数学与逆向思维

合集下载

浅谈小学数学教学中学生逆向思维能力的培养

浅谈小学数学教学中学生逆向思维能力的培养

浅谈小学数学教学中学生逆向思维能力的培养小学数学教学中,逆向思维能力的培养是非常重要的,它可以帮助学生更好地理解和运用数学知识,提高数学解题能力。

本文将从逆向思维的概念、重要性和培养方法等方面进行探讨,希望能为大家提供一些帮助。

一、逆向思维的概念逆向思维,顾名思义,就是指反向思考的能力,即根据结果反推过程,从问题的答案出发,通过逆向推理找到解决问题的方法。

在数学教学中,逆向思维能力被认为是学生发展数学思维的重要环节之一,它具有非常重要的价值。

二、逆向思维能力的重要性1.培养学生的创造力逆向思维能力可以激发学生的创造力,启发他们独立思考和发现问题的新方法。

通过逆向思维训练,可以培养学生的灵活思维和创新意识,使他们能够更好地解决实际生活中的问题。

2.提高学生的解题能力逆向思维能力可以使学生更深入地理解数学问题,提高解题的准确性和效率。

通过逆向思维训练,学生可以从不同的角度思考问题,找到更简洁、更有效的解决方法,提高解题能力。

3.促进学生的思维发展逆向思维能力可以促进学生的思维发展,培养他们的逻辑思维和推理能力。

通过逆向思维的训练,学生可以培养自己的思维习惯,形成良好的解题思维模式,为未来的学习和工作奠定良好的思维基础。

三、逆向思维能力的培养方法1.注重问题的启发性教学在数学教学中,教师应该注重问题的启发性教学,让学生从感性认识逐步过渡到理性认识,激发学生的兴趣和求知欲。

通过提出有趣的数学问题和挑战性的数学难题,引导学生主动思考并寻求解决方法,培养他们的逆向思维能力。

4.注重思维能力的培养在教学中,教师要注重培养学生的思维能力,引导他们形成良好的解题习惯和思维模式。

可以通过数学游戏、数学竞赛等活动,激发学生的思维潜能,提高他们的逆向思维能力。

2.举一反三,培养学生的灵活思维在教学中,教师可以通过举一反三的方式,引导学生从问题的不同角度思考,培养他们的灵活思维和创新意识。

可以通过提出类比问题或扩展问题的方式,拓宽学生的思维视野,提高他们的逆向思维能力。

数学10大思维

数学10大思维

数学10大思维导言:数学是一门推理、抽象和逻辑思考的学科,它在解决问题、推断、发现和创新方面起到了重要的作用。

在数学领域,有一些思维模式被广泛认可为有效的解题策略。

本文将介绍数学领域中的10种思维方式,以帮助读者在数学学习中更加高效和灵活。

一、归纳思维归纳思维是从特殊情况出发,通过观察和总结的方式得出普遍结论的过程。

在数学中,通过观察数列的规律或者通过找出特定情况下的数值关系,可以归纳出一般的规则或公式。

二、演绎思维演绎思维是从一般原理或公理出发,通过推理和演绎的方式得出具体结论的过程。

在数学中,通过运用已知的公理、定义和定理,可以演绎出更多的结论。

三、抽象思维抽象思维是将具体问题中的某些共性特点提取出来,形成概念,进行研究和解决问题的过程。

在数学中,通过抽象思维可以将具体的问题转化为更一般性的形式,并且能够应用于更广泛的情况。

四、逆向思维逆向思维是从问题的解决出发,逆向追溯问题的来源和规律,找到解决问题的途径。

在数学中,逆向思维常常用于解决推理问题,通过设定反证法或者逆否命题的方式来找到问题的解答。

五、可视化思维可视化思维是通过绘制图形、图表或者利用几何直观来解决数学问题的思考方式。

在数学中,通过将抽象的问题转化为直观的几何图形,可以更加清晰地理解问题和解决问题。

六、问题重述思维问题重述思维是通过换一种表述方式来重新理解和解决问题的一种思考方式。

在数学中,通过对问题进行重新解读、转换或者变换方式的描述,常常能够发现问题的新的解决思路。

七、分析思维分析思维是通过对复杂问题进行分解、拆解为更简单的子问题,从而解决大问题的思考方式。

在数学中,通过对问题的结构和要素进行分析,可以将复杂的问题分解为一系列简单的步骤或者子问题,进而解决整体问题。

八、模型思维模型思维是通过建立数学模型来描述和解决现实世界中的问题的思考方式。

在数学中,通过构建适当的数学模型,可以将实际问题转化为符号和符号关系的形式,从而进行数学分析和解决问题。

小学数学中常见的数学思想方法有哪些

小学数学中常见的数学思想方法有哪些

小学数学中常见的数学思想方法有哪些1.归纳法:通过观察一般情况,从而推断出普遍规律。

例如,通过寻找一些数列的规律,利用归纳法可以推出数列的通项公式。

2.逆向思维:通过逆向思考问题,从结果出发逆推回起始状态。

逆向思维常用于解决逻辑推理和问题求解。

例如,将一个求和问题转化为找到使得等式成立的数。

3.分解与组合:将一个大问题分解为若干个较小的子问题,然后通过解决子问题得到解决整个问题的方法。

这种思想方法常用于解决复杂的问题,可以降低问题的难度。

4.比较与类比:通过比较或类比不同的情况或对象,找到相似之处或变化的规律,从而解决问题。

例如,可以通过类比找到两个数的最大公约数和两个数的最大公倍数之间的关系。

5.推理与证明:通过逻辑推理和数学证明解决问题。

推理与证明是数学思维中最基本和最重要的方法之一、通过推理和证明,可以建立数学定理和推理规则,从而解决更复杂的问题。

6.抽象与泛化:将问题抽象为一般性质或模式,从而简化问题,找到问题的本质。

抽象与泛化是数学思想中的核心思维方法之一,通过抽象和泛化,可以建立数学概念和定理。

7.反证法:通过反证得到正证结论。

反证法常用于证明一些结论的唯一性或否定性。

通过假设结论不成立,然后推导出与已知条件矛盾的结果,从而得到结论的成立性。

8.猜想与验证:通过猜想和验证的方法解决问题。

猜想与验证是一种探索性的方法,通过发现规律和验证猜想的正确性,找到问题的解决方法。

9.近似与估算:通过近似和估算的方法解决问题。

近似与估算是数学思维中的实用方法之一,可以在缺乏精确计算方法时得到近似的结果。

以上是小学数学中常见的数学思想方法,请注意,数学思想方法的具体应用还受到问题性质、题型以及学生认识和思维水平的影响,因此,教学中还应根据具体情况灵活运用。

数学解题中逆向思维的培养途径

数学解题中逆向思维的培养途径

数学解题中逆向思维的培养途径
在数学解题中,逆向思维是一种非常重要的技能,它能够帮助学生快速地找到解决问题的方法。

那么,如何培养逆向思维呢?以下是一些培养逆向思维的途径:
1. 改变思路:在解题过程中,要时刻保持开放的心态,不断尝试不同的方法和思路,特别是一些与惯有思维不同的方法。

2. 拓展知识面:在进行数学解题时,可以通过扩展知识面,了解更多的数学知识和技巧,从而更加灵活地应对各种问题。

3. 理解题意:在解题前,要先仔细阅读题目,理解题意并进行分析。

有时候,题目中的一些关键词汇或者条件可能会提示我们采用逆向思维。

4. 创造性思维:要培养创造性思维,尝试不同的思维方式,以及突破自己的思维局限。

5. 经验积累:在数学解题中,经验是非常重要的。

通过反复练习和总结,可以不断积累经验,从而更加熟练地运用逆向思维。

总之,逆向思维是一种非常重要的数学解题技能,只有不断培养和实践,才能够取得更好的成果。

- 1 -。

逆向思维在小学数学解题中的作用与培养策略分析

逆向思维在小学数学解题中的作用与培养策略分析

逆向思维在小学数学解题中的作用与培养策略分析
逆向思维指的是从结果出发,反向推导,从而找到解决问题的方法。

在小学数学中,逆向思维可以使学生更加灵活地运用数学知识,提高解题能力,同时也能培养学生的创新思维能力。

1. 帮助学生理解问题。

逆向思维可以帮助学生从问题的结果反推出问题本身,分析问题的本质,搞清楚问题的难点和关键点,从而更好地理解题意。

2. 提高解题效率。

逆向思维可以帮助学生找到解题的捷径,快速地解决问题,同时也能避免学生在解题中走弯路,提高解题效率。

3. 提高创新思维能力。

逆向思维要求学生从不同的角度思考问题,寻找新的解决办法,促进学生的创新思维能力。

培养逆向思维的策略:
1. 引导学生从结果出发,反向推导。

可以从一些简单的问题开始,让学生从结果出发,想办法反向推导,解决问题,逐步提高学生的逆向思维能力。

3. 引导学生总结问题规律。

在解题过程中,让学生总结问题的规律和特点,找出问题的共性和差异,从而更好地掌握数学知识。

4. 提供多样的思维工具。

为学生提供多种解题工具和方法,如思维导图、分析表、逆向思维等等,帮助学生更好地理解问题和解决问题。

小学生数学问题的逆向思维训练

小学生数学问题的逆向思维训练

小学生数学问题的逆向思维训练在小学数学的学习中,培养学生的逆向思维能力是一项重要且具有挑战性的任务。

逆向思维,简单来说,就是从问题的相反方向去思考,通过反向推理来解决问题。

这种思维方式不仅能够帮助学生更灵活地应对数学难题,还能锻炼他们的逻辑思维和创新能力,为日后的学习和生活打下坚实的基础。

一、逆向思维在小学数学中的重要性1、拓宽解题思路当学生习惯于正向思考问题时,往往容易陷入固定的思维模式。

而逆向思维能够为他们提供全新的视角,让他们发现更多解决问题的途径。

例如,在计算“一个数加上7 等于15,这个数是多少?”这道题时,正向思维是从已知的加数和和去求另一个加数,而逆向思维则是从和减去已知的加数来得到答案,即 15 7 = 8。

通过这样的训练,学生在面对类似问题时,就能迅速地从不同角度思考,找到最简便的解题方法。

2、增强逻辑推理能力逆向思维要求学生对问题进行反向分析和推理,这有助于培养他们严谨的逻辑思维。

比如,在解决几何图形的面积或周长问题时,通过逆向推导,可以让学生更深入地理解图形的性质和计算公式之间的关系。

3、激发创新意识当学生能够打破常规,从相反的方向思考问题时,往往能够产生独特的想法和创新的解决方案。

这种创新意识在数学学习以及未来的工作和生活中都具有重要的价值。

二、小学生逆向思维能力的现状在当前的小学数学教学中,我们发现部分学生在逆向思维方面存在一些不足。

1、思维定式的束缚由于长期接受正向思维的训练,学生在遇到问题时,第一反应往往是按照常规的方法去思考,难以迅速转换思维方向。

2、对数学概念和公式的理解不够深入如果学生只是机械地记忆数学概念和公式,而没有真正理解其内涵和推导过程,那么在运用逆向思维解决问题时就会感到困难。

3、缺乏逆向思维的训练和引导在教学过程中,教师可能没有给予逆向思维足够的重视,导致学生缺乏相关的训练和实践机会。

三、培养小学生逆向思维的方法1、利用数学游戏和谜题数学游戏和谜题是激发学生兴趣、培养逆向思维的有效手段。

最有用的17个数学思维方法

最有用的17个数学思维方法数学思维方法是指在解决数学问题时使用的特定思考模式或技巧。

这些方法旨在帮助学生建立更好的数学思维能力,并提高解决问题的效率。

在本文中,我们将介绍最有用的17个数学思维方法,希望对读者们的数学学习和问题解决有所帮助。

1.抽象思维:抽象思维是一种将问题简化并提炼出其核心要素的能力。

通过抽象思维,学生可以将复杂的数学问题转化为更易于理解和解决的形式。

2.结构思维:结构思维是一种将问题分解为更小的部分并理解其组织结构的能力。

通过分析数学问题的结构,学生可以更好地理解问题的本质和关键因素。

3.逆向思维:逆向思维是一种从已知结果倒推推理的能力。

通过逆向思维,学生可以从问题的解决方案出发,推导出问题的不同可能情况或解决路径。

4.推理推导:推理推导是一种基于逻辑推理和数学原理来解决问题的能力。

通过推理推导,学生可以从已知条件出发,得出结论或解决问题。

5.数组思维:数组思维是指将问题中的数值或变量组织成数组或矩阵的能力。

通过数组思维,学生可以更好地理解数学问题的结构和关系,从而更容易解决问题。

6.模式发现:模式发现是一种寻找数学问题中重复或规律性的能力。

通过模式发现,学生可以发现数学问题的规律并应用到其他类似的问题中。

7.反证法:反证法是一种通过假设问题的对立面来证明问题的方法。

通过反证法,学生可以验证问题的正确性或找到问题的反例。

8.数学词汇:数学词汇是指理解和运用数学术语的能力。

通过学习和理解数学词汇,学生可以更好地理解数学问题的描述和条件。

9.分析思考:分析思考是一种对问题进行深入分析并寻找问题本质的能力。

通过分析思考,学生可以更好地理解问题的关键因素和解决路径。

10.直觉思考:直觉思考是一种凭直觉进行问题分析和解决的能力。

通过直觉思考,学生可以更快地找到问题的解决方案。

11.数学符号:数学符号是数学表达和计算的基础。

通过学习和运用数学符号,学生可以更准确地表达数学问题和推导过程。

数学逆向思维的例子

数学逆向思维的例⼦ “逆向思维”,就是指在与原先思维相反⽅向上的思考与研究。

也正因为如此,在国外关于数学思维的现代研究中,有时把这种思维形式称之为“逆转”。

逆向思维蕴育着创造思维的萌芽,它是创造性⼈才必备的⼀种思维品质。

那么数学逆向思维的例⼦有哪些呢?以下是店铺整理的数学逆向思维的例⼦,希望对⼤家有帮助。

数学逆向思维的例⼦⼀ ⼩远买1⾓钱的邮票和2⾓钱的邮票共100张,⼀共花了17元钱。

他买了1⾓和2⾓邮票各多少张? 解这⼀题⽬,假设买来的100张都是2⾓邮票,那么总钱数应为:2×100=200(⾓)=20(元)。

可实际上⼩远只花了17元钱,⽐假设少3元钱,这是因为其中有1⾓钱的邮票。

若有⼀张1⾓邮票,总钱数就相差1⾓。

由此可求出1⾓邮票张数为:3元=30⾓,30÷1=30(张)。

2⾓邮票张数为:100-30=70(张)。

数学逆向思维的例⼦⼆ 数学概念的反问题 若化简|1-x|—|x-4|的结果为2x-5,求x的取值范围。

分析:原式=|1-x|-|x-4| 根据题意,要化成:x-1-(4-x)=2x-5 从绝对值概念的反⽅向考虑,推出其条件是: 1-x≤0,且x-4≤0 ∴x的取值范围是:1≤x≤4 数学逆向思维的例⼦三 代数运算的逆过程 有四个有理数:3,4-6,10,将这四个数进⾏加减乘除四则运算(每个数⽤且只⽤⼀次),使结果为24.请写出⼀个符合要求的算式。

分析:不妨先设想3×8=24,再考虑怎样从4,-6,10算出8,这样就找到⼀个所求的算式: 3×(4-6 10)=24 类似的,还有:4-(-6×10)÷3; 10-(-6×3 4);3(10-4)-(-6)等。

数学逆向思维的例⼦四 图形变换的反问题 △ABC中,AB 分析:我们曾经把梯形剪切后拼成三⾓形,就是使梯形的⼀部分绕⼀条腰的中点旋转180°,本题正好相反。

小学数学八大思维方法

小学数学八大思维方法1.分类思维:将问题中的对象、概念、现象按照其中一种特征或规则进行归类,进而发现问题的本质,找到问题的解题方法。

2.比较思维:将两个或多个对象或概念相互比较,找出其相同点和不同点,从中发现问题的规律和特点。

3.推理思维:根据已知条件和问题要求,运用逻辑推理和推断,推导出答案的合理性和正确性。

4.分析思维:将问题分解为几个小问题,逐步进行分析和解决。

通过分析每个小问题的解决过程,最终得出整个问题的解答。

5.逆向思维:从问题的结果出发,逆向推导出解决问题的方法和过程。

逆向思维常常能够突破传统思维的局限,找出解决问题的新途径。

6.归纳思维:从具体的事物、现象中归纳出一般的规律或结论。

通过对具体事物的观察和总结,总结出普遍规律,应用于解决类似的问题。

7.演绎思维:根据已有的规律或定理,运用逻辑关系进行推导和演绎。

从已知条件出发,通过演绎得出结论,运用于解决问题。

8.反证思维:采用假设反向地证明问题。

假设问题不成立,然后推导出矛盾的结论,从而得出问题的正向解答。

这八大思维方法在小学数学教学中都有着重要的应用和意义。

帮助学生培养和提高逻辑思维能力,激发对数学的兴趣,同时也促进他们解决实际问题的能力和创新能力的发展。

分类思维是指将问题中的对象、概念、现象按照其中一种特征或规则进行整合和归类。

通过将问题进行分组和分类,可以更加清晰地看到问题的本质和规律。

例如,当学生遇到类似于求面积或体积的问题时,可以根据几何形状的不同将问题按照圆、矩形、三角形等进行分类,然后应用相应的公式进行求解。

比较思维是将两个或多个对象或概念进行对比,找出其相同点和不同点。

通过比较,可以更好地理解问题的特点和规律。

例如,当学生学习数字大小比较时,可以通过比较数字的大小顺序,找出其中规律和特点。

推理思维是根据已知条件和问题要求,运用逻辑推理和推断,推导出答案的合理性和正确性。

通过推理,可以从已有的信息中推导出新的信息,进而解答问题。

逆向思维在初中数学解题教学中的应用

逆向思维在初中数学解题教学中的应用一、引言二、什么是逆向思维逆向思维是指寻求问题解决的方法及策略时,不从传统的线性思维模式出发,而是从问题的结果出发,反过来推导出引起这个结果的原因以及可能的解决方法。

逆向思维要求学生们放弃固有的思维定势,从不同的角度、不同的层面来思考问题,这样可能更容易找到解决问题的方法。

1. 逆向推理在初中数学解题中,逆向推理可以帮助学生们更快地找到解决问题的方法。

比如在代数方程的解题中,逆向推理可以帮助学生们根据方程的结果反推出方程中的未知数,从而更快地得到答案。

在几何问题的解题中,逆向推理可以让学生们从已知问题的结论出发,反推出需要的辅助信息,从而更直接地解决问题。

逆向推理能够帮助学生们更好地理解问题,并且从容应对各种复杂的数学问题。

2. 逆向验证逆向验证是指通过验证问题的相反情况,来确保问题的解决方法的正确性。

在初中数学解题中,逆向验证可以让学生们从不同的角度检查自己的答案,避免出现漏洞。

比如在代数方程的解题中,学生可以通过将答案代入方程来验证是否正确;在几何问题的解题中,学生可以通过逆向推导来验证自己的解题思路是否正确。

逆向验证可以让学生们更全面地分析问题,减少答案错误的可能性。

1. 引导学生打破思维定势在初中数学解题教学中,教师们应该引导学生们打破固有的思维定势,鼓励他们从不同的角度思考问题。

通过给学生提供不同的解题方法、策略,帮助他们养成灵活、多样的解题思维习惯。

2. 注重逆向推理的训练在教学中,教师们应该注重逆向推理的训练,通过一些典型的例题,帮助学生们更好地掌握逆向推理的方法。

教师们还可以设计一些有趣的问题,让学生们通过逆向推理的方式解决,提高他们的学习兴趣。

4. 注重逆向拆解的引导在教学中,教师们应该注重引导学生进行逆向拆解,通过具体的实例,帮助学生们更直接地理解逆向拆解的方法,并且灵活地应用到解题过程中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学与逆向思维
我国的传统教育大多以培养学生的正向思维为主。

然而,我在很多时候,通过逻辑性较强的逆向思维,在数学教学中也能够起到相当好的教学效果。

在实际教学中,通过逆向思维对学生进行引导,能够帮助学生摆脱思维定势,进而促进学生的创造力发展,帮助学生从另一个角度认识所学知识,从而达到数学知识的正迁移,并将对数学知识的分析与综合进行有机的结合,让学生能够更加深刻、更加全面的理解所学知识,进而受到良好的教学效果。

一、对学生逆向思维的兴趣的培养
由于自身性质所限,数学本身是一门较为枯燥的学科,许多中学生在接触数学学科时由于难度较大,对数学问题望而生畏,进而产生厌学情绪。

这时,教师就应当及时的引导学生从另外的角度对遇到的问题进行思考,通过逆向思维将某些较为复杂的问题简单化,进而轻易的将之解决,这样不但在一定程度上简化了问题,同时也能帮助一部分学生树立自信,进而对数学产生兴趣。

在实际教学中,教师可以通过对数学公式的逆运用,能够极大的激发学生的逆向思维能力。

在课堂教学中,要引导学生的逆向思维,教师必须做到深入浅出。

通常情况下,可以通过对公式的你运用对学生进行引导,而在初中数学教程中,确实有许多法则与公式都可以拿来进行你运用,并以之解决一些问题,通过对这些公式的你运用能够有效的培养学生对数学学习的兴趣。

因此,在面对许多用正向思维无法解决的问题时,都可以尝试运用逆向思维加以解
决。

通过合理的逆向思维,不但能够有效的降低问题难度,同时也能够培养学生逆向思维的能力,进而激发学生的创造力,让学生学会对待问题时从多个角度进行思考,进而分析并解决问题。

二、强化对学生逆向思维的培养与锻炼
长期以来,由于我国教学模式重视对学生正向思维的培养,因此往往会导致学生产生思维定势,对待问题时思路过于单一。

然而,许多问题运用正向思维很难快速准确的解决。

这时就需要利用逆向思维加以解决。

因此,在实际教学中,教师必须通过各种方法培养学生的逆向思维能力。

(一)反证法
作为典型的逆向思维方法,反证法在实际运用中的命题步骤大概有以下几个环节:首先,假设原命题的结论不成立;其次,根据这一假设进行推论,进而得出以下情况:得出的结果与公式或定义相矛盾或与题中给出的条件相矛盾;最后根据“原命题结论不成立”这一假设结果反正原命题的正确性。

在这一过程中,反证法的主要思维过程在于:一旦假设原命题结论不成立,那么原命题的结论就必将与已知条件或相应的公式定理相矛盾。

而通过对这一矛盾产生过程的证明,则会发现,乳沟已知条件与公式定理都是正确的,那么唯一错误的地方便是最初对于“原命题结论不成立”这一假设,而既然“结论不成立”的假设是错误的,则与之相对的“结论成立”就必然是正确的。

在实际教学中,通过对这一方法的利用能够很好的解决部分正向思维难以解决的问题。

(二)运用反例进行解题
美国着名数学家盖尔鲍姆与奥姆斯特德曾指出“数学有两大类——证明和反例组成。

”这也说明了数学学习过程中,时刻伴随着猜想与假设。

在数学学下中,通过不断的猜想与假设,通过反例的方法不但能够轻松的得出结论,同时也避免了精力与时间的过分浪费。

在实际运用中,如果对一个命题的肯定,就要对其中可能的情况进行推断,而相反的否定一个命题,则只需要一个符合题中条件的同时能够否定题中结论的例子即可。

如在证明“有两边及其中一边一所对角对应相等的两个三角形全等”时,通过一个简单的反例就可以否定原命题,进而证明其错误所在。

在实际教学中,这样的例子不胜枚举,将之运用于教学与解题中,也能收到极好的效果。

三、引导学生灵活运用逆向思维,不断的总结、归纳并加以深化
逆向思维通过对综合法的反响运用对遇到的问题进行分析与解决,从而开创了一种全新的判断方法。

在实际运用中,逆向思维的通常以问题的结论为出发点,从结论向题设进行逆推。

由于这中推论方法与传统的正向思维方法完全相反,因此,在实际教学中,教师必须帮助学生,引导学生明确逆向思维的使用规律,让学生明白通过这一方法分析问题的原因所在,并结合教材选择合适的突破口,进而强化学生的逆向思维。

通过大量的相关训练,引导学生对逆向思维的实际运用方法进行总结,进而根据其对数学学习中所遇到的学习知识的理解与把握更深层次的掌握教材,从而有效的开拓学生的四维空间,培养学生的创新能力,为学生日后的发展打下良好的基础。

综上所述,在实际教学中,教师必须要准确的把握教材内容,根据当前学生的实际情况选择合适的突破口,通过对类比、归纳、等不同方法的灵活运用让学生的素质得到全面的提高。

而在运用逆向思维进行教学时,还应当注意学生当前的学习水平、对知识的掌握程度与思考习惯等,必须通过丰富的数学思想,带领、引导学生从多个角度对遇到的问题进行分析并加以解决。

相关文档
最新文档