蛋白质的结构与性质
蛋白质的结构与功能

蛋白质的结构与功能一、蛋白质的分子组成蛋白质是由许多氨基酸通过肽键相连形成的高分子含氮化合物。
组成蛋白质的元素主要有C、H、0、N和S。
有些蛋白质含有少量磷或金属元素铁、铜、锌、锰、钴、钼,个别蛋白质还含有碘。
各种蛋白质的含氮量很接近,平均为16%。
由于体内的含氮物质以蛋白质为主,因此,只要测定生物样品中的含氮量,就可以根据以下公式推算出蛋白质的大致含量:100g样品中蛋白质的含量(g%)=每克样品含氮克数×6.25×100(一)组成人体蛋白质的氨基酸存在自然界中的氨基酸有300余种,但组成人体蛋白质的氨基酸仅有20种,且均属L-α-氨基酸(甘氨酸除外)。
L-氨基酸的通式如图1-2-1所示。
连在一C00-基上的碳被称为α-碳原子,为不对称碳原子(甘氨酸除外),不同的氨基酸其侧链(R)不同。
(二)氨基酸的分类20种组成人体蛋白质的氨基酸可以根据其侧链结构和理化性质的不同分为5类:①侧链含烃链的非极性脂肪族氨基酸,包括甘氨酸、丙氨酸、缬氨酸、亮氨酸、异亮氨酸和脯氨酸;②侧链有极性但不带电荷的极性中性氨基酸,包括丝氨酸、半胱氨酸、蛋氨酸、天冬酰胺、谷氨酰胺和苏氨酸;③侧链含芳香基团的芳香族氨基酸,包括苯丙氨酸、色氨酸和酪氨酸;④侧链含负性解离基团的酸性氨基酸,包括天冬氨酸和谷氨酸;⑤侧链含正性解离基团的碱性氦基酸,包括赖氨酸、精氨酸和组氨酸。
20种氨基酸中,脯氨酸和半胱氨酸的结构比较特殊。
脯氨酸应属于亚氨基酸,N在杂环中移动的自由度受限制,但其亚氨基仍能与另一羧基形成肽链;半胱氨酸的巯基则容易失去质子,极性很强,2个半胱氨酸通过脱氢后可以与二硫键相结合,形成胱氨酸。
(三)氨基酸的理化性质1.氨基酸具有两性解离的性质氨基酸是两性电解质,其解离程度取决于所处溶液的酸碱度。
在某一pH的溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等,成为兼性离子,呈电中性。
此时溶液的PH称为该氨基酸的等电点。
2-蛋白质序列特征分析-生物信息学

TMPRED在线网页
生命科学学院
用TMPRED分析P51684序列所得到生的命可科能学学院 的7个跨膜螺旋区
生命科学学院
用TMPRED分析P51684序列所得到的7个可 能的跨膜螺旋区的相关性列表
含有卷曲螺旋结构最知名的蛋白质有原癌蛋白 (oncoprotein)c-fos和jun,以及原肌球蛋白 (tropomyosin)。
生命科学学院
利用COILS分析蛋白质的卷曲螺旋
COILS是由Swiss EMBNet维护的预测卷曲螺旋的在 线工具,该软件是基于Lupas算法,将查询序列在一个由 已知包含卷曲螺旋蛋白结构的数据库中进行搜索,同时也 将查询序列与包含球状蛋白序列的PDB次级库进行比较, 并根据两个库搜索得分决定查询序列形成卷曲螺旋的概率。 COILS也可以下载到本地进行运算。
生命科学学院
序列特征分析
Analysis of Sequence Characterristics
一、蛋白质结构 蛋白质的一级结构
生命科学学院
蛋白质的一级结构决定二级结构 蛋白质的二级结构决定三级结构
蛋白质的二级结构
生命科学学院
H表示螺旋 E表示折叠 B表示β桥 G表示3-螺旋 I表示π螺旋 T表示氢键转角 S代表转向
或者全部由碳原子和氢原子组成,因此这类氨基酸不太可 能与水分子形成氢键; 2. 极性氨基酸(polar amino acid),其测链通常由氧原子或 氮原子组成,它们比较容易与水分子形成氢键,因此也称 为亲水氨基酸; 3. 带电氨基酸(charged amino acids),这类氨基酸在生物 pH环境中带有正电或负电。
生命科学学院
高中化学选修五第四章蛋白质和核酸知识点

第三节蛋白质和核酸一、氨基酸1、氨基酸的分子结构氨基酸是羧酸分子烃基上的氢原子被氨基(—NH2)取代后的产物。
氨基酸的命名是以羧基为母体,氨基为取代基,碳原子的编号通常把离羧基最近的碳原子称为α碳原子,离羧基次近碳原子称为β碳原子,依次类推。
2、氨基酸的物理性质常温下状态:无色晶体;熔、沸点:较高;溶解性:能溶于水,难溶于有机溶剂。
3、氨基酸的化学性质(1)甘氨酸与盐酸反应的化学方程式:;(2)甘氨酸与氢氧化钠反应的化学方程式:氨基酸是两性化合物,基中—COOH为酸性基团,—NH2为碱性基团。
(3)成肽反应两个氨基酸分子(可以相同也可以不同)在酸或碱存在下加热,通过一分子的氨基和另一分子的羧基脱去一分子水,缩合形成含有肽键的化合物,称为成肽反应。
【习题一】下列对氨基酸和蛋白质的描述正确的是()A.氨基酸和蛋白质遇重金属离子均会变性B.蛋白质水解的最终产物是氨基酸C.α-氨基丙酸与α-氨基苯丙酸混合物脱水成肽,只生成2种二肽D.氨基酸溶于过量氢氧化钠溶液中生成的离子,在电场作用下向负极移动【分析】A.重金属盐能使蛋白质发生变性;B.氨基酸是组成蛋白质的基本单位,蛋白质水解的最终产物是氨基酸;α-氨基丙酸与α-氨基苯丙酸混合物脱水成肽,生成4种二肽;D.氨基酸中-COOH和NaOH反应生成羧酸根离子,应该向正极移动。
【解答】解:A.重金属盐能使蛋白质发生变性,但不能使氨基酸发生变性,故A错误;B.氨基酸通过发生水解反应生成蛋白质,所以蛋白质最终水解产物是氨基酸,故B正确;C.氨基酸生成二肽,是两个氨基酸分子脱去一个水分子,当同种氨基酸脱水,生成2种二肽;是异种氨基酸脱水:可以是α-氨基丙酸脱羟基、α-氨基苯丙酸脱氢;也可以α-氨基丙酸脱氢、α-氨基苯丙酸脱羟基,生成2种二肽。
所以共有4种,故C错误;D.氨基酸中-COOH和NaOH反应生成羧酸根离子,带负电荷,该向正极移动,故D错误;故选:B。
【习题二】下列叙述错误的是()A.氨基酸在一定条件下可发生缩聚反应B.氨基酸具有两性C.天然蛋白蛋水解的最终产物均为α-氨基酸D.饱和Na2SO4、CuSO4溶液均可用于蛋白质的盐析【分析】A.氨基酸在一定条件下可发生缩聚反应形成多肽;B.氨基酸中有氨基和羧基,氨基能与酸反应,羧基能与碱反应;C.天然蛋白质是α-氨基酸形成的;D.硫酸铜是重金属盐.【解答】解:A.氨基酸可发生缩聚反应形成多肽,故A正确;B.氨基酸分子中有氨基(-NH2)和羧基(-COOH),既能够和与酸反应,又能与碱反应,故B正确;C.天然蛋白质水解的最终产物是α-氨基酸,故C正确;D.硫酸铜是重金属盐,蛋白质遇硫酸铜发生变性,故D错误。
2 蛋白质的结构和功能

目录
二、蛋白质的二级结构
指肽链的主链在空间的 排列,或规则的几何走
向、旋转及折叠。它只
涉及肽链主链的构象及 链内或链间形成的氢键, 并不涉及到氨基酸侧链 R基团的构象。
蛋白质的二级结构类型
α-螺旋结构 β-折叠结构 β-转角 无规卷曲
(1) -螺旋
Pauling和Corey于 1965年提出。
(2) -折叠
也叫 -结构或 -构象,
它是蛋白质中第二种最常见 的二级结构。是一种肽链相
当伸展的结构。肽链按层排 列,依靠相邻肽链上的羰基
和氨基形成的氢键维持结构
的稳定性。肽键的平面性使 多肽折叠成片,氨基酸侧链 伸展在折叠片的上面和下面。
-折叠的特点:
①在-折叠中,-碳原子总是处于折叠的角上,
肽键的特点:
C O
反式
N
H
O
顺式
H N
C
C—N单键键长为0.149nm, C=N双键键长为0.127nm 肽键中C-N键长为0.132nm,具有部分双
键性质,不能自由旋转;
有顺反二型,与C-N相连的H、O均为反式,
形成肽键平面。
肽键平面示意图
* 肽是由氨基酸通过肽键缩合而形成的化 合物。 * 两分子氨基酸缩合形成二肽,三分子氨 基酸缩合则形成三肽…… * 由十个以内氨基酸相连而成的肽称为寡 肽(oligopeptide),由更多的氨基酸相连 形成的肽称多肽(polypeptide)。
第二节 蛋白质的分子结构
The Molecular Structure of Protein
蛋白质的分子结构包括
一级结构(primary structure)
二级结构(secondary structure)
第二章蛋白质的结构和生理功能

二、氨基酸的性质和生理特点 (一)性质 1.物理性质 无味、无色晶体物质; 熔点200-300oC之间,会分解成胺和CO2; 具有较高的介电常数; 一般可溶于水,其水溶液为无色透明液体, 溶解度各不相同; 一般不溶于有机溶剂; 均溶于稀酸或稀碱。
2.氨基酸的晶体存在形式
氨基酸晶体是以离子晶格组成的,维系晶 格中质点的作用力是较强的静电吸引力,因而 熔点高,而一般的有机化合物晶体是由分子晶 格组成,其维系力为较弱的范德华力,此类物 质熔点较低。
蛋白质功能的多样性
• 具有储藏氨基酸的功能。用作有机体及其胚胎 或幼体生长发育的原料。如蛋类中的卵清蛋白、 乳中的酪蛋白、小麦种子中的麦醇蛋白。 • 运输功能。脊椎动物红细胞里的血红蛋白、无 脊椎动物中的血蓝蛋白在呼吸过程中起着输送 氧气的作用;血液中的脂蛋白随血流输送脂质; 生物氧化过程中的某些色素蛋白如细胞色素C 等起电子传递体的作用。
• • • • 氨基酸排列随机性 周期性的重复未发现 二硫键的数目和位置也没有明显的规律 每种蛋白质化学结构的独特性 在同源蛋白质氨基酸顺序中有许多位置的氨基 酸对所有种属来说是相同的(不变残基),但 其他位置的氨基酸却不同(可变残基)。这种 相似性被称为顺序同源现象。
蛋白质一级结构的重要性
氨基酸组成及顺序不同会导致蛋 白质生物功能的改变(病态现象)。如 镰刀形细胞贫血病就是血红蛋白(4个 亚基,582个氨基酸组成)中的一个谷 氨酸变为缬氨酸导致的。 一级结构是立体结构的基础。
在研究蛋白质氨基酸组成时一般先用完全 水解的方法,将蛋白质水解成各种氨基酸的 混合物,然后采用高效液相色谱等方法进行 定量测定。通常采用的水解方法有酸水解、 碱水解和酶水解。
酸水解
用硫酸(6 mol/L)或盐酸(4 mol/L)煮沸回流20小时。
第三节蛋白质的结构(共92张PPT)

②测定蛋白质分子中多肽链的数目:通过测 定末端氨基酸残基的摩尔数与蛋白质分子 量之间的关系,即可确定多肽链的数目。
③二硫键的断裂:几条多肽链通过二硫键交 联在一起。可在8mol/L尿素或6mol/L盐酸胍 存在下,用过量的 -巯基乙醇处理,使二硫 键复原为巯基,然后用烷基化试剂保护生成 的巯基,以防止它重新被氧化。可以通过参 加盐酸胍方法解离多肽链之间的非共价力; 应用过甲酸氧化法或巯基复原法拆分多肽链 间的二硫键。
由多个亚基聚集而成的蛋白质常常称为寡聚蛋白; 肽键具有局部双键性质,不能自由旋转。
在。这类多肽通常都具有特殊的生理功能,常称为活 氨基酸2和3之肽键可自由的与水形成氢键
In the α helix, the CO group of residue n forms a hydrogen bond with the NH group of residue n + 4.
成的化合物称为肽。 〔3〕多肽链内或链间二硫键的数目和位置。
因此平均相对分子质量接近128。 a 盐键 b 氢键 c 疏水相互作用 d 范德华力 e 二硫键
由两个氨基酸组成的肽称为二肽,由多个 第二套肽段 HO WTOU SEO VERL APS
溴化氰水解法,它能选择性地切割由甲硫氨酸的羧基所形成的肽键。 应用过甲酸氧化法或巯基复原法拆分多肽链间的二硫键。
肽键C-N的局部双键性质其键长小于胺中的CN
从Cα沿键轴方向观察 顺时针旋转的Φ和Ψ角度为正值〔+〕
逆时针旋转的为负值〔—〕
不可能的空间构象
〔三〕肽的性质
肽的化学反响与氨基酸一样,游离的 α氨基﹑α-羧基﹑R基团可发生与氨基酸 中相应基团类似的反响;
含有两个以上肽键的化合物在碱性溶液 中与Cu2+生成紫红色到蓝紫色的络合 物,称为双缩脲反响,可以测定多肽和 蛋白质含量。
生物化学知识点与题目第四章蛋白质化学
第四章蛋白质化学知识点:一、氨基酸蛋白质的生物学功能氨基酸:酸水解:破坏全部色氨酸以及部分含羟基氨基酸。
碱水解:所有氨基酸产生外消旋。
氨基酸的分类:非极性氨基酸(8种):Ala、Val、Leu、Ile、Pro、Met、Phe、Trp;极性氨基酸(12种):带正电荷氨基酸Lys、Arg、His;带负电荷氨基酸Asp和Glu;不带电荷氨基酸Ser、Thr、Tyr、Asn、Gln、Cys、Gly。
非蛋白质氨基酸:氨基酸的酸碱性质:氨基酸的等电点,氨基酸的可解离基团的pK值,pI的概念及计算,高于等电点的任何pH值,氨基酸带有净负电荷,在电场中将向正极移动。
氨基酸的光吸收性:芳香族侧链有紫外吸收,280nm,氨基酸的化学反应:α-氨基酸与水合茚三酮试剂共热,可发生反应,生成蓝紫化合物。
茚三酮与脯氨酸和羟脯氨酸反应则生成黄色化合物。
二、结构与性质肽:基本概念;肽键;肽;氨基酸残基;谷胱甘肽;肽键不能自由转动,具有部分双键性质;肽平面蛋白质的分子结构:一级结构,N-末端分析,异硫氰酸苯酯法;C-末端分析,肼解法蛋白质的二级结构:是指蛋白质分子中多肽链骨架的折叠方式,包括α螺旋、β折叠和β转角等。
超二级结构:超二级结构是指二级结构的基本结构单位(α螺旋、β折叠等)相互聚集,形成有规律的二级结构的聚集体。
结构域:蛋白质的三级结构:蛋白质的三级结构指多肽链中所有氨基酸残基的空间关系,其具有二级结构或结构域。
球状蛋白质分子的三级结构特点:大多数非极性侧链(疏水基团)总是埋藏在分子内部,形成疏水核;大多数极性侧链(亲水基团),总是暴露在分子表面,形成一些亲水区。
蛋白质的四级结构:蛋白质的四级结构是由两条或两条以上各自独立具有三级结构的多肽链(亚基)通过次级键相互缔合而成的蛋白质结构。
变构蛋白、变构效应;血红蛋白氧合曲线。
维持蛋白质分子构象的化学键:氢键,疏水键,范德华力,盐键,二硫键等三、蛋白质的分子结构与功能的关系蛋白质的分子结构与功能的关系:一级结构决定高级结构,核糖核酸酶的可逆变性;变性、复性、镰刀型红细胞贫血症的生化机理;四、蛋白质的性质及分离纯化胶体性质:双电层,水化层; 1. 透析;2. 盐析;3. 凝胶过滤;酸碱性质: 1. 等电点沉淀; 2. 离子交换层析; 3. 电泳蛋白质的变性:蛋白质变性后,二、三级以上的高级结构发生改变或破坏,但共价键不变,一级结构没有破坏。
第三章 蛋白质
大多数蛋白质的含氮量较恒定, 平均16%,即1g氮相当于6.25g蛋 白质。所以,可以根据生物样品 中的含氮量来计算蛋白质的大概 含量。 6.25称为蛋白质系数。 样品中蛋白质含量=样品中的 含氮量 6.25
一、蛋白质的氨基酸组成
• 各种蛋白质所含 的20种常见氨基酸的种 类数目各不相同。表3-1 • 分子中的氨基酸组成与其性质相关。 (如荷电情况) • 蛋白质分子中氨基酸组成及比例与其结 构也有一定关系。(如蚕丝心蛋白的强 韧)
三、天然存在的活性肽
• 1.谷胱甘肽 普遍存在于动植物和微生物 细胞中,参与氧化还原过程,作为某些氧化还 原酶的辅因子、或保护巯基酶,或防止过氧化 物积累等。 • 2.短杆菌素肽S(10肽,抗革兰氏菌,治疗化脓 性病症)、鹅膏蕈素(8肽,抑制RNA聚合酶的 活性,阻碍mRNA的合成)等 • 3.合成肽,如甜味剂甜度为蔗糖150倍,热量 1/200,
第二节:肽与肽键
掌握概念:肽(多肽)、肽键、AA残基、N端 或C端、主链骨架、成肽反应 多肽习惯书写:由左(N端)至 右(C端) 多肽命名:自N端至C端,按AA顺序,以AA名字 命之。
一、肽与肽键
一个氨基酸的α-羧基 与另一个氨基酸的α氨基脱水缩合所形成 的化合物称为肽,氨 基酸之间脱水后形成 的酰胺键称为肽键。
K’1
B+
K’2
B
K’3
B-
K’4
B2-
pI=pK’2+ pK’3/2
二、肽的重要理化性质
4. 原则:当溶液pH大于解离侧链的值,占优 势的离子形式是该侧链的共轭碱,当溶液 pH小于解离侧链的值,占优势的离子形式 是该侧链的共轭酸。 5.肽的化学反应:能发生与游离氨基酸相似 的反应,包括茚三酮反应, 三肽以上的肽还可发生双缩脲反应(游离 氨基酸无此反应)。
1蛋白质_2
氨肽酶法:氨肽酶是一种肽链外切酶,
它能从多肽链的N-端逐个水解肽链, 释放氨基酸。根据不同的反应时间测 出酶水解所释放出的氨基酸种类和数 量,按反应时间和氨基酸残基释放量 作动力学曲线,可以确定蛋白质的N末端残基。
C-末端的测定
还原法:C末端氨基酸可用硼氢化锂还
原生成相应的α氨基醇。肽链水解后, 再用层析法鉴定。
大) 在蛋白质分子内数量多,足以维持蛋白 质构象的稳定 有利于蛋白质结构与功能的灵活调整
3.5.3多肽主链折叠的空间限制
多肽链主链的 各种可能构象 都可以用这两个 二面角来描述 理论上, -180o~180o
非GP
G
P
3.5.4二级结构
驱动蛋白质折叠的主要动力
熵效应
疏水核心
会包埋一部分主链 主链是亲水的 只有主链极性基团之间 形成氢键 蛋白质主链的折叠产生由氢键维系的 有规则机构(二级结构)
Tyr Pro
DNFB
?
Gly Phe
CT
Asp Met
CNBr
Gly
Arg
T
Phe
3.5.2蛋白质三维结构
蛋白质功能
三维结构
X-Ray
NMR
理论预测
稳定蛋白质三维结构的作用力
1 盐键 2 氢键 3 疏水作用 4 范德华 5 二硫键
氢键
稳定蛋白质结构中起极其重要的作用 13~30
多肽链的裂解(酶裂解)
Trypsin
多肽链的裂解(化学裂解)
溴化氰(BrCN)水解法,选择性切割
甲硫氨酸的羧基所形成的肽键。
羟胺断裂法:断裂Asn-Gly之间的肽键,
但专一性不强,也可以断裂Asn-Leu和 Asn-Ala之间的键。
《生物化学与分子生物学》(人卫第八版)-第一章蛋白质的结构与功能归纳总结
第一章蛋白质·蛋白质(protein)是由许多氨基酸(amino acids)通过肽键(prpide bond)相连形成的高分子含氮化合物。
·具有复杂空间结构的蛋白质不仅是生物体的重要结构物质之一,而且承担着各种生物学功能,其动态功能包括:化学催化反应、免疫反应、血液凝固、物质代谢调控、基因表达调控和肌收缩等;就其结构功能而言,蛋白质提供结缔组织和骨的基质、形成组织形态等。
·显而易见,普遍存在于生物界的蛋白质是生物体的重要组成成分和生命活动的基本物质基础,也是生物体中含量最丰富的生物大分子(biomacromolecule)·蛋白质是生物体重要组成成分。
分布广:所有器官、组织都含有蛋白质;细胞的各个部分都含有蛋白质含量高:蛋白质是细胞内最丰富的有机分子,占人体干重的45%,某些组织含量更高,例如:脾、肺及横纹肌等高达80%。
·蛋白质具有重要的生物学功能。
1)作为生物催化剂(酶)2)代谢调节作用3)免疫保护作用4)物质的转运和存储5)运动和支持作用6)参与细胞间信息传递·氧化功能第一节蛋白质的分子组成(The Molecular Structure of Protein)1.组成元素:C(50%-55%)、H(6%-7%)、O(19%-24%)、N(13%-19%)、S(0-4%)。
有些但被指含少量磷、硒或金属元素铁、铜、锌、锰、钴、钼,个别还含碘。
2.各蛋白质含氮量接近,平均为16%。
100g样品中蛋白质的含量(g%)=每克样品含氮克数*6.25*100,即每克样品含氮克数除以16%。
凯氏定氮法:在有催化剂的条件下,用浓硫酸消化样品将有机氮都转化为无机铵盐,然后在碱性条件下将铵盐转化为氨,随水蒸气蒸馏出来并为过量的硼酸液吸收,再以标准盐酸滴定,就可计算出样品中的氮量。
此法是经典的蛋白质定量方法。
一、氨基酸——组成蛋白质的基本单位存在于自然界的氨基酸有300余种,但组成人体蛋白质的氨基酸仅有20种,且均属L-氨基酸(甘氨酸除外),手性,具有旋光性(甘氨酸除外,甘氨酸R基团为-H)。