非惯性系动力学
非惯性参考系

2.平移惯性力 在S系中物体的运动满足牛顿定律:
F 和m不随参考系变化,即
F = ma
F → 真实力
但因 a ≠ a′ ,在S′系看来物体的运动不满足牛顿定律,即 F ′ ≠ m′a′ a aO ′ + a ′ = F= ma = ma ′ + maO′ ∴ F − maO′ = ma ′
如果说,潮汐是月球的万有引力吸引海水造成的,那么 (1)为什么向着和背着月亮一面的海水都升高,从而一昼夜涨两 次潮? (2)按距离平方反比计算,太阳对海水的引力比月亮大180倍, 为什么说潮汐主要是月亮引起的?
设地球没有自转,公转是圆轨道。 地球成为随球心平动的非惯性系
FC FA
A
C
f iC
回顾:
应用牛顿定律解题的基本方法
选对象 先用符号求解,后代入 数据计算结果 分析力
2 dv d r = F ma = m= m 2 dt dt
分析运动
(画受力图) 一般用分量式,用文字 符号列方程式
解方程
列方程
选坐标系
平动非惯性系内,质点运动的动力学
Feff = ma ′
太阳的引力差是其 引力的0.0017% 但仅为月亮引力的3%
农谚:“初一十五涨大潮,初八二十三到处见海滩” 海潮、地潮、气潮、生物潮
根据平衡潮理论,如果地球完全由等深海水覆盖,用万有引力计算, 月球所产生的最大引潮力可使海水面升高0.563m,太阳引潮力的作 用为0.246m,夏威夷等大洋处观测的潮差约1m,与平衡潮理论比 较接近,近海实际的潮差却比上述计算值大得多。如我国杭州湾的 最大潮差达8.93m,北美加拿大芬地湾最大潮差更达19.6m。
非惯性系

练习3 如图,质量为 m1 和 m2 的物体悬挂在绳的两
M ,整个系统起初静 止.求放开后斜面对地的加速度和 m1 , m2对斜面的加速度;
a T N1 m1a0
m1
1
T
a
M
a0
m2
N2 m2 a0
2
1 m1 g
a0
M
2
m2 g
分析与解
m2 和 在非惯性参照系中画出 m 1
的受力示意图如图,对 m1 和 m2 分别在平行于斜面方向列出运 动方程:
A
例2 在火车车厢内有一长为
l ,倾角为
y
x
B
a0
f
N
ma0
mg
a0
分析与解 此题若以地面为参考系计算比较复杂,现以车厢为参考 系,在非惯性系中解题,受力分析如图。则物体受到的惯性力, 取如图所示的坐标系,设物体相对于斜面的加速度为 a 根据牛顿第二定律
f惯 ma0
mg sin N ma0 cos ma N mg cos ma0 sin 0
1 2 mg ( R R cos ) FR sin mv 由非惯性系中的动能定律得: 2
解得 得
153cos2 192cos 55 0
h 0.81R (另一解舍去)
端,绳跨在双斜面体的顶部.斜面与地的夹角分别为 1 和 2 ,摩擦均不计,斜面的质量为 斜面保持静止的条件是什么?
考系观察时, 可设想有一力
球质量
f
作用于
小球,其方向与小车相对地面的加速度
m 与加速度 a
的乘积,即
f ma
a 的方向相反,其大小等于小
非惯性系 惯性力

地球自转和公转产生的惯性力,使得地球上的物体受到向心力的作用, 从而解释了地球形状为椭球体的原因以及昼夜交替和四季变化的现象。
03
解释潮汐现象
月球和太阳对地球的引力作用,使得地球表面的水体产生潮汐现象。通
过引入惯性力的概念,可以解释潮汐的成因以及潮汐对地球自转速度的
影响。
分析微观粒子行为
分类
非惯性系可分为加速平动参考系和转动参考系两类。加速平动参考系中的物体 受到与加速度方向相反的惯性力作用;转动参考系中的物体则受到与转动角速 度相关的科里奥利力和向心力作用。
牛顿运动定律在非惯性系中适用性
牛顿运动定律在惯性系中成立,但在非惯性系中不再适用。 在非惯性系中,为了描述物体的真实运动状态,需要引入虚 拟的惯性力。
4. 分析实验数据,比较物体在惯性系 和非惯性系中的运动状态。
数据采集和处理方法
数据采集:使用高精度测量设备记录物 体在平台旋转过程中的位置、速度和加 速度等参数。
3. 通过统计分析方法,对实验结果的可 靠性和准确性进行评估。
2. 使用数值分析方法对物体在惯性系和 非惯性系中的运动状态进行模拟和比较 。
01
为解决工程实际问题提供理论支持。
02
研究内容
非惯性系的定义和分类。
03
研究目的和内容
1
惯性力的概念、性质及其在非惯性系中的作用。
2
非惯性系下物体的运动方程和动力学特性分析。
3
非惯性系在实际工程中的应用案例研究。
02
非惯性系基本概念
非惯性系定义及分类
定义
非惯性系是指不满足牛顿第一定律的参考系,即在其中观察到的物体运动状态 不遵循惯性定律。
洛伦兹变换是相对论中描述不同惯性参考系之间物理量转换的基本规则,适用于高速运动的物体。在 洛伦兹变换下,时间和空间是相对的,会随着参考系的改变而改变。洛伦兹变换考虑了光速不变原理 ,是更精确的描述方式。
非惯性系动力学定理中无惯性力作用项的条件确定

(De arme t f y is p t n Ph sc ,Colg f S in e,Y n in Un v riy,Y n i1 3 0 ,C i a) o le eo ce c a ba ie st a j 3 0 2 h n
Ab t a t ti ou h t t he e s c nt i i ri lf r e t r s whe h g ne a ea i — O m ov n — oi sr c :I sf nd t a he t or m o an ne ta o c e m n t e e r lr ltve t — i g p nt d a ist e e s a e t o e ia l s a i h d n no i e ta ys e t a ltn wih m o ng poit0 . T h yn m c h or m r he r tc ly e t bls e i n-n r ils t m r nsa i g t vi n e
性 力 的功 , 即表 现 出惯 性 力 的作 用 ; 因此 , 当将 这 些 定 理运用 于 平动 的非 惯性 系 中解决 力学 体 系 问
题时 , 遇到所 列 方程 较 为复杂 , 至无 法求 解 的 问 甚 题 . 查 阅文献 _ 发 现 , 关 研 究 仅 限 于 非 惯 性 经 1 相 系 中动力学普遍定 理 的建 立 , 而未 涉及如 何 消除普
De e m i ng t o d to n t ne ta - o c - r e t r t r ni he c n ii ns o he i r i lf r e f e e m - -
i ne i he r m f n n i r i ls s e n ki tc t o e o o —ne ta y t m
惯性系与非惯性系之间的变换关系

惯性系与非惯性系之间的变换关系引言在物理学中,惯性系和非惯性系是两个重要的概念。
惯性系是指一个不受外力作用的参考系,而非惯性系则是受到外力作用的参考系。
本文将探讨惯性系与非惯性系之间的变换关系,以及这种变换关系在物理学中的应用。
一、惯性系的定义与特点惯性系是指一个不受外力作用的参考系,也就是说,在惯性系中,物体的运动状态将保持不变,即使没有施加任何力。
惯性系的特点是物体在其中运动的速度和方向保持不变。
在日常生活中,我们常常使用地球作为一个近似的惯性系。
在地球上,我们可以观察到物体的运动状态并进行测量。
当我们站在地面上,感受到的力是重力和地面对我们的支持力,而这些力并不会改变我们的运动状态。
二、非惯性系的定义与特点非惯性系是指一个受到外力作用的参考系。
在非惯性系中,物体的运动状态将受到外力的影响而发生改变。
非惯性系的特点是物体在其中运动的速度和方向随时间变化。
例如,在一个以恒定速度旋转的旋转木马上,我们会感受到离心力的作用。
这个离心力会改变我们的运动状态,使我们感觉到向外被拉扯。
在这个旋转木马上,我们处于一个非惯性系中。
三、在物理学中,我们常常需要在惯性系和非惯性系之间进行变换。
这是因为在非惯性系中进行物理实验和观测是非常困难的,而惯性系则提供了一个相对简单的参考系。
为了在惯性系和非惯性系之间建立联系,我们引入了一个叫做惯性力的概念。
惯性力是一种虚拟的力,它的作用是模拟非惯性系中物体的运动状态。
具体而言,当我们从一个非惯性系变换到一个惯性系时,我们需要引入一个与非惯性系中的加速度相等但方向相反的惯性力。
这个惯性力的作用是使物体在惯性系中的运动状态保持不变。
四、惯性系与非惯性系变换的应用惯性系与非惯性系之间的变换关系在物理学中有广泛的应用。
其中一个重要的应用是在运动学和动力学中的问题求解。
例如,在一个以匀速旋转的圆盘上,我们放置一个小球。
在非惯性系中,小球会受到离心力的作用而向外滑动。
然而,如果我们将问题转换到一个惯性系中,我们可以通过引入一个与离心力相等但方向相反的惯性力来解决问题。
非惯性力问题

运用非惯性系的观点求解复杂的动力学竞赛题例析湖北省监利县朱河中学黄尚鹏摘要:牛顿运动定律只在惯性系中成立。
但有时需要考察质点相对非惯性系的运动,如何处理这种问题呢?当然可以先在惯性系中用牛顿运动定律考察质点的运动,然后用相对运动的公式把它变换到非惯性系中,求得质点在非惯性系中的运动。
但这样做有时很麻烦,其实只要引进适当的虚拟力即惯性力,就可以在非惯性系中用牛顿运动定律求解质点的运动。
关键词:惯性系非惯性系惯性力速度合成公式加速度合成公式一、非惯性系与惯性力牛顿运动定律成立的参照系叫做惯性系。
实验表明:地球上的物体相对于地球的运动并不完全遵守牛顿运动定律,所以地球不是惯性系,不过这种偏差一般是比较微小的。
因此,我们常常把地球看做近似程度相当好的惯性系。
一般情况下,相对地面静止或做匀速运动的参照系都可作为惯性系。
牛顿运动定律不成立的参照系叫做非惯性系,非惯性系相对惯性系必然做加速运动或旋转运动。
为了使牛顿运动定律在非惯性系中也能使用,可以人为地引进一个虚拟的惯性力。
如果非惯性系相对惯性系有平动加速度,那么只要认为非惯性系中的所有物体都受到一个大小为、方向与的方向相反的惯性力,牛顿运动定律即可照用,证明如下:设非惯性系相对惯性系有平动加速度(牵连加速度),质点相对于系的加速度为(绝对加速度),质点相对于系的加速度为(相对加速度),根据加速度合成公式,有(1)在惯性系中牛顿运动定律成立,即(2)是作用在质点上的合外力,是质点的质量。
在非惯性系中,为使牛顿运动定律成立,引入虚拟的惯性力,使(3)联立(1)(2)(3)知惯性力,证毕。
二、竞赛题例析例题1.如图1所示,质量为的汽车在水平地面上向左做匀加速直线运动,其重心离开前轮和后轮的水平距离分别为和(),重心离地面的高度为,假设车轮和地面之间不打滑,求:汽车以多大的加速度前进时其前、后轮对地面的压力相等?图1解析:选汽车为参照系,汽车处于静止状态,但由于其为非惯性系,为使牛顿运动定律成立,必须引入惯性力,故在质心上加一个向右的惯性力。
非惯性系中的功能原理及应用
非惯性系中的功能原理及应用摘要: 在理论力学中,关于非惯性参照系中动力学问题,从来未涉及到非惯性系中的功能原理。
为此,本文先推证出质点系相对非惯性系的动能定理,再推出质点系相对非惯性系的功能原理及机械能守恒定理,然后再运用此原理解决实际问题。
关键词: 非惯性系;牵连惯性力;科氏惯性力;功能原理;机械能守恒定理The function of the inertial system principle and applicationAbstract: In the theory of mechanics,about the dynamics inertia reference in question never involved in noninertial system function and principle.For this reason this paper first inferred, particle system to a relative non-inertial systems of kinetic energy theorem,and then launch the relative particle noninertial system of function and principle, the last to solve practical problems by using theprinciple.Key words: Noninertial system; Involved the inertial force; Division type inertia force; principle of work and energy; Mechanical energy conservation theorem0 引言处理非惯性参考系中的动力学问题有两种方法,一种是在惯性参考系中考虑问题,然后运用相对运动的关系进行两种坐标参考系之间坐标、速度和加速度诸量的转换,化成非惯性系中的结论。
非惯性系力学
第三章 非惯性系力学引言:到目前为止,我们对质点的力学现象只是限制在惯性参考系中进行讨论的。
但是在某些实际问题中往往要求我们在非惯性系中研究力学问题。
而牛顿定律a m F =只适用于惯性系,在非惯性系中,它是不能适用的,那么相对于非惯性系中的运动定律要解决的是,质点在怎样的力作用下作怎样的运动,换句话来说,运动定律要解决的问题是,质点的受力情况与运动情况之间的联系。
1、对惯性系来说这种联系已经有了,就是牛顿第二定律a m F =。
提到了质点的受力情况,必须要明确力是物体之间的相互作用,既然力是物体间的互相作用,它与参照系的选择有没有关系?没有关系。
2、对非惯性系质点所受的力仍然为F 。
至于运动情况与参照系的选取却是有关的,对不同的参照系会给出不同的描述。
因此,质点相对惯性系和非惯性系的加速度当然是不同的,为了加以区分,就用a ' 表示质点相对非惯性系的加速度。
此时F 就不等于a m F '= ,F 虽然不等于a m F '= ,那么能不能找出F 与a ' 的关系呢?如果找到了它们之间的关系,也就等于找到了非惯性系中的运动定律,那么我们也就可以在非惯性系中讨论力学问题了。
F 与a '之间的关系总能够找到的。
3、只要能找到a 与a ' 的关系:)(a f a '=,根据运动描述的相对性,这个关系总是可以找到的。
那么根据)(a mf a m F '== 也就可以找到F 与a ' 的关系。
因此根据这条解决问题的途径,在这一章里我们准备要讲的4、内容:是①相对运动;②非惯性系动力学;③然后再做一个大题目——解决地球自转所产生的影响。
下面先讲质点相对运动的描述。
也就是讨论质点相对于两个不同参照系运动之间的关系。
§1. 作平动的参照系一、伽利略变换如右图所示,为叙述方便起见简称OX 坐标系为O 系,假定O 系为惯性系,并认为它是一个固定不动的参照系,就称它为固定坐标系。
6.第六讲 非惯性参照系 惯性力
第六讲非惯性参照系惯性力
4.1.引入:
水平路面上有一辆完全封闭的汽车,汽车内水平放置一物体A,物体与汽车始终相对静止。
1)当汽车相对地面匀速运动时,物体A相对汽车静止,相对于地面匀速直线运动。对于地参照系和车参照系,物体均处于平衡状态,合外力为零,符合牛顿运动定律。
2)当汽车相对地面匀加速运动时,物体A相对于地处于匀加速运动状态,在地参照系看来,物体受力不平衡。物体A相对于汽车处于静止,在车参照系看来,物体A受力平衡。牛顿运动定律在此出现了问题。
课后练习
例1.如图示,为使M1=5kg,M2=4kg相对M=21kg静止,求需多大水平力F作用于M上?忽略摩擦,M1和M2用不可伸长轻绳相连。
例2.一质量为M、倾角为 的斜面体放在水平面上,在斜面体上有一质量为m的物体。为使m不与斜面发生相对运动,现用一水平力F作用在M上,如图所示。
(1)若所有接触面均光滑,则F应为多大?
2)惯性力的大小等于质量与加速系K`相对于惯性系K的加速度A的乘积,即mA,方向与A方向相反。
4.4.匀速转动参考系
相对于惯性参照系K转动的参照系K`,不管是匀速转动还是非匀速转动,都是非惯性系。这里只讨论匀速转动的情况。
物体A随水平转台一起做匀速圆周运动,转台的角速度为 ,物体A到转动轴的距离为R,物体A质量为m。在地面参照系看来,物体在水平面上做匀速圆周运动,向心力由转台对A的摩擦力提供。由牛顿第二定律:
例2.如图所示,固定在水平面上的斜面倾角为θ,长方体木块A的MN面上钉着一颗小钉子,质量m的小球B通过一细线与小钉子相连接,细线与斜面垂直。木块与斜面间的动摩擦因数μ。现将木块由静止释放,木块将沿斜面下滑。求:在木块下滑的过程中小球对木块MN面的压力。
惯性参考系和非惯性参考系
大小:Fi=ma
这里的a不是物体m的加速度,而是非惯性系S相对
于惯性系S的加速度。
方向:
和非惯性系S相对于惯性系S的加速度a 相反。
2 惯性力是非惯性系观察者虚拟的力,区别于真实的力。
它既无施力物体,又无反作用力。
惯性力-ma不遵从牛顿第三定律。
5
例题2-7 如图2-8所示,升降机内有一倾角为的
光滑斜面。当升降机以匀加速度a相对地面上升时,
' r
(x y)i ( y x) j
15
a
d
dt
d[( x
d[(x y)i ]
y)i ]
dt
d(x y)
d[( i
y
பைடு நூலகம்
x)
j]
dt
(x y) di
dt
dt
dt
(xy y)i (x y)j
d[(
y
x)
j]
d
(
y
x)
j
(
y
x)
dj
a
dt
d
dt
xi
(y
dt
x
x)
j
(
赤道的的信风形成 (周衍柏《理论力学》p141) 我们知道,地球的南北两极空气冷,赤道的空气的温
度高。于是北半球的空气向南推进,形成向南的信风。
但是由于科里奥利力向西,结果风吹向西南,形成东
北信风。如图p54
在南半球,形成向南的信风。但由于科里奥利力使得
形成东南信风。如图p54
9
例题2-8 质量为m1的楔块放在光滑水平地面上,
一物体m正沿斜面下滑。求物体m相对于升降机的加
速度。
a