆进价为a万元,B种型号的汽车每辆进价为b万元,由题意可得2a+3b=80 3a+2b=95,解得a=25 b=10,答:A、B两种型号的汽车每辆进价分别为25万元、10万元;(2)设购买A型号的汽车m辆,B种型号的汽车n辆,由题意可得25m+10n=200且m>0,n>0,解得m=2n=15或m=4n=10或m=6n=5,∴该公司共有三种购买方案,故答案为:三;(3)当m=2,n=15时,获得的利润为:8000×2+5000×15=91000(元),当m=4,n=10时,获得的利润为:8000×4+5000×10=82000(元),当m=6,n=5时,获得的利润为:8000×6+5000×5=73000(元),由上可得,最大利润为91000元,故答案为:91000.。
方程与不等式的应用大题专练(真题6道模拟30道)-中考数学重难题型押题培优导练案(专用)【原卷版】

方程与不等式的应用大题专练(真题6道模拟30道)【方法归纳】题型概述,方法小结,有的放矢考点考查年份考查频率方程与不等式的应用(大题)2012、2013、2014、2015、2016/2019 十年5考方程与不等式的应用是北京中考以前常考的内容,主要考查分式方程的应用,同时也有可能会考查一元二次方程的应用、方程组的应用、不等式的应用.1、列方程解应用题的一般步骤:设、列、解、验、答.必须严格按照这5步进行做题,规范解题步骤,另外还要注意完整性:如设和答叙述要完整,要写出单位等.2、要掌握常见问题中的基本关系,如行程问题:速度=路程/时间,工作量问题:工作效率=工作量/工作时间,销售问题:利润=售价-进阶=进件×(1+利润率),总利润=单件利润×销售量等.列分式方程解应用题一定要审清题意,找相等关系是着眼点,要学会分析题意,提高理解能力.【典例剖析】典例精讲,方法提炼,精准提分【例1】(2015·北京·中考真题)为解决“最后一公里”的交通接驳问题,北京市投放了大量公租自行车供市民使用.到2013年底,全市已有公租自行车25000辆,租赁点600个.预计到2015年底,全市将有公租自行车50000辆,并且平均每个租赁点的公租自行车数量是2013年成平均每个租赁点的公租自行车数量的1.2倍.预计2015年底,全市将租赁点多少个?【例2】(2019·北京·中考真题)小云想用7天的时间背诵若干首诗词,背诵计划如下:①将诗词分成4组,第i组有x i首,i =1,2,3,4;①对于第i组诗词,第i天背诵第一遍,第(i+1)天背诵第二遍,第(i+3)天背诵第三遍,三遍后完成背诵,其它天无需背诵,i=1,2,3,4;第1天第2天第3天第4天第5天第6天第7天第1组x1x1x1第2组x2x2x2第3组第4组x4x4x4①每天最多背诵14首,最少背诵4首.解答下列问题:(1)填入x3补全上表;(2)若x1=4,x2=3,x3=4,则x4的所有可能取值为______;(3)7天后,小云背诵的诗词最多为______首.【真题再现】必刷真题,关注素养,把握核心1.(2012·北京·中考真题)列方程或方程组解应用题:据林业专家分析,树叶在光合作用后产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年的平均滞尘量比一片国槐树叶一年的平均滞尘量的2倍少4毫克,若一年滞尘1000毫克所需的银杏树叶的片数与一年滞尘550毫克所需的国槐树叶的片数相同,求一片国槐树叶一年的平均滞尘量.2.(2014·北京·中考真题)列方程或方程组解应用题:小马自驾私家车从A地到B地,驾驶原来的燃油汽车所需油费108元,驾驶新购买的纯电动车所需电费27元,已知每行驶1千米,原来的燃油汽车所需的油费比新购买的纯电动汽车所需的电费多0.54元,求新购买的纯电动汽车每行驶1千米所需的电费.3.(2013·北京·中考真题)列方程或方程组解应用题:某园林队计划由6名工人对180平方米的区域进行绿化,由于施工时增加了2名工人,结果比计划提前3小时完成任务.若每人每小时绿化面积相同,求每人每小时的绿化面积.4.(2016·北京·中考真题)阅读下列材料:北京市正围绕着“政治中心、文化中心、国际交往中心、科技创新中心”的定位,深入实施“人文北京、科技北京、绿色北京”的发展战略.“十二五”期间,北京市文化创意产业展现了良好的发展基础和巨大的发展潜力,已经成为首都经济增长的支柱产业.2011年,北京市文化创意产业实现增加值1938.6亿元,占地区生产总值的12.2%.2012年,北京市文化创意产业继续呈现平稳发展态势,实现产业增加值2189.2亿元,占地区生产总值的12.3%,是第三产业中仅次于金融业、批发和零售业的第三大支柱产业.2013年,北京市文化产业实现增加值2406.7亿元,比上年增长9.1%,文化创意产业作为北京市支柱产业已经排到了第二位.2014年,北京市文化创意产业实现增加值2749.3亿元,占地区生产总值的13.1%,创历史新高,2015年,北京市文化创意产业发展总体平稳,实现产业增加值3072.3亿元,占地区生产总值的13.4%.根据以上材料解答下列问题:(1)用折线图将2011-2015年北京市文化创意产业实现增加值表示出来,并在图中标明相应数据;(2)根据绘制的折线图中提供的信息,预估2016年北京市文化创意产业实现增加值约_____________亿元,你的预估理由_____________.【模拟精练】押题必刷,巅峰冲刺,提分培优一、解答题1.(2022·北京十一学校一分校模拟预测)列分式方程解应用题:截止到2020年11月23日,全国832个国家级贫困县全部脱贫摘帽.某单位党支部在“精准扶贫”活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗.已知每棵乙种树苗的价格比甲种树苗的价格贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同,求甲、乙两种树苗每棵的价格.2.(2020·北京朝阳·三模)通过使用手机app购票,智能闸机、手持验票机验票的方式,能够大大缩短游客排队购票、验票的等待时间,且操作极其简单,已知某公园采用新的售票、验票方式后,平均每分钟接待游客的人数是原来的10倍,且接待5000名游客的入园时间比原来接待600名游客的入园时间还少5分钟,求该公园原来平均每分钟接待游客的人数.3.(2021·北京·101中学三模)在“新冠”期间,某小区物管为预防业主感染传播购买A型和B型两种3M口罩,购买A型3M口罩花费了2500元,购买B型3M口罩花费了2000元,且购买A型3M口罩数量是购买B型3M口罩数量的2倍,已知购买一个B型3M口罩比购买一个A型3M口罩多花3元.则该物业购买A、B两种3M口罩的单价为多少元?4.(2022·北京四中九年级开学考试)今年通州区在老旧小区改造方面取得了巨大成就,人居环境得到了很大改善.如图,某小区规划在长16m,宽9m的矩形场地ABCD上,修建同样宽的小路,使其中的小路分别与AB和AD平行,其余部分种草.通过测量可知草坪的总面积为112m2,求小路的宽.5.(2022·北京丰台·九年级期末)某校举办了“冰雪运动进校园”活动,计划在校园一块矩形的空地上铺设两块完全相同的矩形冰场.如下图所示,已知空地长27m,宽12m,矩形冰场的长与宽的比为4:3,如果要,并且预留的上、下通道的宽度相等,左、中、右通道的宽度相等,那么预使冰场的面积是原空地面积的23留的上、下通道的宽度和左、中、右通道的宽度分别是多少米?6.(2022·北京东城·九年级期末)为了改善小区环境,某小区决定在一块一边靠墙(墙长25m)的空地上修建一个矩形小花园ABCD,小花园一边靠墙,另三边用总长40m的栅栏围住,如下图所示.若设矩形小花园AB边的长为x m,面积为ym2.(1)求y与x之间的函数关系式;(2)当x为何值时,小花园的面积最大?最大面积是多少?7.(2021·北京市三帆中学九年级期中)刘师傅开了一家商店,今年2月份盈利2500元,4月份的盈利达到3600元,且从2月到4月,每个月盈利的增长率相同.(1)求每个月盈利的增长率;(2)按照这个增长率,请你估计这家商店5月份的盈利将达到多少元?8.(2021·北京师范大学第二附属中学西城实验学校九年级期中)学生会要组织“西实杯”篮球赛,赛制为单循环形式(每两队之间都赛一场).(1)如果有4支球队参加比赛,那么共进行______场比赛;(2)如果全校一共进行36场比赛,那么有多少支球队参加比赛?9.(2021·北京市鲁迅中学九年级期中)某水果店出售一种进价为每千克10元的热带水果,原售价为每千克20元.(1)连续两次降价后,每千克售价16.2元,若每次下降的百分率相同,求每次下降的百分率.(2)这种水果每月的销售量y(千克)与销售单价x(元)之间存在着一次函数关系:y=-10x+200,当销售单价为多少元时,每月可获得最大利润?10.(2022·北京昌平·模拟预测)佳佳果品店刚试营业,就在批发市场购买某种水果销售,第一次用1200元购进若干千克水果,很快售完.由于水果畅销,第二次购买时,每千克的进价比第一次提高了20%,用1500元所购买的数量比第一次多10千克.求第一次该种水果的进价是每千克多少元?11.(2022·北京四中九年级阶段练习)某单位党支部在“精准扶贫”活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗.已知每棵乙种树苗的价格比甲种树苗的价格贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同,求甲、乙两种树苗每棵的价格.12.(2021·北京西城·一模)奥林匹克森林公园南园(奥森南园)是深受北京长跑爱好者追捧的跑步地点.小华和小萱相约去奥森南园跑步踏青,奥森南园有5千米和3千米的两条跑道(如图所示).小华选择了5千米的路线,小萱选择了3千米的路线,已知小华平均每分钟比小萱平均每分钟多跑100米,两人同时出发,结果同时到达终点.求小萱的速度.13.(2021·北京·九年级专题练习)列方程解应用题开展“光盘行动”,拒绝“舌尖上的浪费”,已成为一种时尚.某学校食堂为了激励同学们做到光盘不浪费,提出如果学生每餐做到光盘不浪费,那么餐后奖励香蕉或橘子一份.近日,学校食堂花了2800元和2500元分别采购了香蕉和橘子,采购的香蕉比橘子多150千克,香蕉每千克的价格比橘子每千克的价格低30%,求橘子每千克的价格.14.(2021·北京·九年级专题练习)国家实施高效节能电器的财政补贴政策,某款空调在政策实施后,客户每购买一台可获得补贴500元,若同样用6万元购买此款空调,补贴后可购买的台数比补贴前多20%.该款空调补贴前的售价为每台多少元?15.(2021·北京·九年级专题练习)列方程解应用题为了提高学生的身体素质,落实教育部门“在校学生每天体育锻炼时间不少于1小时”的文件精神,某校开展了“阳光体育天天跑活动”,初中男生、女生分别进行1000米和800米的计时跑步.在一次计时跑步中,某班一名女生和一名男生的平均速度相同,且这名女生跑完800米所用时间比这名男生跑完1000米所用时间少56秒,求这名女生跑完800米所用时间是多少秒.16.(2021·北京·九年级专题练习)某环卫公司通过政府采购的方式计划购进一批A,B两种型号的新能源汽车据了解,2辆A型汽车和3辆B型汽车的进价共计80万元;3辆A型汽车和2辆B型汽车的进价共计95万元.(1)求A,B两种型号的汽车每辆进价分别为多少万元;(2)该公司计划恰好用200万元购进以上两种型号的新能源汽车(两种型号的汽车均购买),并使得购进的B种型号的新能源汽车数量多于A种型号的新能源汽车数量,请直接写出该公司的采购方案.17.(2012·北京海淀·中考模拟)某商场计划经销A、B两种新型节能台灯共50盏,这两种台灯的进价、售价如表所示:A型B型进价(元/盏)4065售价(元/盏)60100(1)若该商场购进这批台灯共用去2500元,问这两种台灯各购进多少盏?(2)在每种台灯销售利润不变的情况下,若该商场销售这批台灯的总利润不少于1400元,问至少购进B 种台灯多少盏?18.(2021·北京·九年级专题练习)列方程组或不等式解决实际问题某汽车专卖店销售A,B两种型号的新能源汽车,上周和本周的销售情况如下表:时间A型B型销售额型号上周1辆2辆70万元本周3辆1辆80万元(1)每辆A型车和B型车的售价各为多少万元?(2)甲公司拟向该店购买A,B两种型号的新能源汽车共7辆,且A型号车不少于2辆,购车费不少于154万元,则有哪几种购车方案?19.(2021·北京·九年级专题练习)某道路规划为城市主干路,全长7.6千米.如果该任务由甲、乙两工程队先后接力完成.甲工程队每天修建道路0.02千米,乙工程队每天修建道路0.01千米,两工程队共需修建560天,求甲、乙两工程队分别修建道路多少千米?根据题意,小刚同学列出了一个尚不完整的方程组{x+y= (x)0.02+y0.01=...(1)根据小刚同学列的方程组,请你分别指出未知数x,y表示的意义:x表示,y表示.(2)小红同学“设甲工程队的工作时间为x天,乙工程队的工作时间为y天”,请你利用小红同学设的未知数求甲、乙两工程队分别修建道路的长度.20.(2021·北京·九年级专题练习)商场正在销售帐篷和棉被两种防寒商品,已知购买1顶帐篷和2床棉被共需300元,购买2顶帐篷和3床棉被共需510元.(1)求1顶帐篷和1床棉被的价格各是多少元?(2)某部门准备购买这两种防寒商品共80件,要求每种商品都要购买,且帐篷的数量多于40顶,但因为资金不足,购买总金额不能超过8500元,请问共有几种购买方案?(要求写出具体的购买方案).21.(2022·北京·九年级单元测试)小志从甲、乙两超市分别购买了10瓶和6瓶cc饮料,共花费51元;小云从甲、乙两超市分别购买了8瓶和12瓶cc饮料,且小云在乙超市比在甲超市多花18元,在小志和小云购买cc饮料时,甲、乙两超市cc饮料价格不一样,若只考虑价格因素,到哪家超市购买这种cc饮料便宜?请说明理由.22.(2020·北京·首都师范大学附属中学九年级阶段练习)2018年9月17日世界人工智能大会在.上海召开,人工智能的变革力在教育、制造等领域加速落地.在某市举办的一次中学生机器人足球赛中,有四个代表队进入决赛,决赛中,每个队分别与其它三个队进行主客场比赛各一场(即每个队要进行6场比赛),以下是积分表的一-部分.(说明:积分=胜场积分十平场积分+负场积分)(1)D代表队的净胜球数m=______;(2)本次决赛中,胜一场积______分,平一场积______分,负一场积_______分;(3)此次竞赛的奖金分配方案为:进入决赛的每支代表队都可以获得参赛奖金6000元;另外,在决赛期间,每胜一场可以再获得奖金2000元,每平一场再获得奖金1000元.请根据表格提供的信息,求出冠军A 队一共能获得多少奖金.23.(2021·北京·九年级专题练习)某校举办初中生数学素养大赛,比赛共设四个项目:七巧拼图、趣题巧解、数学应用和魔方复原,每个项目得分都按一定百分比折算后记入总分,并规定总分在85分以上(含85分)设为一等奖.如表为甲、乙、丙三位同学的得分情况(单位:分),其中甲的部分信息不小心被涂黑了. 项目得分项目 学生 七巧拼图趣题巧解数学应用魔方复原折算后总分甲 66 95 68乙 66 80 60 68 70 丙 6690806880据悉,甲、乙、丙三位同学的七巧拼图和魔方复原两项得分折算后的分数之和均为20分.设趣题巧解和数学应用两个项目的折算百分比分别为x 和y ,请用含x 和y 的二元一次方程表示乙同学“趣题巧解和数学应用”两项得分折算后的分数之和为 ;如果甲获得了大赛一等奖,那么甲的“数学应用”项目至少获得 分. 24.(2020·北京市第一六一中学模拟预测)在抗击新冠肺炎疫情期间,老百姓越来越依赖电商渠道获取必要的生活资料.石经营的水果店也适时加入了某电商平台,并对销售的水果中的部分(如下表)进行 促销:参与促销的水果免配送费且一次购买水果的总价满 128 元减 x 元.每笔订单顾客网上支付成功后,小石会得到支付款的80%.(1)当x=8时,某顾客一次购买苹果和车厘子各 1 箱,小石会得到 ______________元;(2)在促销活动中,为保障小石每笔订单所得到的金额不低于促销前总价的七折,则 x 的最大值为_____ . 参入促销水果水果 促销单价 苹果 58元/箱 粑粑柑70元/箱车厘子100元/箱火龙果48元/箱25.(2020·北京·101中学九年级阶段练习)我国的传统佳节端午节,历来有吃“粽子”的习俗,某食品加工厂拥有A、B两条不同的粽子生产线,原计划A生产线每小时加工粽子400个,B生产线每小时加工粽子500个.(1)若生产线A,B一共加工12小时,且生产粽子总数量不少于5500个,则B生产线至少加工多少小时?(2)原计划A,B生产线每天均工作8小时,由于受其它原因影响,在实际生产过程中,A生产线每小时比原计划少生产100a个(a>0),B生产线每小时比原计划少生产100个,为了尽快将粽子投放到市场,A生产线每天比原计划多工作2a小时,B生产线每天比原计划多工作a小时,这样一天恰好生产粽子6400个,求a的值.26.(2020·北京石景山·二模)在抗击新冠肺炎疫情期间,老百姓越来越依赖电商渠道获取必要的生活资料.小石经营的水果店也适时加入了某电商平台,并对销售的水果中的部分(如下表)进行促销:参与促销的水果免配送费且一次购买水果的总价满128元减x元.每笔订单顾客网上支付成功后,小石会得到支付款的80%.参与促销水果水果促销前单价苹果58元/箱耙耙柑70元/箱车厘子100元/箱火龙果48元/箱(1)当x=8时,某顾客一次购买苹果和车厘子各1箱,需要支付_____元,小石会得到______元;(2)在促销活动中,为保障小石每笔订单所得到的金额不低于促销前总价的七折,则x的最大值为_____.27.(2021·北京·101中学九年级开学考试)在我市“青山绿水”行动中,某社区计划对面积为3600m2的区域进行绿化,经投标由甲、乙两个工程队来完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍,如果两队各自独立完成面积为600m2区域的绿化时,甲队比乙队少用6天.(1)求甲、乙两工程队每天各能完成多少面积的绿化;(2)若甲队每天绿化费用是1.2万元,乙队每天绿化费用为0.5万元,社区要使这次绿化的总费用不超过40万元,则至少应安排乙工程队绿化多少天?28.(2022·北京·景山学校九年级阶段练习)小云想用7天的时间背诵若干首诗词,背诵计划如下:①将诗词分成4组,第i组有x i首,i =1,2,3,4;①对于第i组诗词,第i天背诵第一遍,第(i+1)天背诵第二遍,第(i+3)天背诵第三遍,三遍后完成背诵,其它天无需背诵,i=1,2,3,4;第1天第2天第3天第4天第5天第6天第7天第1组x1x1x1第2组x2x2x2第3组第4组x4x4x4①每天最多背诵14首,最少背诵4首.解答下列问题:(1)填入x3补全上表;(2)若x1=4,x2=3,x3=4,则x4的所有可能取值为______;(3)7天后,小云背诵的诗词最多为______首.29.(2021·北京·九年级专题练习)某汽车租赁公司要购买轿车和面包车共10辆,其中轿车至少要购买3辆,轿车每辆12万元,面包车每辆8万元,公司可投入的购车款不超过100万元;(1)符合公司要求的购买方案有几种?请说明理由;(2)如果每辆轿车的日租金为250元,每辆面包车的日租金为150元,假设新购买的这10辆车每日都可租出,要使这10辆车的日租金不低于2000元,那么应选择以上哪种购买方案?30.(2021·北京·九年级专题练习)小宜跟几位同学在某快餐厅吃饭,如图为此快餐厅的菜单.若他们所点的餐食总共为10份盖饭,x杯饮料,y份凉拌菜.11(1)他们点了 份A 套餐, 份B 套餐, 份C 套餐(均用含x 或y 的代数式表示); (2)若x =6,且A 、B 、C 套餐均至少点了1份,则最多有几种点餐方案.12。
中考数学方程与不等式的应用历年真题解析

中考数学方程与不等式的应用历年真题解析一、方程的应用方程是数学中常见的问题求解方法,通过列方程可以将实际问题转化为数学问题,进而求解。
下面通过历年的中考真题来解析方程的应用。
1. 例题1:甲、乙两人从相距120km的甲地、乙地相向而行。
甲每小时行20km,乙每小时行15km。
多少小时两人相遇?解析:设两人相遇的时间为t小时,则甲走了20t km,乙走了15t km。
根据题意可得20t + 15t = 120。
化简得35t = 120,解方程得t ≈ 3.43。
所以,两人相遇的时间约为3.43小时。
2. 例题2:某运输公司一辆货车每天搬运2000箱货物。
如果用10辆相同的货车每天搬运,多少天能够把全部货物搬完?解析:设一辆货车每天搬运的天数为t天,则10辆货车每天搬运的天数为t/10天。
根据题意可得2000t = 10(t/10)。
化简得2000t = t,解方程得t = 0。
由于t表示天数,所以t = 0不符合实际意义,因此方程无解。
所以,无论用多少辆货车,都无法在一天内把全部货物搬完。
二、不等式的应用不等式是数学中描述大小关系的工具,通过不等式可以解决一些实际问题。
下面通过历年的中考真题来解析不等式的应用。
1. 例题1:某地游泳馆规定:使用儿童游泳池的年龄在5岁至12岁之间。
已知小华的年龄a满足不等式5 ≤ a ≤ 12,那么a的取值范围是多少?解析:根据不等式5 ≤ a ≤ 12,可以得知小华的年龄范围是[5, 12]。
所以,小华的年龄取值范围是5岁至12岁。
2. 例题2:某商场举办打折促销活动,规定某商品的折扣为30%至50%。
小明去商场买该商品,他的预算范围是600元至900元。
设该商品的原价为x元,应写出不等式来表示该商品的原价范围。
解析:折扣范围为30%至50%,即折扣后价格为70%至50%。
根据题意可得0.7x ≤ 600,0.5x ≥ 900。
化简得x ≤ 857.14,x ≥ 1800。
北京中考复习——方程(组)与不等式(组)的应用(解析版)

北京中考复习——方程(组)与不等式(组)的应用一、解答题1、李明同学早上骑自行车上学,中途因道路施工步行一段路,到学校共用时15分钟,他骑自行车的平均速度是250米/分,步行的平均速度是80米/分,他家离学校的距离是2900米,求他骑行和步行的时间分别是多少?答案:骑行了10分钟,步行了5分钟解答:设他步行了x分钟,则骑行了15-x分钟,依题意得:80x+250(15-x)=2900,解得,x=5.15-x=10答:他骑行了10分钟,步行了5分钟.2、自从2012年9月1日昌平区首批50辆纯电动出租车正式运营以来,电动出租车以绿色环保受到市民的广泛欢迎,给市民的生活带来了很大方便.下表是行驶15公里以内普通燃油出租车和纯电动出租车的运营价格:老张每天从家去单位打出租车上班(路程在15公里以内),结果发现正常情况下乘坐纯电动出租车比燃油出租车平均每公里节省0.8元,求老张家到单位的路程是多少公里?答案:小明家到单位的路程是8.2千米.解答:设小明家到单位的路程是x千米.依题意,得13+2.3(x-3)=8+2(x-3)+0.8x.解这个方程,得x=8.2.答:小明家到单位的路程是8.2千米.3、某机械厂加工车间有84名工人,平均每人每天加工大齿轮16个或者小齿轮10个,已知1个大齿轮与2个小齿轮刚好配成一套,问分别安排多少名工人加工大,小齿轮,才能使每天加工的大小齿轮刚好配套?答案:每天加工大齿轮的有20人,每天加工小齿轮的有64人.解答:设每天加工大齿轮的有x人,则每天加工小齿轮的有(84-x)人,根据题意可得;2×16x=10(84-x),解得:x=20,则84-20=64(人).答:每天加工大齿轮的有20人,每天加工小齿轮的有64人.4、根据国家发改委实施“阶梯电价”的有关文件要求,某市结合地方实际,决定从2013年4月1日起对居民生活用电试行“阶梯电价”收费,具体收费标准见下表:2013年5月份,该市居民甲用电100度,交电费60元;居民乙用电200度,交电费122.5元.(1)上表中a=______,b=______.(2)试行“阶梯电价”收费以后,该市一户居民2013年8月份平均电价每度为0.63元,求该用户8月用电多少度?答案:(1)0.6;0.65(2)该市一户居民月用电为375度.解答:(1)根据2013年5月份,该市居民甲用电100度时,交电费60元,得出:a=60÷100=0.6,居民乙用电200度时,交电费122.5元.则(122.5-0.6×150)÷(200-150)=0.65,故答案为:0.6,0.65.(2)设居民月用电为x度,依题意得:150×0.6+0.65(x-150)=0.63x,整理得:90+0.65x-97.5=0.63x,解得:x=375,答:该市一户居民月用电为375度.5、北京市实施交通管理新措施以来,全市公共交通客运量显著增加.据统计,2008年10月11日到2009年2月28日期间,地面公交日均客运量与轨道交通日均客运量总和为1696万人次,地面公交日均客运量比轨道交通日均客运量的4倍少69万人次.在此期间,地面公交和轨道交通日均客运量各为多少万人次?答案:轨道交通日均客运量为353万人次,地面公交日均客运量为1343万人次. 解答:设轨道交通日均客运量为x 万人次,地面公交日均客运量为y 万人次.依题意得:1696469x y y x +=⎧⎨=-⎩, 解得:3531343x y =⎧⎨=⎩.答:轨道交通日均客运量为353万人次,地面公交日均客运量为1343万人次.6、体育文化用品商店购进篮球和排球共20个,进价和售价如表,全部销售完后共获利润260元.求商店购进篮球,排球各多少个.答案:购进篮球12个,购进排球8个.解答:设购进篮球x 个,购进排球y 个,由题意得:()()2095806050260x y x y +=⎧⎨-+-=⎩, 解得:128x y =⎧⎨=⎩.答:购进篮球12个,购进排球8个.7、水上公园的游船有两种类型,一种有4个座位,另一种有6个座位.这两种游船的收费标准是:一条4座游船每小时的租金为60元,一条6座游船每小时的租金为100元.某公司组织38名员工到水上公园租船游览,若每条船正好坐满,并且1小时共花费租金600元,求该公司分别租用4座游船和6座游船的数量.答案:该公司租用4座游船5条,6座游船3条.解答:设租用4座游船x 条,租用6座游船y 条.依题意得463860100600x y x y +=⎧⎨+=⎩解得53 xy=⎧⎨=⎩答:该公司租用4座游船5条,6座游船3条.8、小志从甲、乙两超市分别购买了10瓶和6瓶cc饮料,共花费51元;小云从甲、乙两超市分别购买了8瓶和12瓶cc饮料,且小云在乙超市比在甲超市多花18元,在小志和小云购买cc饮料时,甲、乙两超市cc饮料价格不一样,若只考虑价格因素,到哪家超市购买这种cc饮料便宜?请说明理由.答案:到甲超市购买这种cc饮料便宜,证明见解答.解答:设甲超市cc饮料每瓶的价格为x元,乙超市cc饮料每瓶的价格为y元,依题意,得:1065112818x yy x+=⎧⎨-=⎩,解得:33.5xy=⎧⎨=⎩,∵3<3.5,∴到甲超市购买这种cc饮料便宜.9、台湾是中国领土不可分割的一部分,两岸在政治、经济、文化等领域的交流越来越深入,2015年10月10日是北京故宫博物院成立90周年院庆日,两岸故宫同根同源,合作举办了多项纪念活动.据统计北京故宫博物院与台北故宫博物院现共有藏品约245万件,其中北京故宫博物院藏品数量比台北故宫博物院藏品数量的2倍还多50万件,求北京故宫博物院和台北故宫博物院各约有多少万件藏品.答案:北京故宫博物院约有180万件藏品,台北故宫博物院约有65万件藏品.解答:设北京故宫博物院约有x万件藏品,台北故宫博物院约有y万件藏品.依题意,列方程组得:245250 x yx y+=⎧⎨=+⎩,解得18065xy=⎧⎨=⎩.答:北京故宫博物院约有180万件藏品,台北故宫博物院约有65万件藏品.10、某水果商从批发市场用8000元购进了大樱桃和小樱桃各200千克,大樱桃的进价比小樱桃的进价每千克多20元,大樱桃售价为每千克40元,小樱桃售价为每千克16元.(1)大樱桃和小樱桃的进价分别是每千克多少元?销售完后,该水果商共赚了多少元钱?(2)该水果商第二次仍用8000元钱从批发市场购进了大樱桃和小樱桃各200千克,进价不变,但在运输过程中小樱桃损耗了20%.若小樱桃的售价不变,要想让第二次赚的钱不少于第一次所赚钱的90%,大樱桃的售价最少应为多少?答案:(1)小樱桃的进价为每千克10元,大樱桃的进价为每千克30元,销售完后,该水果商共赚了3200元.(2)大樱桃的售价最少应为41.6元/千克.解答:(1)设小樱桃的进价为每千克x 元,大樱桃的进价为每千克y 元,根据题意可得: 200200800020x y y x +=⎧⎨-=⎩, 解得:1030x y =⎧⎨=⎩, 小樱桃的进价为每千克10元,大樱桃的进价为每千克30元,200×[(40-30)+(16-10)]=3200(元),∴销售完后,该水果商共赚了3200元.(2)设大樱桃的售价为a 元/千克,(1-20%)×200×16+200a -8000≥3200×90%,解得:a ≥41.6,答:大樱桃的售价最少应为41.6元/千克.11、小宜跟几位同学在某快餐厅吃饭,如图为此快餐厅的菜单.若他们所点的餐食总共为10份盖饭,x 杯饮料,y 份凉拌菜.A 套餐:一份盖饭加一杯饮料B 套餐:一份盖饭加一份凉拌菜C 套餐:一份盖饭加一杯饮料与一份凉拌菜(1)他们点了______份A 套餐,______份B 套餐,______份C 套餐(均用含x 或y 的代数式表示).(2)若x =6,且A 、B 、C 套餐均至少点了1份,则最多有______种点餐方案. 答案:(1)(10-y );(10-x );(x +y -10)(2)5解答:(1)根据题意,有(10-y )份套餐,只点了饮料,故有(10-y )份A 套餐.有(10-x )份套餐,点了凉拌饭,故有(10-x )份B 套餐.则C 套餐有10-(10-y +10-x )=(x +y -10)份.(2)若x =6,则10-6=4份点了B 套餐,∵A 、B 、C 套餐均至少点了1份,∴共有以下5种点餐方案.如下表:12、为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两间工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品?答案:甲工厂每天加工40件产品,乙工厂每天加工60件产品.解答:设甲工厂每天加工x 件产品,则乙工厂每天加工1.5x 件产品,依题意得120012001.5x x-=10, 解得:x =40.经检验:x =40是原方程的根,且符合题意.所以1.5x =60.答:甲工厂每天加工40件产品,乙工厂每天加工60件产品.13、某市计划建造80万套保障性住房,用于改善百姓的住房状况.开工后每年建造保障性住房的套数比原计划增加25%,结果提前两年保质保量地完成了任务.求原计划每年建造保障性住房多少万套?答案:原计划每年建造保障性住房8万套.解答:设原计划每年建造保障性住房x 万套,根据题意可得:()8080125%x x-+=2,解方程,得x =8.经检验:x =8是原方程的解,且符合题意.答:原计划每年建造保障性住房8万套.14、为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两个工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;信息二:乙工厂每天加工产品的数量是甲工厂每天加工产品数量的1.5倍.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品?答案:甲、乙两个工厂每天分别能加工新产品40件、60件.解答:设甲工厂每天加工x件新产品,则乙工厂每天加工1.5x件新产品.依题意,得120012001.5x x-=10.解得x=40.经检验,x=40是所列方程的解,且符合实际问题的意义.当x=40时,1.5x=60.答:甲、乙两个工厂每天分别能加工新产品40件、60件.15、某服装厂设计了一款新式夏装,想尽快制作8800件投入市场,服装厂有A、B两个制衣车间,A车间每天加工的数量是B车间的1.2倍,A、B两车间共同完成一半后,A车间出现故障停产,剩下全部由B车间单独完成,结果前后共用20天完成,求A、B两车间每天分别能加工多少件.答案:A车间每天生产384件,B车间每天生产320件.解答:设B车间每天生产x件,则A车间每天生产1.2x件.由题意得44001.2x x++4400x=20.解得x=320.经检验x=320是方程的解.此时A车间每天生产320×1.2=384(件).答:A车间每天生产384件,B车间每天生产320件.16、为应对雾霾天气,使师生有一个更加舒适的教学环境,学校决定为南北两幢教学楼安装空气净化器.南楼安装的55台由甲队完成,北楼安装的50台由乙队完成.已知甲队比乙队每天多安装两台,且两队同时开工,恰好同时完成任务.甲、乙两队每天各安装空气净化器多少台?答案:甲队每天安装空气净化器22台,乙队每天安装20台.解答:设甲队每天安装空气净化器x台,则乙队每天安装(x-2)台,依题意得,55x=502x-,解方程得,x=22.经检验,x=22是原方程的解,且符合实际意义.x-2=22-2=20(台).答:甲队每天安装空气净化器22台,乙队每天安装20台.17、列方程(组)解应用题某服装店用4500元购进一批衬衫,很快售完,服装店老板又用2100元购进第二批该款式的衬衫.但每件进价比第一批衬衫的每件进价少了10元,且进货量是第一批进货量的一半.求第一批购进这种衬衫每件的进价是多少元?答案:第一批衬衫每件进价为150元.解答:设第一批衬衫每件进价为x 元, 依题意,得12·4500x =210010x -, 解得x =150.经检验x =150是原方程的解,且满足题意.答:第一批衬衫每件进价为150元.18、某园林队计划由6名工人对180平方米的区域进行绿化,由于施工时增加了2名工人,结果比计划提前3小时完成任务,若每人每小时绿化面积相同,求每人每小时的绿化面积.答案:每人每小时的绿化面积2.5平方米.解答:设每人每小时的绿化面积x 平方米,由题意,得()180180662x x-+=3,解得:x =2.5.经检验,x =2.5是原方程的解,且符合题意.答:每人每小时的绿化面积2.5平方米.19、小马自驾私家车从A 地到B 地,驾驶原来的燃油汽车所需油费108元,驾驶新购买的纯电动汽车所需电费27元.已知每行驶1千米,原来的燃油汽车所需的油费比新购买的纯电动汽车所需的电费多0.54元,求新购买的纯电动汽车每行驶1千米所需的电费. 答案:新购买的纯电动汽车每行驶1千米所需的电费为0.18元.解答:设A 、B 两地距离为x 千米, 由题意可知:10827x x-=0.54,解得:x =150. 经检验:x =150是原方程的解,且符合题意. ∴纯电动汽车每行驶一千米所需电费为:27150=0.18(元/千米). 答:新购买的纯电动汽车每行驶1千米所需的电费为0.18元.20、京通公交快速通道开通后,为响应市政府“绿色出行”的号召,家住通州新城的小王上班由自驾车改为乘坐公交车.已知小王家距上班地点18千米.他用乘公交车的方式平均每小时行驶的路程比他用自驾车的方式平均每小时行驶的路程的2倍还多9千米,他从家出发到达上班地点,乘公交车方式所用时间是自驾车方式所用时间的37.小王用自驾车方式上班平均每小时行驶多少千米.答案:小王用自驾车方式上班平均每小时行驶27千米.解答:设小王用自驾车方式上班平均每小时行驶x千米.依题意,得1829x=37×18x,解得:x=27,经检验,x=27是原方程的解,且符合题意.答:小王用自驾车方式上班平均每小时行驶27千米.。
(辽宁)中考数学总复习 实际应用问题 类型2 方程、不等式的实际应用

(2)设购买直拍球拍m副,则购买横拍球拍(40-m)副, 由题意得,m≤3(40-m), 解得,m≤30, 设买40副球拍所需的费用为w, 则w=(220+20)m+(260+20)(40-m)=-40m+11200, ∵-40<0,∴w随m的增大而减小, ∴当m=30时,w取最大值,最大值为-40×30+11200=10000(元). 答:则购买直拍球拍30副,横拍球拍10副时,费用最少.
3.(2016·泰安)某学校是乒乓球体育传统项目学校,为进一步推动该项目的开 展,学校准备到体育用品店购买直拍球拍和横拍球拍若干副,并且每买一副球拍必 须要买10个乒乓球,乒乓球的单价为2元/个,若购买20副直拍球拍和15副横拍球拍 花费9000元;购买10副横拍球拍比购买5副直拍球拍多花费1600元.
[对应训练] 1.(2016·河南)学校准备购进一批节能灯,已知1只A型节能灯和3只B型节能灯 共需26元;3只A型节能灯和2只B型节能灯共需29元. (1)求一只A型节能灯和一只B型节能灯的售价各是多少元; (2)学校准备购进这两种型号的节能灯共50只,并且A型节能灯的数量不多于B型 节能灯数量的3倍,请设计出最省钱的购买方案,并说明理由.
解:(1)设一只 A 型节能灯的售价是 x 元,一只 B 型节能灯的售价是 y 元, 根据题意得:x3+x+32y=y=2269,解得:xy==57, 答:一只 A 型节能灯的售价是 5 元,一只 B 型节能灯的售价是 7 元;
(2)设购进A型节能灯m只,总费用为W元, 根据题意得:W=5m+7(50-m)=-2m+350, ∵-2<0,∴W随m的增大而减小, 又∵m≤3(50-m),解得:m≤37.5, 而m须为正整数,∴当m=37时,W最小=-2×37+350=276, 此时50-37=13, 答:当购买A型灯37只,B型灯13只时,最省钱.
中考数学复习之方程与不等式的应用
中考复习之方程与不等式的应用【一元一次方程的应用】1、互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,人科获利20元.则这件商品的进价为元。
----------------2、商店销吿总见商品.按照成木价提商40%后作为标价出售.节日期间促销,按标价打8折后售价为1232元,则这件商品的成本为元。
----------------3、某商场购进一批服装,每件进价为200元,由于换季滞销.商场决定将这批服装按标价的六折销售,若打折后每件服装仍能获利20%.则该服装标价是元。
----------------4、小明国庆期间在某服装点买了一件服装.次服装点挂牌标明全场八折优崽出售・小明购买的衣服标价是a元.丿占主又给小明让利20元.则小明购买这件衣服实际售价是元。
------------------5、一件商品进价为e元.在进价的基础上提商40%后再打八折出售,现在售价是元。
6、某种书包原价每个x元,第一次降价打九折,第二次每个降价10元.经两次降价后售价为80元,则可以列出方程为o --------------------------------------------------------7、已知A. B两地相距160km,—・辆汽吃从A地到B地的速度比原來提商了25%・结果比原來提前0.4h到达,这辆汽年原来的速度是knVh。
--------------------S.某校七年级社会实践小组去商场调査商品销售情况.了解到该商场以每件80元的价格购进了某品牌衬衫500件. 并以每件120元的价格销售f 400件.商场准备采収促销措施.将剩下的衬衫降价销售.请你帮商场汁算一下.每件衬衫降价多少元时,销售完这批衬衫正好达到盈利45%的预期目标?9、“水是生命之源:市自來水公司为鼓励用户节约用水,按以下规定收取水费:元,问1丿]份用水藝少吨?1(1)某用户刀份共交水费65丿J份22 ()若该用户水表有故障,每次用水只有60%记入用水址.这样在丿H分交水费43.2元•该用户2实际应交水费多少元?及10、居民用电实行阶梯式递増电价.可以提商能源效率,臬市居民阶梯电价:第一档为年用电虽再2700元:第三0.5S度的部分,每度2700度,超出4800至2700元:第二档为年用电址在0.53以下部分.每度.档为年用电ft 4800度,超过4800度的部分,每度0.83元。
2021年九年级数学中考复习——方程专题:不等式与不等式组实际应用(三)
2021年九年级数学中考复习——方程专题:不等式与不等式组实际应用(三)1.学校计划为“我和我的祖国”演讲比赛购买奖品.已知购买3个A奖品和2个B奖品共需130元;购买5个A奖品和4个B奖品共需230元.(1)求A,B两种奖品的单价;(2)学校准备购买A,B两种奖品共40个,且A奖品的数量不少于B奖品数量的.购买预算金不超过920元,请问学校有几种购买方案.2.某公园的门票每张20元,一次性使用.考虑到人们的不同需求,也为了吸引更多的游客,该公园除保留原来的售票方法外,还推出了一种“购买个人年票”(个人年票从购买日起,可供持票者使用一年)的售票方法.年票分A,B,C三类,A类年票每张240元,持票进入该园区时,无需再购买门票;B类年票每张120元,持票者进入该园区时,需再购买门票,每次4元;C类年票每张80元,持票者进入该园区时,需再购买门票,每次6元.(1)如果只能选择一种购买年票的方式,并且计划在一年中花费160元在该公园的门票上,通过计算,找出可进入该园区次数最多的方式.(2)一年中进入该公园超过多少次时,A类年票比较合算?3.如图是售货员与小丽的对话:根据对话内容解答下列问题:(1)A,B两种文具的单价各是多少元?(2)若购买A,B两种文具共20件,其中A种文具的数量少于10件,且购买总费用不超过260元,共有哪几种购买方案?4.为了加强学校的体育活动,某学校计划购进甲、乙两种篮球,根据市场调研发现,如果购进甲篮球2个和乙篮球3个共需270元;购进甲篮球3个和乙篮球2个共需230元.(1)求甲、乙两种篮球每个的售价分别是多少元?(2)为满足开展体育活动的需求,学校计划购进甲、乙两种篮球共100个,由于购货量大,和商场协商,商场决定甲篮球以九折出售,乙篮球以八折出售,学校要求甲种篮球的数量不少于乙种篮球数量的4倍,甲种篮球的数量不多于90个,请你求出学校花最少钱的进货方案.(3)学校又拿出省下的290元购买跳绳和毽子两种体育器材,跳绳10元一根,毽子5元一个,在把钱用尽的情况下,有多少种进货方案?5.国庆假期期间,某单位8名领导和320名员工集体外出进行素质拓展活动,准备租用45座大车或30座小车.若租用2辆大车3辆小车共需租车费1700元;若租用3辆大车2辆小车共需租车费1800元(1)求大、小车每辆的租车费各是多少元?(2)若每辆车上至少要有一名领导,每个人均有座位,且总租车费用不超过3100元,求最省钱的租车方案.6.某慈善组织租用甲、乙两种货车共16辆,把蔬菜266吨,水果169吨全部运到灾区.已知一辆甲种货车同时可装蔬菜18吨,水果10吨;一辆乙种货车同时可装蔬菜16吨,水果11吨.(1)若将这批货物一次性运到灾区,请写出具体的租车方案?(2)若甲种货车每辆需付燃油费1400元,乙种货车每辆需付燃油费1000元,则应选(1)种的哪种方案,才能使所付的燃油费最少?最少的燃油费是多少元?7.在我市中小学标准化建设工程中,某学校计划购进一批电脑和一体机,经过市场考察得知,购进1台笔记本电脑和2台一体机需要1.45万元,购进2台笔记本电脑和1台一体机需要1.55万元.(1)求每台笔记本电脑、一体机各多少万元?(2)根据学校实际,需购进笔记本电脑和一体机共35台,总费用不超过19万元,但不低于17万元,请你通过计算求出共几种购买方案,并写出费用最低具体方案.8.某木板加工厂将购进的A型、B型两种木板加工成C型,D型两种木板出售,已知一块A型木板的进价比一块B型木板的进价少10元,且购买3块A型木板和2块B型木板共花费120元.(1)A型木板与B型木板的进价各是多少元?(2)根据市场需求,该木板加工厂决定用不超过2770元购进A型木板、B型木板共100块,若一块A型木板可制成1块C型木板、2块D型木板;一块B型木板可制成2块C 型木板、1块D型木板,且生产出来的C型木板数量不少于D型木板的数量的7/5.①该木板加工厂有几种进货方案?②若C型木板每块售价30元,D型木板每块售价25元,且生产出来的C型木板、D型木板全部售出,哪一种方案获得的利润最大,求出最大利润是多少?9.商场要再次购进A、B两种纪念品共200件,若进价不变,且A种纪念品以每件110元售出,B种纪念品以每件55元售出.在购买这些纪念品的资金不超过12120元,且售完这些纪念品的利润不少于4500元的情况下,该商场共有几种进货方案?请一一写出.10.某校其中九年级的3个班学生的捐款金额如下表:吴老师统计时不小心把墨水滴到了其中两个班级的捐款金额上,但他知道下面三条信息:信息一:这三个班的捐款总金额是7700元;信息二:二班的捐款金额比三班的捐款金额多300元;信息三:三班学生平均每人捐款的金额大于49元,小于50元.请根据以上信息,帮助吴老师解决下列问题:(1)求出二班与三班的捐款金额各是多少元;(2)求出三班的学生人数.参考答案1.解:(1)设A种奖品的单价为x元,B种奖品的单价为y元,依题意,得:,解得:.答:A种奖品的单价为30元,B种奖品的单价为20元.(2)设购买A种奖品m个,则购买B种奖品(40﹣m)个,依题意,得:,解得:10≤m≤12.∵m为整数,∴m=10,11,12,∴40﹣m=30,29,28.∴学校有三种购买方案,方案一:购买A种奖品10个,B种奖品30个;方案二:购买A种奖品11个,B种奖品29个;方案三:购买A种奖品12个,B种奖品28个.2.(1)解:不可能选A年票.若选B年票,则(次),若选C年票,则(次),若不购买年票,则(次),所以,若计划花费160元在该公园的门票上时,则选择购买C类年票进入公园的次数最多,为13次;(2)解:设超过x次时,购买A类年票比较合算,,解得x>30,因此,一年中进入该公园超过30次时,购买A类年票比较合算.3.解:(1)设A种文具的单价为x元,则B种文具的单价为(25﹣x)元.根据题意,=,解得x=10,经检验x=10是原方程的解,∴25﹣x=15,答:A,B两种文具的单价分别为10元、15元.(2)设A种文具购买y件,则B种文具购买(20﹣y)件.根据题意,得10y+15(20﹣y)≤260.解得y≥8.又∵y<10,且y为整数,∴y=8或9.∴有两种方案:①购买A种文具8件,B种文具12件;②购买A种文具9件,B种文具11件.4.解:(1)设甲、乙两种篮球每个的售价分别是x元、y元,,解得,,即甲、乙两种商品每件的进价分别是30元、70元;(2)设学校计划购进甲种篮球m个,则学校计划购进乙种篮球(100﹣m)个;根据题意得,m≥4(100﹣m),解得:m≥80,∵m≤90,∴80≤m≤90,设购进甲、乙两种篮球学校花w元,则w=30×0.9m+70×0.8(100﹣m)=﹣29m+5600,当m=90时,w取最小值,花最少钱为2990元,花最少钱的进货方案为购进甲种篮球90个,购进乙种篮球10个;(3)设购买跳绳a根,毽子b个,根据题意得,10a+5b=290,∴b=58﹣2a>0,解得:a<29,∵a为整数,∴有28种进货方案.5.解:(1)设大车每辆的租车费为x元,小车每辆的租车费为y元,根据题意,得:,解得:,答:大车每辆的租车费为400元,小车每辆的租车费为300元;(2)由每辆汽车上至少要有1名领导,汽车总数不能大于8辆;又要保证320名员工有车坐,汽车总数不能小于(取整为8)辆,综合起来可知汽车总数为8辆.设租用m辆大型车,则租车费用Q(单位:元)是m的函数,即Q=400m+300(8﹣m);化简为:Q=100m+2400,依题意有:100m+2400≤3100,∴m≤7,又要保证320名员工有座位坐,45m+30(8﹣m)≥328,解得m≥5,所以有两种租车方案,方案一:6辆大车,2辆小车;方案二:7辆大车,1辆小车.∵Q随m增加而增加,∴当m=6时,Q最少为3000元.故最省钱的租车方案是:6辆大车,2辆小车.6.解:(1)设租用甲种货车x辆,租用乙种货车为(16﹣x)辆,根据题意得,由①得x≥5,由②得x≤7,∴5≤x≤7,∵x为正整数,∴x=5或6或7,因此,有3种租车方案:方案一:租甲种货车5辆,乙种货车11辆;方案二:租甲种货车6辆,乙种货车10辆;方案三:租甲种货车7辆,乙种货车9辆;(2)由(1)知,租用甲种货车x辆,租用乙种货车为(16﹣x)辆,设两种货车燃油总费用为y元,由题意得y=1400x+1000(16﹣x),=400x+16000,∵400>0,∴y随x值增大而增大,当x=5时,y有最小值,=400×5+16000=18000元.∴y最小7.解:(1)设每台笔记本电脑x万元,一体机y万元,依题意,得:,解得:.答:每台笔记本电脑0.55万元,一体机0.45万元.(2)设购进m台笔记本电脑,则购进(35﹣m)台一体机,依题意,得:,解得:12.5≤m≤32.5.∵m为整数,∴m有20个值,∵0.55>0.45,∴当m=13时,费用最低.答:学校共有20种购进方案,费用最低的方案为:购进13台笔记本电脑,22台一体机.8.解:(1)设A型木板的进价为x元,B型木板的进价为y元,依题意,得:,解得:.答:A型木板的进价为20元,B型木板的进价为30元.(2)①设购进m块A型木板,则购进(100﹣m)块B型木板,依题意,得:,解得:23≤m≤25.∵m为整数,∴m=23,24,25,∴该木板加工厂共有3种进货方案,方案1:购进23块A型木板,77块B型木板;方案2:购进24块A型木板,76块B型木板;方案3:购进25块A型木板,75块B型木板.②方案1获得的利润为30×(23+2×77)+25×(2×23+77)﹣20×23﹣30×77=5615(元),方案2获得的利润为30×(24+2×76)+25×(2×24+76)﹣20×24﹣30×76=5620(元),方案3获得的利润为30×(25+2×75)+25×(2×25+75)﹣20×25﹣30×75=5625(元),∵5615<5620<5625,∴方案3购进25块A型木板,75块B型木板获得的利润最大,最大利润为5625元.9.解:(1)设A种纪念品购进x件,B种纪念品购进y件,依题意,得:,解得:.答:A种纪念品购进20件,B种纪念品购进30件.(2)设购进A种纪念品m件,则购进B种纪念品(200﹣m)件,依题意,得:,解得:100≤m≤103.∵m为整数,∴m=100,101,102,103,∴该商场共有4种进货方案,方案1:购进A种纪念品100件,B种纪念品100件;方案2:购进A种纪念品101件,B种纪念品99件;方案3:购进A种纪念品102件,B种纪念品98件;方案4:购进A种纪念品103件,B种纪念品97件.10.解:(1)设二班的捐款金额为x元,三班的捐款金额为y元,则,解得.答:二班、三班的捐款金额为3000元、2700元;(2)设三班的学生人数为m人,根据题意,得,所以54<m<55.10,因为m是正整数,所以m=55.答:三班的学生人数为55人.。
2021年九年级数学中考复习——方程专题:不等式与不等式组实际应用(三)
2021年九年级数学中考复习——方程专题:不等式与不等式组实际应用(三)1.某汽车租赁公司准备购买A,B两种型号的新能源汽车10辆.汽车厂商提供了如下两种购买方案:汽车数量(单位:辆)总费用(单位:万元)A B第一种购买方案64170第二种购买方案82160(1)A,B两种型号的新能源汽车每辆的价格各是多少万元?(2)为了支持新能源汽车产业的发展,国家对新能源汽车发放一定的补贴.已知国家对A,B两种型号的新能源汽车补贴资金分别为每辆3万元和4万元.通过测算,该汽车租赁公司在此次购车过程中,可以获得国家补贴资金不少于34万元,公司需要支付资金不超过145万元,请你通过计算求出有几种购买方案.2.某房地产开发公司计划建A、B两种户型的经济适用住房共80套,该公司所筹资金不少于2090万元,但不超过2096万元,且所筹资金全部用于建房,两种户型的建房成本和售价如表:(1)该公司对这两种户型住房有哪几种建房方案?(2)若该公司所建的两种户型住房可全部售出,利用函数的知识说明采取哪一种建房方案获得利润最大?并求出最大利润.A B成本(万元/套)2528售价(万元/套)30343.某超市进货员预测一种应季水果能畅销市场,用3000元购进第一批这种水果,面市后果然供不应求,全部卖完,超市进货员又用1500元购进了第二批这种水果,但进价比第一批上涨了50%,若两批水果的平均价格为9元/kg(1)求购进第一批该种水果的单价;(2)第一批水果的销售单价为10元/kg,第二批水果的销售单价为15元/kg,但在第二批水果的销售过程中发现销量不好,超市决定第二批水果销售一定数量后将剩余水果按原售价的7折销售.要使两批水果全部销售后共获利不少于900元,问第二批水果按原销售单价至少销售多少千克?4.某商店四月份购进70个篮球,由于供不应求,五月份又购进同种篮球60个,两次购进篮球的单价不同,已知四月份和五月份购进篮球的单价和为65元,并且四月份与五月份购入篮球总费用相同.(1)求该商店四、五月份购进篮球的单价分别是多少元;(2)由于运输不当,五月份购进的篮球中有10%损坏,不能卖售,该商店将两批篮球按同一价格全部销售后,获利不低于2000元,求每个篮球的售价至少是多少元.5.友谊商店A型号笔记本电脑的售价是4000元/台.最近,该商店对A型号笔记本电脑举行促销活动,有两种优惠方案.方案一:每台按售价的九折销售;方案二:若购买不超过5台,每台按售价销售;若超过5台,超过的部分每台按售价的八折销售.某公司一次性从友谊商店购买A型号笔记本电脑x台.(1)当x=8时,应选择哪种方案才能使该公司购买费用最少?最少费用是多少元?(2)若该公司采用方案二购买更合算,求x的取值范围.6.嘉年华小区准备新建50个停车位.以解决小区停车难的问题.已知新建1个地上停车位和1个地下停车位需0.7万元;新建3个地上停车位和2个地下停车位需1.6万元.(1)该小区新建1个地上停车位和1个地下停车位各需多少万元?(2)若该小区预计投资金额超过15万元而不超过16万元,请提供两种建造方案.7.某校师生积极为汶川地震灾区捐款捐物,在得知灾区急需帐篷后,立刻到当地的一家帐篷厂采购,帐篷有两种规格,可供3人居住的小帐篷,价格每顶160元;可供10人居住的大帐篷,价格每顶400元.学校花去捐款96000元采购这两种帐篷,正好可供2300人居住.学校准备租用甲、乙两种型号的卡车共20辆将所购帐篷紧急运往灾区,已知甲型卡车每辆可同时装运4顶小帐篷和11顶大帐篷,乙型卡车每辆可同时装运12顶小帐篷和7顶大帐篷.(1)求该校采购了多少顶3人小帐篷,多少顶10人住的大帐篷;(2)学校应如何安排甲、乙两种型号的卡车可一次性将这批帐篷运往灾区?有几种方案?8.为了抓住保国寺建寺1000年的商机,某商店决定购进A、B两种艺术节纪念品.若购进A种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元.(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案?9.某蔬菜培育中心决定向某灾区配送无辐射蔬菜和水果共3200箱,其中水果比蔬菜多800箱.(1)求水果和蔬菜各有多少箱?(2)现计划租用甲、乙两种货车共8辆,一次性将这批水果和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装水果400箱和蔬菜100箱,每辆乙种货车最多可装水果和蔬菜各200箱,则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;(3)在(2)的条件下,如果甲种货车每辆需付运费4000元,乙种货车每辆需付运费3600元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?10.有一群猴子,一天结伴去偷桃子.分桃子时,如果每只猴子分3个,那么还剩下59个,如果每个猴子分5个,就都分得桃子,但有一个猴子分得的桃子不够4个.你能求出有几只猴子,几个桃子吗?参考答案1.解:(1)设A种型号的新能源汽车每辆的价格为x万元,B种型号的新能源汽车每辆的价格为y万元,依题意,得:,解得:.答:A种型号的新能源汽车每辆的价格为15万元,B种型号的新能源汽车每辆的价格为20万元.(2)设该汽车租赁公司购进A种型号的新能源汽车m辆,则购进B种型号的新能源汽车(10﹣m)辆,依题意,得:,解得:3≤m≤6.∵m为整数,∴m=4,5,6,∴该汽车租赁公司共有3种购买方案,方案1:购买4辆A种型号的新能源汽车,6辆B 种型号的新能源汽车;方案2:购买5辆A种型号的新能源汽车,5辆B种型号的新能源汽车;方案3:购买6辆A种型号的新能源汽车,4辆B种型号的新能源汽车.2.解:(1)设建造A型的住房x套,则建造B型住房(80﹣x)套,,解得,48≤x≤50,∵x为整数,∴x=48,49,50,∴共有三种建房方案,方案一:建造A型的住房48套,建造B型住房32套,方案二:建造A型的住房49套,建造B型住房31套,方案三:建造A型的住房50套,建造B型住房30套;(2)设利润为w元,w=(30﹣25)x+(34﹣28)(80﹣x)=﹣x+480,∵48≤x≤50,∴当x=48时,w取得最大值,此时w=﹣48+480=432,80﹣x=32,答:采用建房方案一:建造A型的住房48套,建造B型住房32套,可以获得利润最大,最大利润是432万元.3.解:(1)设购进第一批该种水果的单价为x元/千克,则购进第二批该种水果的单价为(1+50%)x元/千克,依题意,得:(3000+1500)÷9=+,解得:x=8,经检验,x=8是所列分式方程的解,且符合题意.答:购进第一批该种水果的单价为8元/千克.(2)第一批购进该种水果3000÷8=375(千克),第二批购进该种水果1500÷[(1+50%)×8]=125(千克).设第二批水果按原销售单价销售了y千克,则打折销售了(125﹣y)千克,依题意,得:10×375+15y+15×0.7(125﹣y)﹣3000﹣1500≥900,解得:y≥75.答:第二批水果按原销售单价至少销售75千克.4.解:(1)设该商店四月份购进篮球的单价是x元,则五月份购进篮球的单价是(65﹣x)元,依题意,得:70x=60(65﹣x),解得:x=30,∴65﹣x=35.答:该商店四月份购进篮球的单价是30元,五月份购进篮球的单价是35元.(2)设每个篮球的售价是y元,依题意,得:[70+60×(1﹣10%)]y﹣30×70﹣35×60≥2000,解得:y≥50.答:每个篮球的售价至少是50元.5.解:设购买A型号笔记本电脑x台时的费用为w元,(1)当x=8时,方案一:w=90%×4000×8=28800,方案二:w=5×4000+(8﹣5)×4000×80%=29600,∴当x=8时,应选择方案一,该公司购买费用最少,最少费用是28800元;(2)∵若该公司采用方案二购买更合算,∴x>5,方案一:w=90%×4000x=3600x,方案二:当x>5时,w=5×4000+(x﹣5)×4000×80%=4000+3200x,则3600x>4000+3200x,x>10,∴x的取值范围是x>106.解:(1)设新建一个地上停车位需x万元,新建一个地下停车位需y万元,则依题意得:,解得.答:新建一个地上停车位需0.2万元,新建一个地下停车位需0.5万元;(2)设建a个地上车位,(50﹣a)个地下车位.则15<0.2a+0.5(50﹣a)≤16,解得30≤a<33.则①a=30,50﹣a=20;②a=31,50﹣a=19;③a=32,50﹣a=18;④a=33,50﹣a=17;因此有4种方案.7.解:(1)设该校采购了x顶小帐篷,y顶大帐篷,根据题意,得,解这个方程组,得.答:该校采购了100顶3人小帐篷,200顶10人住的大帐篷.(2)设甲型卡车安排了a辆,则乙型卡车安排了(20﹣a)辆根据题意,得,解这个不等式组得15≤a≤17.5,∵车辆数为正整数,∴a=15或16或17,∴20﹣a=5或4或3.答:学校可安排甲型卡车15辆,乙型卡车5辆或安排甲型卡车16辆,乙型卡车4辆或安排甲型卡车17辆,乙型卡车3辆,可一次性将这批帐篷运往灾区.有3种方案.8.解:(1)设该商店购进一件A种纪念品需要a元,购进一件B种纪念品需要b元,根据题意得方程组得:,解方程组得:,∴购进一件A种纪念品需要100元,购进一件B种纪念品需要50元;(2)设该商店购进A种纪念品x个,则购进B种纪念品有(100﹣x)个,∴,解得:50≤x≤53,∵x为正整数,x=50,51,52,53∴共有4种进货方案,分别为:方案1:商店购进A种纪念品50个,则购进B种纪念品有50个;方案2:商店购进A种纪念品51个,则购进B种纪念品有49个;方案3:商店购进A种纪念品52个,则购进B种纪念品有48个;方案4:商店购进A种纪念品53个,则购进B种纪念品有47个.9.解:(1)设水果有x箱,则蔬菜有(x﹣800)箱,则x+(x﹣800)=3200,解得x=2000,则x﹣800=1200.答:水果和蔬菜分别为2000箱和1200箱.(2)设租用甲种货车a辆,则租用乙种货车(8﹣a)辆.根据题意,得,解得:2≤a≤4.因为a为整数,所以a=2或3或4,安排甲、乙两种货车时有3种方案.设计方案分别为:①甲车2辆,乙车6辆;②甲车3辆,乙车5辆;③甲车4辆,乙车4辆;(3)3种方案的运费分别为:①2×4000+6×3600=29600元;②3×4 000+5×3600=30000元。
初中数学方程与不等式的应用题(附答案)
初中数学方程与不等式的应用题(附答案)知识点睛1.理解题意:分层次,找结构借助表格等梳理信息2.建立数学模型:方程模型、不等式(组)模型、函数模型等①共需、同时、刚好、恰好、相同等,考虑方程;②显性、隐性不等关系等,考虑不等式(组) ;③最大利润、最省钱、运费最少、尽可能少、最小值等,考虑函数3.求解验证,回归实际①数据是否异常;②结果是否符合题目要求及取值范围;③结果是否符合实际意义例题精选应用题1.在甲打印店打印文件,打印页数不超过20页时,每页收费3.9元,打印页数超过20页时,超过部分每页收费3.5元;在乙打印店打印同样的文件,打印页数不超过60页时,每页收费3.7元,打印页数超过60页时,超过部分每页收费3.3元.(1)某公司打印文件为20页,在两个打印店打印各需要多少钱?(2)某公司打印文件不超过60页,且在两个打印店打印的费用相同,求该公司打印文件的页数.2.某工厂生产A,B两种型号的扫地机器人.B型机器人比A型机器人每小时的清扫面积多50%,清扫2100m所用的时间,A型机器人比B型机器人多用40分钟.求A型号扫地机器人每小时清扫面积是多少?3.某书城开展学生优惠购书活动:凡一次性购书不超过200元的一律九折优惠,超过200元的,其中200元按九折算,超过200元的部分按八折算.(1)甲同学一次性购书标价的总和为100元,需付款多少元.(2)丙同学第一次去购书付款63元,第二次去购书享受了八折优惠,他查看了所买书的定价,发现两次共节约了37元,求该学生第二次购书实际付款多少元?4.一学生队伍以4千米/时的速度从学校出发步行前往某地参加劳动.出发半小时后,学校有紧急通知要传给队长,立即派了一名通讯员骑自行车以14千米/时的速度原路去追,该通讯员要用多少时间才能追上学生队伍?5.若“☆”表示一种新的运算符号,且有如下运算规律.已知2☆3=2+3+4,7☆2=7+8,3☆5=3+4+5+6+7,9☆4=9+10+11+12…按此规律,如果n☆3=33,求n的值.6.列二元一次方程组解应用题:某大型超市投入15000元资金购进A、B两种品牌的矿泉水共600箱,矿泉水的成本价和销售价如表所示:类别/单价成本价(元/箱)销售价(元/箱)A品牌2032B品牌3550(1)该大型超市购进A、B品牌矿泉水各多少箱?(2)全部销售完600箱矿泉水,该超市共获得多少利润?7.用长方形和三角形按图示排列规律组成一连串图形.(1)当某个图形中长方形个数为5时,三角形个数为;(2)设某个图形中长方形个数为x,三角形个数为y.①y与x的数量关系为y=(用含x的代数式表示);②若某个图形中长方形与三角形个数之和为28,求该图中长方形个数.8.甲、乙两人从相距36km的两地相向而行.如果甲比乙先走2h,那么他们在乙出发2.5h后相遇;如果乙比甲先走2h,那么他们在甲出发3h后相遇.甲、乙两人的速度各是多少?设甲、乙两人的速度分别是xkm/h,ykm/h填写下表并求x,y的值.甲行走的路程乙行走的路程甲、乙两人行走的路程之和第一种情况(甲先走2h)第二种情况(乙先走2h)9.某弹簧测力计的测量范围是0至50N,小明未注意弹簧测力计的测量范围,用弹簧测力计测量了一个物体,取下物体后,发现弹簧没有恢复原状.你知道这个物体的重力在什么范围吗?”其中蛋白质的含量为多少克?10.一罐饮料净重约300g,罐上注有“蛋白质含量0.6%11.一个两位数个位上的数是1,十位上的数是x.把1与x对调,新两位数比原两位数小18,x应是哪个方程的解?你能想出x是几吗?12.一辆汽车已行驶了12000km,计划每月再行驶800km,几个月后这辆汽车将行驶20800km?13.疫情期间,某人要将一批抗疫物资运往西安,准备租用汽车运输公司的甲乙两种货车、已知过去两次租用这两种货车(均装满货物)的情况如下表:(1)甲、乙两种货车每辆分别能装货多少吨?(2)若有45吨的物资需要运往西安,准备同时租用这两种货车,每辆全部均装满货物,问有哪几种租车方案?请全部设计出来.14.某商场经营一种新上市的文具,进价为20元,试营销阶段发现:当销售单价为25元时,每天的销售量为250件,销售单价每上涨1元,每天的销售量就减少10件.(1)若商场每天要获得销售利润2000元,销售单价应定为多少元?(2)求销售单价定为多少元时,该文具每天的销售利润最大?最大利润为多少元?15.某家具厂有60名工人,加工某种由一个桌面和四条桌腿的桌子,工人每天每人可以加工3个桌面或6个桌腿.怎么分配加工桌面和桌腿的人数,才能使每天生产的桌面和桌腿配套.【参考答案】应用题1.(1)78元,74元(2)40页【解析】【分析】(1)根据总价=单价×数量,可求出结论;(2)设当该公司打印文件x页时,在甲打印店和在乙打印店打印费一样,分x≤20及20<x≤60两种情况考虑,由打印费用相同可得出关于x的一元一次方程,解之即可得出结论.(1)解:由题意可得:⨯=(元)甲打印店打印20页费用为:20 3.978⨯=(元)乙打印店打印20页费用为:20 3.774所以在甲乙打印店打印费用分别为78元、74元.(2)解:①当打印页数不超过20页时,显然甲打印店费用大于乙打印店费用,不合题意②设打印页数为x 页,当6020x ≤<时,则由题意得:()20 3.920 3.5 3.7x x ⨯+-⨯= 解得:40x =答:该公司打印文件的页数为40页【点睛】本题考查了一元一次方程的应用,解题的关键是:(1)根据数量关系,列式计算;(2)找准等量关系,正确列出一元一次方程.2.A 型号扫地机器人每小时清扫面积250m .【解析】【分析】设A 型号扫地机器人每小时清扫面积2xm ,则B 型号扫地机器人每小时清扫面积21.5xm ,根据题意列出方程求解即可得,注意对分式方程的解进行检验.【详解】解:设A 型号扫地机器人每小时清扫面积2xm ,则B 型号扫地机器人每小时清扫面积21.5xm ,40分钟23=小时,根据题意可得: 10010021.53x x -=, 解得:50x =,检验:当50x =时,1.50x ≠,∴50x =为分式方程的解,∴A 型号扫地机器人每小时清扫面积250m .【点睛】题目主要考查分式方程的应用,理解题意,找准等量关系,列出方程是解题关键. 3.(1)需付款90元;(2)该学生第二次实际付款为220元.【解析】【分析】(1)根据一次性购书不超过200元的一律九折优惠的办法计算即可求出;(2)设第二次购书的标价为x 元,且200x >,可得第二次需付款为0.820x +,第一次的标价为70,依据题意列出方程求解得出第二次购书的标价,然后根据第二次实际付款的计算方法求解即可.【详解】(1)由题意,得:10090%90⨯=元,∴需付款90元;(2)设第二次购书的标价为x 元,且200x >,根据题意得:第二次需付款为:()2000.92000.80.820x x ⨯+-⨯=+, 第一次的标价为:63700.9=, 可得:()()700.8206337x x +-+-=,解得:250x =元,则第二次需付款为:()2000.92502000.8220⨯+-⨯=元,∴该学生第二次实际付款为220元.【点睛】题目主要考查一元一次方程的应用及列代数式,理解题意,列出相应方程是解题关键. 4.2小时【解析】【分析】设需x 时追上,根据题意,列出方程,即可求解.【详解】解:设需x 时追上,由题意,得:(14-4)x =4×0.510x =2解得:x =0.2答:需0.2小时才能追上学生队伍.【点睛】本题主要考查了一元一次方程的应用,明确题意,准确得到数量关系是解题的关键. 5.10【解析】【分析】根据所给的式子可以找出其规律:从整数几开始,连续的几个整数的和,据此进行求解即可.【详解】解:由题意得:n ☆3()()1233n n n =++++=,解得:10n =.【点睛】题目主要考查列代数式及解方程,根据题中规律,列出方程是解题关键.6.(1)A 品牌矿泉水400箱,B 品牌矿泉水200箱;(2)7800元【解析】【分析】(1)设该大型超市购进A 品牌矿泉水x 箱,B 品牌矿泉水y 箱,根据该超市购进A 、B 两种品牌的矿泉水共600箱且共花费15000元,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)利用总利润=每箱的销售利润×销售数量(购进数量),即可求出结论.【详解】解:(1)设该大型超市购进A 品牌矿泉水x 箱,B 品牌矿泉水y 箱,依题意得:600203515000x y x y +=⎧⎨+=⎩,解得:400200x y =⎧⎨=⎩. 答:该大型超市购进A 品牌矿泉水400箱,B 品牌矿泉水200箱.(2)(3220)400(5035)2007800-⨯+-⨯=(元).答:全部销售完600箱矿泉水,该超市共获得7800元利润.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.7.(1)8;(2)①2(x ﹣1);②长方形个数为10【解析】【分析】(1)根据题目中图形规律直接可得;(2)①由图可知每个图形中三角形的个数为长方形个数与1的差的2倍,据此可得; ②根据①中所得结果,列出方程,求出x 的值即可.【详解】解:(1)∵长方形个数为2时,三角形个数为2个,即2212=⨯=;长方形个数为3时,三角形个数为4个,即4224=⨯=;长方形个数为4时,三角形个数为6个,即6326=⨯=.∴当某个图形中长方形个数为5时,三角形个数为428⨯=,故答案为:8;(2)①∵长方形个数为2时,三角形个数为2个,即2212=⨯=;长方形个数为3时,三角形个数为4个,即4224=⨯=;长方形个数为4时,三角形个数为6个,即6326=⨯=.…∴长方形个数为x ,三角形个数为y 时,y 与x 的数量关系为()21y x =-(用含x 的代数式表示);故答案为:()21x -;②当28x y +=时,即()2128x x -+=,解得:10x =,答:该图中长方形个数为10.【点睛】题目主要考查图形的找规律问题,列代数式及一元一次方程的求解,理解题意,找准图形的规律是解题关键.8.()2 2.5x +,2.5y ,()2 2.5 2.5x y ++;3x ,()23y +,()323x y ++;x =6,y =3.6.【解析】【分析】根据题意可知第一种情况乙走了2.5h ,甲比乙先走 2h ,相遇时甲共走了2 + 2.5 = 4.5h ;第二种情况甲走了3h ,乙比甲先走2h ,相遇时乙共走了 3+2=5h ,然后根据路程等于速度乘以时间,求出甲和乙所走的路程,填表即可.【详解】解:设甲、乙两人的速度分别是xkm/h ,ykm/h ,则由题意得:4.5 2.5363536x y x y +=⎧⎨+=⎩解得:63.6x y =⎧⎨=⎩ 所以甲、乙两人的速度分别为:6km/h 、3.6km/h【点睛】本题考查的是二元一次方程的应用题中的行程问题,关键在于根据题意列出正确的表达式,最终列出方程组求解.9.这个物体的重力大于50N .【解析】【分析】根据已知得出弹簧测力计的测量范围是0至50N ,再根据已知用弹簧测力计测量一个物体,取下物体后,发现弹簧没有恢复原状得出答案即可.【详解】解:∵弹簧测力计的测量范围是0至50N ,用弹簧测力计测量一个物体,取下物体后,发现弹簧没有恢复原状,∴这个物体的重力大于50N .【点睛】本题考查了不等式的定义,能根据题意得出不等式是解此题的关键.10.蛋白质的含量大于等于1.8g .【解析】【分析】设蛋白质的含量为x g ,根据题意列出关于x 的不等式,解出不等式即可.【详解】设蛋白质的含量为x g ,根据题意可列不等式:3000.6%≥⨯x ,解得 1.8≥x .故其中蛋白质的含量大于等于1.8g .【点睛】本题考查一元一次不等式的应用.根据题意找出数量关系列出不等式是解答本题的关键. 11.方程为:1018101,x x ++=+3x =【解析】【分析】根据个位上的数是1,十位上的数是x ,再用把个位上的数与十位上的数对调得到的数比原数小18列出方程,解出即可.【详解】解:根据题意列方程得:1018101,x x ++=+解得:x =3,答:x 是方程1018101x x ++=+的解,x 是3.【点睛】此题主要考查了一元一次方程的应用,此题的关键表示出这个数,据题意列出方程解决问题.12.11个月后将行使20800 km .【解析】【分析】设x 个月后这辆汽车将行驶20800km ,然后根据总路程=已经行驶的路程+x 个月行驶的路程求解即可.【详解】解:设x 个月后将行使20800 km .12000+800x =20800,x =11.答:11个月后将行使20800 km .【点睛】本题主要考查的是一元一次方程的应用,根据行程问题中的数量关系及等量关系列出方程是解题的关键.13.(1)每辆甲种货车能装货4吨,每辆乙种货车能装货3吨(2)方案1:租用3辆甲种货车、11辆乙种货车;方案2:租用6辆甲种货车、7辆乙种货车;方案3:租用9辆甲种货车、3辆乙种货车【解析】【分析】(1)设每辆甲种货车可装x 吨货,每辆乙种货车可装y 吨货,根据前两次租用这两种货车的记录情况表,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设租用m 辆甲种货车,n 辆乙种货车,根据一次要运45吨货,即可得出关于m ,n 的二元一次方程组,结合m ,n 均为正整数即可得出结论.(1)解:设每辆甲种货车能装货x 吨,每辆乙种货能装货y 吨,由题意得45313630x y x y +=⎧⎨+=⎩ 解得:43x y =⎧⎨=⎩答:每辆甲种货车能装货4吨,每辆乙种货车能装货3吨.(2)解:设租用m 辆甲种货车,n 辆乙种货车.则:4345m n += ∴4153n m =- 又∵m ,n 均为正整数.∴311m n =⎧⎨=⎩,67m n =⎧⎨=⎩,93m n =⎧⎨=⎩ ∴共有3种租车方案:方案1:租用3辆甲种货车、11辆乙种货车.方案2:租用6辆甲种货车、7辆乙种货车.方案3:租用9辆甲种货车、3辆乙种货车.【点睛】本题考查了二元一次方程组的应用以及二元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找准等量关系,正确列出二元一次方程.14.(1)销售单价应定为30元或40元.(2)当单价为35元时,该文具每天的最大利润为2250元.【解析】【分析】(1)设销售单价为x 元,可列方程为(x ﹣20)[250﹣10(x ﹣25)]=2000,解方程即可解决问题.(2)列出二次函数解析式,利用二次函数的性质即可解决问题.【详解】解:(1)设销售单价为x 元,根据题意列方程得,(x ﹣20)[250﹣10(x ﹣25)]=2000,解得x 1=30,x 2=40答:销售单价应定为30元或40元.(2)设销售单价为x 元,每天的销售利润w 元,可列函数解析式为:w =(x ﹣20)[250﹣10(x ﹣25)] =﹣10x 2+700x ﹣10000=﹣10(x ﹣35)2+2250.∵﹣10<0,∴函数图象开口向下,当x =35时,w 有最大值,最大值为2250元,答:当单价为35元时,该文具每天的最大利润为2250元.【点睛】本题考查了二次函数的应用、一元二次方程的应用等知识,最大销售利润的问题常利用函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.15.有20个工人加工桌面,40个工人加工桌腿【解析】【分析】设有x 个工人加工桌面,根据“工人每天每人可以加工3个桌面或6个桌腿.”列出方程,即可求解.【详解】解:设有x 个工人加工桌面,根据题意得:()66034x x -= , 解得:x =20,∴60-20=40,答:有20个工人加工桌面,40个工人加工桌腿.【点睛】本题主要考查了一元一次方程的应用,明确题意,准确得到等量关系是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
济南市历届中考解答题:第三大题 方程(组)与不等式(组)的应用
1)列方程组或不等式组解应用题的关键是找出题目中存在的等量关系或不等关系。
2)设计方案题一般是根据题意列出不等式组,求不等式组的整数解。
一、不等式(组)的应用 典例1.(2007济南21满分8分)
某校准备组织290名学生进行野外考察活动,行李共有100件.学校计划租用甲、乙两种型号的汽车共8辆,经了解,甲种汽车每辆最多能载40人和10件行李,乙种汽车每辆最多能载30人和20件行李.
(1)设租用甲种汽车x 辆,请你帮助学校设计所有可能的租车方案;
(2)如果甲、乙两种汽车每辆的租车费用分别为2000元、1800元,请你选择最省钱的一种租车方案.
对应训练1、(2013莱芜,10分)某学校将周三“阳光体育”项目定为跳绳活动,为此学校准备购置长、短两种跳绳若干.已知长跳绳的单价比短跳绳单价的两倍多4元,且购买2条长跳绳与购买5条短跳绳的费用相同. (1)两种跳绳的单价各是多少元?
(2)若学校准备用不超过2000元的现金购买200条长、短跳绳,且短跳绳的条数不超过长跳
绳的6倍,问学校有几种购买方案可供选择?
二、二元一次方程组的应用 2.(2008济南21满分8分)
教师节来临之际,群群所在的班级准备向每位辛勤工作的教师献一束鲜花,每束由4支鲜花包装而成,其中有象征母爱的康乃馨和象征尊敬的水仙花两种鲜花,同一种鲜花每支的价格相同.请你根据第一、二束鲜花提供的信息,求出第三束鲜花的价格.
共计19元 共计18元 第三束
水仙花
康乃馨
3.(2009济南21满分8分)
自2008年爆发全球金融危机以来,部分企业受到了不同程度的影响,为落实“促民生、促经济”政策,济南市某玻璃制品销售公司今年1月份调整了职工的月工资分配方案,调整后月工资由基本保障工资和计件奖励工资两部分组成(计件奖励工资=销售每件的奖励金额×销售的件数).下表是甲、乙两位职工今年五月份的工资情况信息:
(1)试求工资分配方案调整后职工的月基本保障工资和销售每件产品的奖励金额各多少元?
(2)若职工丙今年六月份的工资不低于2000元,那么丙该月至少应销售多少件产品?
对应训练
4(2011济南,8分)某小学在6月1日组织师生共110人到趵突泉公园游览,趵突泉公园规定:成人票价每位40元,学生票价每位20元.该学校购票共花费2400元,在这次游览活动中,教师和学生各有多少人?
5(2013济南满分8分)某寄宿制学校有大、小两种类型的学生宿舍共50间,大宿舍每间可住8人,小宿舍每间可住6人.该校360名住宿生恰好
..住满这50间宿舍.求大、小宿舍各有多少间?
第21题图
6(2014济南 满分8分)2014年世界杯足球赛在巴西举行,小李在网上预订了小组赛和淘汰赛两个阶段的球票共10张,总价为5800元.其中小组赛球票每张550元,淘汰赛球票每张700元,问小李预定了小组赛和淘汰赛的球票各多少张?
三、一元二次方程的应用 7.(2010济南21满分8分)
如图所示,某幼儿园有一道长为16米的墙,计划用32米长的围栏靠墙围成一个面积为120平方米的矩形草坪ABCD .求该矩形草坪BC 边的长.
对应训练
8(2014•四川成都,8分)在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m 长的篱笆围成一个矩形花园ABCD (篱笆只围AB ,BC
两边),设AB=xm . (1)若花园的面积为192m 2
,求x 的值; (2)若在P 处有一棵树与墙CD ,AD 的距离分别是15m 和6m ,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S 的最大值.
四、分式方程的应用
9(2012济南8分)山区参加采摘节,他们采摘了油桃和樱桃两种水果,其中油桃比樱桃多摘了5斤,若采摘油桃和樱桃分别用了80元,且樱桃每斤价格是油桃每斤价格的2倍,问油桃和樱桃每斤各是多少元?
对应训练
10.(10分)(2013•济南)某地计划用120﹣180天(含120与180天)的时间建设一项水利工程,工程需要运送的土石方总量为360万米3.
(1)写出运输公司完成任务所需的时间y(单位:天)与平均每天的工作量x(单位:万米3)之间的函数关系式,并给出自变量x的取值范围;
(2)由于工程进度的需要,实际平均每天运送土石比原计划多5000米3,工期比原计划减少了24天,原计划和实际平均每天运送土石方各是多少万米3?
解决学生应用题理解题意难、类型判别出错、检验意识薄弱等典型问题。
本专题整合近年来济南中考中的经典应用题,通过对理解题意、梳理信息、建等式、验证等关键环节的解析,期望帮学生熟练掌握应用题的处理方法和思考角度,轻松应对中考应用题。
答案1.解:(1)由租用甲种汽车x 辆,则租用乙种汽车(8)x -辆
由题意得:4030(8)290
1020(8)100
x x x x +-⎧⎨
+-⎩≥≥ 解得:56x ≤≤
即共有2种租车方案:
第一种是租用甲种汽车5辆,乙种汽车3辆; 第二种是租用甲种汽车6辆,乙种汽车2辆.
(2)第一种租车方案的费用为520003180015400⨯+⨯=元; 第二种租车方案的费用为620002180015600⨯+⨯=元 ∴第一种租车方案更省费用. 对应训练1解:(1)设长跳绳的单价是x 元,短跳绳的单价为y 元.
由题意得:2425x y x y =+⎧⎨=⎩.解得:208x y =⎧⎨=⎩
.所以长跳绳单价是20元,短跳绳的单价是8元.
(2)设学校购买a 条长跳绳,由题意得:2006208(200)2000a a
a a -≤⎧
⎨+-≤⎩.
解得:41
28
3373
a ≤≤. ∵a 为正整数,∴a 的整数值为29,30,31,32,33. 所以学校共有5种购买方案可供选择.
2.解:设康乃馨每支x 元,水仙花每支y 元
由题意得:319
2218x y x y +=⎧⎨+=⎩
解得:54x y =⎧⎨=⎩
第三束花的价格为353417x y +=+⨯=
答:第三束花的价格是17元.
3.解:(1)设职工的月基本保障工资为x 元,销售每件产品的奖励金额为y 元
由题意得20018001801700x y x y +=⎧⎨
+=⎩解这个方程组得800
5
x y =⎧⎨=⎩
答:职工月基本保障工资为800元,销售每件产品的奖励金额5元.
(2)设该公司职工丙六月份生产z 件产品
由题意得80052000z +≥ 解这个不等式得240z ≥ 答:该公司职工丙六月至少生产240件产品
4解:设在这次游览活动中,教师有x 人,学生各有y 人,由题意得:
11040202400x y x y +=⎧⎨+=⎩
,解得:10
100x y =⎧⎨
=⎩
, 答:在这次游览活动中,教师有10人,学生各有100人. 5解法一:设大宿舍有x 间,小宿舍有y 间,(1分) 根据题意得5086360x y x y +=⎧⎨
+=⎩,(5分)解方程组得3020x y =⎧⎨=⎩,
.
(7分)
答:大宿舍有30间,小宿舍有20间.(8分)
解法二:设大宿舍有x 间,则小宿舍有()50x -间,(1分)
根据题意得()8650360x x +-=,(5分)解方程得30x =.∴5020x -=(间).(7分) 答:大宿舍有30间,小宿舍有20间.(8分)
6【解析】设小李预定了小组赛球票x 张,淘汰赛球票y 张,由题意有 ⎩⎨
⎧
=+=+5800
70055010y x y x ,解之⎩⎨⎧==28y x .
所以,小李预定了小组赛球票8张,淘汰赛球票2张.
7.解:设BC 边的长为x 米,根据题意得
321202
x
x -= , 解得:121220x x ==,,
∵20>16,∴220x =不合题意,舍去,
答:该矩形草坪BC 边的长为12米. 8解:(1)∵AB=xm ,则BC=(28﹣x )m ,
∴x (28﹣x )=192,解得:x 1=12,x 2=16,答:x 的值为12m 或16m ;
(2)由题意可得出:S=x (28﹣x )=﹣x 2+28x=﹣(x ﹣14)2
+196, ∵在P 处有一棵树与墙CD ,AD 的距离分别是15m 和6m ,
∴x=15时,S 取到最大值为:S=﹣(15﹣14)2
+196=195,答:花园面积S 的最大值为195平方米.
9: 解:设油桃每斤为x 元,则樱桃每斤是2x 元,
根据题意得出:
808052x x
=+, 解得:x=8, 经检验得出:x=8是原方程的根,则2x=16, y=
y=,y=
(。