直流调速系统课程设计Microsoft Word 文档
交直流调速系统课程设计

目录交直流调速课程设计任务书 (2)前言 (4)关键词 (4)交直流调速课程设计说明书 (5)一、总体方案的确定 (5)1.1 现行方案的讨论与比较 (5)1.2 选择PWM控制系统的优越性 (6)1.3采用转速电流双闭环的理由 (6)1.4起动过程电流和转速波形 (9)1.5 H桥双极式逆变器的工作原理 (9)1.6 PWM调速系统静特性 (11)二、双闭环直流调速系统的硬件结构 (12)2.1主电路 (13)2.2 电流调节器 (14)2.3转速调节器 (14)2.4控制电路设计 (15)2.5、控制环节电源设计 (16)2.6、限幅电路 (16)2.7转速检测电路 (17)2.8、电流检测电路 (17)2.9、泵升电压限制 (18)三、电机参数及设计要求 (19)3.1电路基本信息如下: (19)3.2计算反馈关键参数 (19)四、课程设计心得体会 (23)五、系统主要硬件结构图 (24)参考文献: (25)交直流调速课程设计任务书一、题目:双闭环可逆直流PWM调速系统设计二、设计目的1、对先修课程(电力电子学、自动控制原理等)的进一步理解与运用2、运用《电力拖动控制系统》的理论知识设计出可行的直流调速系统,通过建模、仿真验证理论分析的正确性。
也可以制作硬件电路。
3、同时能够加强同学们对一些常用单元电路的设计、常用集成芯片的使用以及对电阻、电容等元件的选择等的工程训练。
达到综合提高学生工程设计与动手能力的目的。
三、系统方案的确定自动控制系统的设计一般要经历从“机械负载的调速性能(动、静)→电机参数→主电路→控制方案”(系统方案的确定)→“系统设计→仿真研究→参数整定→直至理论实现要求→硬件设计→制板、焊接、调试”等过程,其中系统方案的确定至关重要。
为了发挥同学们的主观能动作用,且避免方案及结果雷同,在选定系统方案时,规定外的其他参数由同学自已选定。
1、主电路采用二极管不可控整流,逆变器采用带续流二极管的功率开关管IGBT构成H型双极式控制可逆PWM变换器;2、速度调节器和电流调节器采用PI调节器;U*nm=U*i m =U cm=10V3、机械负载为反抗性恒转矩负载,系统飞轮矩(含电机及传动机构)GD2 =1.5Nm2;4、主电源:可以选择三相交流380V供电,变压器二次相电压为52V;5、他励直流电动机的参数:见习题集【4-19】(p96)n N=1000r/min,电枢回路总电阻R=2Ω,电流过载倍数λ=2;6、PWM装置的放大系数K s=11;PWM装置的延迟时间T s=0.4ms。
基于单片机的直流电机调速系统的课程设计

一、总体设计概述本设计基于8051单片机为主控芯片,霍尔元件为测速元件, L298N为直流伺服电机的驱动芯片,利用 PWM调速方式控制直流电机转动的速度,同时可通过矩阵键盘控制电机的启动、加速、减速、反转、制动等操作,并由LCD显示速度的变化值。
二、直流电机调速原理根据直流电动机根据励磁方式不同,分为自励和它励两种类型,其机械特性曲线有所不同。
但是对于直流电动机的转速,总满足下式:式中U——电压;Ra——励磁绕组本身的内阻;——每极磁通(wb );Ce——电势常数;Ct——转矩常数。
由上式可知,直流电机的速度控制既可以采用电枢控制法也可以采用磁场控制法。
磁场控制法控制磁通,其控制功率虽然较小,但是低速时受到磁场和磁极饱和的限制,高速时受到换向火花和换向器结构强度的限制,而且由于励磁线圈电感较大,动态响应较差,所以在工业生产过程中常用的方法是电枢控制法。
电枢控制法在励磁电压不变的情况下,把控制电压信号加到电机的电枢上来控制电机的转速。
传统的改变电压方法是在电枢回路中串连一个电阻,通过调节电阻改变电枢电压,达到调速的目的,这种方法效率低,平滑度差,由于串联电阻上要消耗电功率,因而经济效益低,而且转速越慢,能耗越大。
随着电力电子的发展,出现了许多新的电枢电压控制法。
如:由交流电源供电,使用晶闸管整流器进行相控调压;脉宽调制(PWM)调压等。
调压调速法具有平滑度高、能耗低、精度高等优点,在工业生产中广泛使用,其中PWM应用更广泛。
脉宽调速利用一个固定的频率来控制电源的接通或断开,并通过改变一个周期内“接通”和“断开”时间的长短,即改变直流电机电枢上的电压的“占空比”来改变平均电.压的大小,从而控制电动机的转速,因此,PWM又被称为“开关驱动装置”。
如果电机始终接通电源是,电机转速最大为Vmax,占空比为D=t1/t,则电机的平均转速:Vd=Vmax*D,可见只要改变占空比D,就可以调整电机的速度。
平均转速Vd与占空比的函数曲线近似为直线。
双闭环直流调速系统的课程设计

双闭环直流调速系统的课程设计————————————————————————————————作者:————————————————————————————————日期:自动控制原理课程设计——双闭环直流调速系统课程设计班级电气自动化二班姓名程传伦学号110101225指导教师张琦2013年6月10日目录摘要第1章系统方案设计1.1 任务分析1。
2 方案比较论证1.3 系统方案确定第2章系统主电路设计及参数计算2。
1 主电路结构设计与确定2.2 主电路器件选择与计算2.2.1 整流变压器的参数计算和选择2.2.2 整流元件晶闸管的选型2.3 电抗器的设计2.4 主电路保护电路的设计2.4.1 过压保护设计2。
4.2 过流保护设计第3章双闭环调节系统调节器的设计3.1 电流调节器的设计3.2转速调节器的设计小结心得体会参考文献摘要直流电动机具有良好的起动、制动性能,宜于在大范围内平滑调速,在许多需要调速或快速正反向的电力拖动领域中得到了广泛的应用。
从控制的角度来看,直流调速还是交流拖动系统的基础。
该系统中设置了电流检测环节、电流调节器以及转速检测环节、转速调节器,构成了电流环和转速环,前者通过电流元件的反馈作用稳定电流,后者通过转速检测元件的反馈作用保持转速稳定,最终消除转速偏差,从而使系统达到调节电流和转速的目的.该系统起动时,转速外环饱和不起作用,电流内环起主要作用,调节起动电流保持最大值,使转速线性变化,迅速达到给定值;稳态运行时,转速负反馈外环起主要作用,使转速随转速给定电压的变化而变化,电流内环跟随转速外环调节电机的电枢电流以平衡负载电流.并通过Simulink进行系统的数学建模和系统仿真,分析双闭环直流调速系统的特性。
第1章系统方案设计1。
1 任务分析本课题所涉及的调速方案本质上是改变电枢电压调速。
该调速方法可以实现大范围平滑调速,是目前直流调速系统采用的主要调速方案.但电机的开环运行性能远远不能满足要求.按反馈控制原理组成转速闭环系统是减小或消除静态转速降落的有效途径。
交直流调速系统课程设计

目录交直流调速课程设计任务书 (2)前言 (4)关键词 (4)交直流调速课程设计说明书 (5)一、总体方案确实定 (5)1.1 现行方案的讨论与比拟 (5)1.2 选择PWM控制系统的优越性 (6)1.3采用转速电流双闭环的理由 (6)1.4起动过程电流和转速波形 (9)1.5 H桥双极式逆变器的工作原理 (9)1.6 PWM调速系统静特性 (11)二、双闭环直流调速系统的硬件结构 (12)2.1主电路 (13)2.2 电流调节器 (14)2.3转速调节器 (14)2.4控制电路设计 (15)2.5、控制环节电源设计 (16)2.6、限幅电路 (16)2.7转速检测电路 (17)2.8、电流检测电路 (17)2.9、泵升电压限制 (18)三、电机参数及设计要求 (19)3.1电路根本信息如下: (19)3.2计算反响关键参数 (19)四、课程设计心得体会 (23)五、系统主要硬件结构图 (24)参考文献: (25)交直流调速课程设计任务书一、题目:双闭环可逆直流PWM调速系统设计二、设计目的1、对先修课程〔电力电子学、自动控制原理等〕的进一步理解与运用2、运用?电力拖动控制系统?的理论知识设计出可行的直流调速系统,通过建模、仿真验证理论分析的正确性。
也可以制作硬件电路。
3、同时能够加强同学们对一些常用单元电路的设计、常用集成芯片的使用以及对电阻、电容等元件的选择等的工程训练。
到达综合提高学生工程设计与动手能力的目的。
三、系统方案确实定自动控制系统的设计一般要经历从“机械负载的调速性能〔动、静〕→电机参数→主电路→控制方案〞〔系统方案确实定〕→“系统设计→仿真研究→参数整定→直至理论实现要求→硬件设计→制板、焊接、调试〞等过程,其中系统方案确实定至关重要。
为了发挥同学们的主观能动作用,且防止方案及结果雷同,在选定系统方案时,规定外的其他参数由同学自已选定。
1、主电路采用二极管不可控整流,逆变器采用带续流二极管的功率开关管IGBT构成H型双极式控制可逆PWM变换器;2、速度调节器和电流调节器采用PI调节器;U*nm=U*i m =U cm=10V3、机械负载为对抗性恒转矩负载,系统飞轮矩〔含电机及传动机构〕GD2 =1.5Nm2;4、主电源:可以选择三相交流380V供电,变压器二次相电压为52V;5、他励直流电动机的参数:见习题集【4-19】〔p96〕n N=1000r/min,电枢回路总电阻R=2Ω,电流过载倍数λ=2;6、PWM装置的放大系数K s=11;PWM装置的延迟时间T s=0.4ms。
直流电动机调速系统课程设计

直流电动机调速系统课程设计直流电机转速电流双闭环调速系统设计设计报告设计人:李良友班级:电气优创0801学号:********同组人:辛迪硕郝齐心目录第一章设计任务 ................................................................................................................. - 1 -一、设计内容: ........................................................................................................ - 1 -二、设计要求: ........................................................................................................ - 1 -三、设计参数: ........................................................................................................ - 1 -第二章直流电动机转速电流双闭环调速系统设计 ......................................................... - 2 -一、转速、电流双闭环直流调速系统的组成及其静态结构图 ................................... - 2 -1、双闭环调速系统的组成 ......................................................................................... - 2 -2、稳态结构框图 ......................................................................................................... - 3 -二、转速、电流双闭环直流调速系统的动态模型 ....................................................... - 5 -三、按工程方法设计双闭环系统调节器 ....................................................................... - 6 -1、电流调节器的设计计算 ......................................................................................... - 6 -2、转速调节器的设计计算 ......................................................................................... - 8 -3 调速系统的开环传递函数 ................................................................................... - 10 -四、转速调节单闭环实验 ............................................................................................. - 11 -1、原理图各部分电路 ............................................................................................... - 11 -2、测试结果 ............................................................................................................... - 13 -五、自我评定 ................................................................................................................. - 14 -参考资料 ............................................................................................................................. - 15 -附录一速度反馈电路原理图附录二元件清单第一章设计任务一、设计内容:1、根据给定参数设计转速电流双闭环直流调速系统。
直流调速系统的设计

课程设计说明书课程名称:电机拖动控制系统课程设计专业:自动化班级:073033姓名:学号:指导教师:成绩:完成日期:2010 年7 月12 日任务书摘要本设计从直流电动机的工作原理入手,并详细分析了系统的原理及其静态和动态性能。
然后按照自动控制原理,对直流电机调速系统的设计参数进行分析和计算。
转速、电流双闭环直流调速系统是性能很好,应用最广的直流调速系统, 采用转速、电流双闭环直流调速系统可获得优良的静、动态调速特性。
转速、电流双闭环直流调速系统的控制规律,性能特点和设计方法是各种交、直流电力拖动自动控制系统的重要基础。
应掌握转速、电流双闭环直流调速系统的基本组成及其静特性;从起动和抗扰两个方面分析其性能和转速与电流两个调节器的作用;应用工程设计方法解决双闭环调速系统中两个调节器的设计问题,等等。
关键词:直流调速双闭环转速、电流调节器目录1 单闭环直流调速系统主电路的设计 (1)1.1整流变压器参数的计算 (1)1.1.1整流变压器二次侧相电压 (1)1.1.2 二次侧相电流和一次侧相电流 (1)1.1.3 变压器容量 (1)1.2 整流器件晶闸管的参数计算及选择 (2)1.2.1 电压、电流定额 (2)1.2.2阻容保护电路的参数计算及选择 (2)2 单闭环直流调速系统控制电路的设计 (3)2.1 整流模块 (3)2.1.1 单相整流模块参数 (3)2.1.2 模块内部电路及使用和安装 (3)2.2 LM331芯片简介及工作原理 (4)2.3运算放大环节 (5)2.4光电编码器 (6)2.5单闭环调速系统控制电路图 (7)3 双闭环直流调速系统主电路的设计 (8)3.1 主电路的选择和参数的计算 (8)3.1.1 二次侧相电压 (8)3.1.2 二次侧相电流和一次侧相电流 (8)3.1.3 变压器容量 (8)3.1.4 电压、电流定额 (8)3.1.5 保护环节的计算和选择 (9)4双闭环直流调速系统控制电路的设计 (10)4.1电流环的设计 (10)4.1.1.确定时间常数: (10)4.1.2.选择电流调节器结构 (10)4.1.3.选择电流调节器参数 (10)4.1.4.校验近似条件 (10)4.1.5. 计算调节器电阻和电容 (11)4.2 转速环的设计 (11)4.2.1.确定时间常数 (11)4.2.2.选择转速调节器结构 (11)4.2.3.选择转速调节器参数 (11)4.2.4.校验近似条件 (12)4.2.5.计算调节器电阻和电容 (12)4.2.6.校核转速超调量 (12)总结 (14)参考资料 (15)附录: (16)1 单闭环直流调速系统主电路的设计1.1 整流变压器参数的计算1.1.1整流变压器二次侧相电压为了保证负载能正常工作,当主电路的接线形式和负载要求的额定电压确定之后,晶闸管交流侧的电压2u 只能在一个较小的范围内变化,为此必须精确计算整流变压器次级电压2u电网电压波动系数∑=0.9,A=0.9,C=0.707,min ∂=︒30 ,k u =0.05,所以)(cos 22min max 2Nk VT d d I I Cu A U n RI U U -∆++=αε V V 8.20)105.0707.0866.0(9.09.01212=⨯⨯-⨯⨯⨯+=1.1.2 二次侧相电流和一次侧相电流所以变压器电压比为:58.108.20/220/21==U U二次侧相电流:A I I I N d 41/1/2===一次侧相电流:378.058.10/4/21===k I I1.1.3 变压器容量二次容量:VA VA I U m S 2.834\8.2012222≈⨯⨯==一次容量:VA VA I U m S 1.83378.022011111≈⨯⨯== 平均计算容量:VA S S S 15.83)(2121=+=1.2 整流器件晶闸管的参数计算及选择1.2.1 电压、电流定额V V U U Tm TN 23.88~82.588.202)3~2()3~2(=⨯⨯==A A I TN 4.5~05.445.145.0)2~5.1(=⨯⨯⨯=取V U TN 80=,A I TN 5=,选择KP300-8晶闸管6只。
直流脉宽PWM调速系统课程设计
双闭环可逆直流脉宽PWM 调速系统设计1. 引言转速、电流双闭环控制直流调速系统是性能好、应用最广的直流调速系统。
它具有动态响应快、抗干扰能力强等优点。
我们知道反馈闭环控制系统具有良好的抗扰性能,它对于被反馈环的前向通道上的一切扰动作用都能有效的加以抑制。
采用转速负反馈和PI 调节器的单闭环的调速系统可以再保证系统稳定的条件下实现转速无静差.本设计是以直流PWM 控制调速系统进行调速,采用转速调节器ASR 、以及电流调节器ACR 并用PI 调节器进行校正,对反馈信号进行采集,处理起到无静差效果。
用25LJPF40电力二极管进行整流,以及滤波,通过驱动电路的作用将控制电路输出的PWM 信号得到IGBT 可靠的导通和关断,并用霍尔传感器对电流取样进而反馈至电流调节器,系统同时设有过流保护,为此达到双闭环可逆调速。
2. 系统设计参数2.1 设计内容和数据资料某直流电动机拖动的机械装置系统。
主电动机技术数据为:V U N 48=,A I N 7.3=,min 200r n N =,Ω=5.6a R ,电枢回路总电阻Ω=8R ,电枢回路电磁时间常数ms T l 5=,机电时间常数ms T m 200=,电源电压V U s 60=,给定值和ASR 、ACR 的输出限幅值均为V 10,电流反馈系数A V 33.1=β,转速反馈系数r V m in 05.0•=α,电动势转速比 r V C e min 18.0•=,Ks=4.8,Ts=0。
4ms ,试对该系统进行初步设计。
2。
2 技术指标要求电动机能够实现可逆运行。
要求静态无静差。
动态过渡过程时间s T s 1.0≤,电流超调量%5%≤i σ,空载起动到额定转速时的转速超调量%10%≤n σ.3。
主电路方案和控制系统确定主电路选用直流脉宽调速系统,控制系统选用转速、电流双闭环控制方案。
主电路采用25JPF40电力二极管不可控整流,逆变器采用带续流二极管的功率开关管IGBT构成H型双极式控制可逆PWM变换器.其中属于脉宽调速系统特有的部分主要是UPM、逻辑延时环节DLD、全控型绝缘栅双极性晶体管驱动器GD 和PWM变换器。
《交直流调速系统系统课程设计》
《交直流调速系统》课程设计一、性质和目的自动化专业、电气工程及其自动化专业的专业课,在学完本课程理论部分之后,通过课程设计使学生巩固本课程所学的理论知识,提高学生的综合运用所学知识,获取工程设计技能的能力;综合计算及编写报告的能力。
二、设计内容1.根据指导教师所下达的《课程设计任务书》课程设计。
2.主要内容包括:(1)根据任务书要求确定总体设计方案(2)主电路设计:主电路结构设计(结构选择、器件选型、考虑器件的保护)、变压器的选型设计;(3)控制回路设计:控制方案的选择、控制器设计(4)保护电路的选择和设计(5)调速系统的设计原理图,调速性能分析、调速特点3.编写详细的课程设计说明书一份。
三、设计内容与要求1.熟练掌握主电路结构选择方法、主电路元器件的选型计算方法。
2.熟练掌握保护方式的配置及其整定计算。
3.掌握触发控制电路的设计选型方法。
4.掌握速度调节器、电流调节器的典型设计方法。
5.掌握绘制系统电路图绘制方法。
6.掌握说明书的书写方法。
四、对设计成品的要求1.图纸的要求:1)图纸要符合国家电气工程制图标准;2)图纸大小规格化(例如:1#图,2#图);3)布局合理、美观。
2.对设计说明书的要求1)说明书中应包括如下内容①目录②课题设计任务书;③调速方案的论证分析(至少有两种方案,从经济性能和技术性能方面进行分析论证)和选择;④所要完成的设计内容⑤变压器的接线方式确定和选型;⑥主电路元器件的选型计算过程及结果;⑦控制电路、保护电路的选型和设计;⑧调速系统的总结线图系统电路设计及结果。
2)说明书的书写要求①文字简明扼要,理论正确,程序功能完备,框图清楚明了。
②字迹工整;书写整齐,使用统一规定的说明书用纸。
③图和表格不能徒手绘制。
④附参考资料说明。
《交直流调速系统》课程设计任务书一、课程设计的主要任务(一)系统各环节选型 1、主回路方案确定。
2、控制回路选择:变频器、给定器、调节放大器、触发器、稳压电源、电流截止环节,调节器的限幅值路、电流、电压检测环节(须对以上环节画出线路图,说明其原理)。
电气传动课程设计——直流电动机调速系统的设计
一直流电动机调速系统的设计1 引言在电机的发展史上,直流电动机有着光辉的历史和经历,皮克西、西门子、格拉姆、爱迪生、戈登等世界上著名的科学家都为直流电机的发展和生存作出了极其巨大的贡献,这些直流电机的鼻祖中尤其是以发明擅长的发明大王爱迪生却只对直流电机感兴趣,现而今直流电机仍然成为人类生存和发展极其重要的一部分,因而有必要说明对直流电机的研究很有必要。
早期直流电动机的控制均以模拟电路为基础,采用运算放大器、非线性集成电路以及少量的数字电路组成,控制系统的硬件部分非常复杂,功能单一,而且系统非常不灵活、调试困难,阻碍了直流电动机控制技术的发展和应用范围的推广。
随着单片机技术的日新月异,使得许多控制功能及算法可以采用软件技术来完成,为直流电动机的控制提供了更大的灵活性,并使系统能达到更高的性能。
采用单片机构成控制系统,可以节约人力资源和降低系统成本,从而有效的提高工作效率。
直流电动机具有良好的起动、制动性能,宜于在大范围内平滑调速,在许多需要调速或快速正反向的电力拖动领域中得到了广泛的应用。
从控制的角度来看,直流调速还是交流拖动系统的基础。
早期直流电动机的控制均以模拟电路为基础,采用运算放大器、非线性集成电路以及少量的数字电路组成,控制系统的硬件部分非常复杂,功能单一,而且系统非常不灵活、调试困难,阻碍了直流电动机控制技术的发展和应用范围的推广。
随着单片机技术的日新月异,使得许多控制功能及算法可以采用软件技术来完成,为直流电动机的控制提供了更大的灵活性,并使系统能达到更高的性能。
采用单片机构成控制系统,可以节约人力资源和降低系统成本,从而有效的提高工作效率。
本设计主电路采用晶闸管三相全控桥整流电路供电方案,控制电路由集成电路实现,系统中有速度调节器、电流调节器、触发器和电流自适应调节器等。
2 系统方案选择和总体结构设计2.1调速方案的选择本次设计选用的电动机型号Z2-51型,其具体参数如下表2-1所示表2-1 Z2-51型电动机具体参数2.1.1电动机供电方案的选择变压器调速是直流调速系统用的主要方法,调节电枢供电电压所需的可控制电源通常有3种:旋转电流机组,静止可控整流器,直流斩波器和脉宽调制变换器。
电机拖动课程设计直流电动机调速系统设计
直流电动机调速系统设计直流电动机直流电机是生产和使用直流电能的机电能量转换机械;直流电动机是将直流电能转换为机械能的旋转机械;它与交流电动机如三相异步电动机相比,虽然因结构比较复杂、生产成本较高、故障较多等,目前已不如交流电动机应用普遍,但由于它具有优良的调速性能和较大的启动转矩,得到广泛应用;本节仅就直流电动机的结构与工作原理、直流电动机的分类及在印刷设备中的应用、直流电动机的启动与调速做一简单介绍;下图为直流电动机的结构原理图,图中的N和S是一对固定不动的磁极,用以产生所需要的磁场;容量较大一些的电机,磁场都是由直流励磁电流通过绕在磁极铁心上的励磁绕组产生;为了清晰,图中只画出了磁极的铁心,没有画出励磁绕组;在N极和S极之间有一个可以绕轴旋转的绕组;直流电机这部分称为电枢,而实际电机的电枢绕组嵌在铁心槽内,电枢绕组的电流称为电枢电流;线圈两端分别与两个彼此绝缘而且与线圈同轴旋转的铜片连接,铜片上有各压着一个固定不动的电刷;在直流电动机中,为了产生方向始终如一的电磁转矩,外部电路中的直流电流必须改变成电机内部的交流电流,这一过程称为电流的换向;换向的铜片称为换向片;互相绝缘的换向片组合的总体称为换向器;图1:直流电动机原理图一、直流电动机的结构与工作原理直流电动机的结构直流电动机主要由磁极、电枢、换向器三部分组成;1磁极;磁极是电动机中产生磁场的装置,如图2所示;它分成极心1和极掌2两部分;极心上放置励磁绕组3,极掌的作用是使电动机空气隙中磁感应强度的分布最为合适,并用来挡住励磁绕组;磁极是用钢片叠成的,固定在机座4即电机外壳上,机座也是磁路的一部分;机座常用铸钢制成;图2直流电动机的磁极及磁路1-极心 2-极掌 3-励磁绕组 4-机座2电枢;电枢是电动机中产生感应电动势的部分;直流电动机的电枢是旋转的,电枢铁心呈圆柱状,由硅钢片组成,表面冲有槽,槽中放有电枢绕组;3换向器整流子;换向器是直流电动机的一种特殊装置,其外形如图3所示,主要由许多换向片组成,每两个相邻的换向片中间是绝缘片;在换向器的表面用弹簧压着固定的电刷,使转动的电枢绕组得以同外电路联结;换向器是直流电动机的结构特征,易于识别;图3:换向器1—换向片 2—连接部分图4 直流电机装配结构图图5 直流电机纵向剖视图1—换向器 2—电刷装置 3—机座 4—主磁极 5—换向极6—端盖 7—风扇 8—电枢绕组 9—电枢铁心直流电动机的工作原理U + -ABNSII FFCabd图6 直流电动机原理图图6是直流电动机的示意图;若在A、B之间外加一个直流电压,A接电源正极,B接负极,则线圈中有电流流过;当线圈处于图5所示位置时,有效边ab在N 极下,cd在s极上,两边中的电流方向为a→b,c→d;由安培定律可知,ab边和cd 边所受的电磁力为:F=BIL式中,I为导线中的电流,单位为安A;根据左手定则知,两个F的方向相反,如图6所示,形成电磁转矩,驱使线圈逆时针方向旋转;当线圈转过180°时,cd边处于N极下,ab边处于S极上;由于换向器的作用,使两有效边中电流的方向与原来相反,变为d→c、b→a,这就使得两极面下的有效边中电流的方向保持不变,因而其受力方向、电磁转矩方向都不变;由此可见,正是由于直流电动机采用了换向器结构,使电枢线圈中受到的电磁转矩保持不变,在这个电磁转矩作用下使电枢按逆时针方向旋转;这时电动机可作为原动机带动生产机械旋转,即由电动机向机械负载输出机械功率;在直流电动机中,除了必须给电枢绕组外接直流电源外,还要给励磁绕组通以直流电流用以建立磁场;电枢绕组和励磁绕组可以用两个电源单独供电,也可以由一个公共电源供电;按励磁方式的不同,直流电动机可以分为他励、并励、串励和复励等形式;由于励磁方式不同,它们的特性也不用;他励电动机的励磁绕组和电枢绕组分别由两个电源供电,如图7所示;他励电动机由于采用单独的励磁电源,设备较复杂;但这种电动机调速范围很宽,多用于主机拖动中;图7 他励电动机二、 他励直流电动机的调速与交流电动机相比,直流电动机具有较好的调速性能,它能在宽广的范围内平滑而经济的调速,因此多用于调速要求较高的场合;根据直流电动机调速公式n=ψ+-Ce Rpa Ra Ia U )(可见,当电枢电流不变时即负载不变,只要在电枢电压U 、电枢电路附加电阻和每极磁通ф三个参数中,任意改变一个,都能引起转速的变化;因此,他励直流电动机可以有三种调速方法;为了评价各种调速方法的优缺点,对对调速方法提出了一定的技术经济指标,通常称为调速指标;下面下面对调速指标做一简要说明;调速指标1调速范围调速范围是只指电动机在额定负载下调素时,其最高转速与最低转速之比,用D 表示,即 D=m in m axn n不同的生产机械对对调速范围的要求不同,如车床D=20~100,龙门刨床D=10~40,扎钢机D=~3等;电动机最高转速nmax 受电动机的换向及机械强度限制,最低转速相对稳定即静差率要求的限制;2静差率调速的相对稳定性静差率或转速变化率是指电动机在一条机械特性上额定负载时的转速降落△n 与该机械特性的理想空载转速n0之比,用表示,即σ=0n n∆=00n n n -式中,n 为额定负载转矩Tem=TL 时的转速图8从上式可以看出,在△n相同时,机械特性越“硬”,额定负载时转速降越小,静差率σ越小,转速的相对稳定性越好,负载波动时,转速变化也越小;图3-1中机械特性1比机械特性2“硬”;静差率除了与机械特性硬度有关外,还与理想空载转速n0成反比;对于同样“硬度”的特性,如图3-2中特性1和特性3,虽然转速将相同,但其静差率却不同;为了保证转速的相对稳定性,常要求静差率应不大于某一允许值允许值;图9调速范围D与静差率σ两项性能指标是相互制约的,当采用同一种方法调速时,静差率要求较低时,则可以得到较低的调速范围;反之,静差率要求较高时,则调速范围小;如果静差率要求一定时,采用不同的调速方法,其调速范围不同,如果改变电枢电压调速比电枢串电阻调速的调速范围大;调速范围与静差率是相互制约的,因此需要调速生产机械,必须同时给出静差率与调速范围这两项指标,以便选择适当的调速方法;3调速的平滑性调速的平滑性是指相邻两级转速的接近程度,用平滑系数ψ表示,即Ψ=1 i inn平滑系数Ψ越接近1,说明调速的平滑性越好;如果转速连续可调,其级数趋于无穷多,称为无级调速,Ψ=1,其平滑性最好;调速不连续,级数有限,称为有级调速;4调速的经济性经济性包含两方面的内容,一是指调速所需的设备和调速过程中的能量损耗,另一方面是指电动机调速时能否得到充分的利用;一台电动机当采用不同的调速方法时,电动机容许输出的功率和转矩随转速变化的规律是不同的,但电动机实际输出的功率和转矩是有负载需要所决定的,而不同的负载,其所需要的功率和转矩随转速的变化的规律也是不同的,因此在选择调速方法时,既要满足伏在要求,又要尽可能是电动机得到充分利用;经分析可知,电枢回路串电阻调速以及降低电枢电压调速适用于恒转矩负载的调速,而若此调速适用于恒功率负载的调速;电枢串电阻调速他励直流电动机拖动负载运行时,保持电源电压及励磁电流为额定值不变,在电枢回路中串入不同阻值的电阻,电动机将运行于不同的转速,如图3—3所示,图中的负载为恒转矩负载;从图10可以看到,当电枢回路串入电阻R时,电动机的机械特性的斜率将增大,电动机和负载的机械特性的交点将下移,即电动机稳定运行转速降低;nnT L T em a +R 1图10电枢串电阻调速机械特性如图10中传入的电阻2R >1R ,交点2A 的转速2n 低于交点1A 的转速1n ,它们都比原来没有外串电阻的交点A 的转速n 低;电枢回路串电阻调速方法的优点是设备简单,调节方便,缺点是调速范围小,电枢回路串入电阻后电动机的机械特性变“软”,使负载变动时电动机产生较大的转速变化,即转速稳定性差,而且调速效率较低改变电枢电源电压调速他励直流电动机的电枢回路不串接电阻,由一可调节的直流电源向电枢供电,最高电压不应超过额定电压;励磁绕组由另一电源供电,一般包保持励磁磁通为额定值;电枢电压不同时,电动机拖动负载将运行于不同的转速上从图11中可以看出,当电枢电源电压为额定值时,电动机和负载的机械特性的交点为A,转速为n ;电压降到1U 后,交点为1A ,转速为`1n ;电压为2U ,交点为2A ,转速为2n ;电压为3U ,交点为3A ,转速为3n ;电枢电源电压越低,转速也越低;同样,改变点数电源电压调速方法的范围也只能在额定转速与零转速之间调节;改变电枢电源电压调速时,电动机机械特性的“硬度”不变,因此,集市电动机在低速运行时,转速随附在变动而变化的幅度较小,即转速稳定性好;当电枢电源电压连续调节时,转速变化也是连续的,所以这种调速称为无级调速;n0nn nU1U23U NT L T em 图11改变电枢电源电压调速方法的有电视调速的平滑性好,即可实现无级调速,调速效率高,转速稳定性好,缺点是所需的可调电源设备投资较高;这种调速方法在直流电力拖动系统中被广泛使用;弱磁调速励直流电机电枢电流电压不变,电枢回路也不串接电阻,在电动机拖动负载转矩不很大小于额定转矩时,减少直流电动机的励磁磁通,可使电动机的转速提高;他励直流电动机带恒转矩负载时弱磁调速,如图12所示;从图12中可以看出,当励磁磁通为额定值ΦN时,电动机和负载的机械特性的交点为A,转速为n:励磁磁通减少为Φ2时,理想空载转速增大,同时机械特性斜率也变大,交点为A1,转速为n1;励磁电流减少为Φ1,交点为A2,转速为n2;弱磁调速的范围是在额定转速与电动机的所允许最高转速之间进行调节,至于电动机所允许最高转速值是受换向与机械强度所限制,一般约为1.2m左右,特殊设计的调速电动机,可达3 nN或更高;弱磁调速的优点是设备简单,调节方便,运行效率也较高,适用于恒功率负载,缺点是励磁过弱时,机械特性的斜率大,转速稳定性差,拖动恒转矩负载时,可能会使电枢电流过大;在实际的电力拖动系统中可以将几种调速方法结合起来,这样,可以得到较宽的调速范围,电动机可以在调速范围之内任何转速上运行,而且调速时的损耗较小,运行效率较高,能很好的满足各种生产机械对调速的要求;n o2n o1n oT L T em图12弱磁调速机械特性三、课程设计内容第四章课程设计内容一台他励直流电动机,参数如下:P N=6KWU aN=200VI aN=42An N=1500r/minR L=Ω1. 用其拖动通风机负载运行,若采用电枢串电阻调速时,要使转速降至200r/min,试设计电枢电路中的调速电阻;2. 用其拖动恒转矩负载运行,负载转矩等于电动机的额定转矩,采用改变电枢电压调速时,要使转速降至1000r/min,试设计电枢电压值;3. 用其拖动恒功率负载运行,采用改变励磁电流调速,要使转速增至1800r/min,试设计CeΦ的值;内容解析:1.采用电枢串电阻调速:电动机的电枢电阻Ra=U aN - P N I aN/ I aN =200-6000/42/42Ω=Ω在额定状态运行时E= U aN -R a I aN =×42V=CeΦ=E/ n N =1500=C TΦ=60CeΦ/2π=60/2××=T N=60 P N /2πn N =60/2××6000/=. m由于通风机负载的转矩与转速的平方成反比,故n=1200r/min时的转矩为T=n/ n N2T N=1200/1500 2×n0= U aN/ CeΦ=200/min=2100r/min∆n= n0-n=2100-1500r/min =600r/min由于∆n= Ra +RrT/ C T CeΦ2由此求得Rr=∆n CT CeΦ2/T- Ra =600××采用电枢电压调速:由上题求得:Ra=ΩCeΦ=C TΦ=T N =电枢电压减小后∆n=Ra T N / C T CeΦ2=××r/min=minn0=n+∆n=1000+r/min=min由此求得Ua= CeΦn0=×=3.采用改变励磁电流调速由上求得R a=ΩT N=由于恒功率负载的转矩与转速成正比关系,故忽略空载转矩时,调速后的电磁转矩为T= n N T N /n=1500×= 1800=200/ CeΦ×C T CeΦ2得CeΦ=或结论三种调速方法各有优缺点,改变电枢电阻调速的缺点较多,所以只适用于调速范围不大,调速时间不长的小容量电动机中;改变电枢电压调速是一种性能优越的调速方法,被广泛应用于对调速性能要求较高的电力拖动系统中;改变励磁电流调速通常与改变电枢电压同时应用于对调速要求很高的电力拖动系统中,来扩大调速范围和实现双向调速;对容量较大的直流电动机,通常采用降电压起动;即由单独的可调压直流电源对电机电枢供电,控制电源电压既可使电机平滑起动,又能实现调速;此种方法电源设备比较复杂;本设计采用增加电枢电阻启动非常简单,设备轻便,广泛应用于各种中小型直流电动机中;设计体会经过一周的奋战,课程设计完成了,在没有做课程设计之前觉得课程设计只是对这个学科所学知识的总结,但通过这次课程设计发现自己的看法片面;课程设计不仅是对所学知识的一种检验,而且也是对自己能力的提高;通过课程设计,让我更加明白学习是一个长期的积累过程,经后的工作、生活中应该不段的学习,努力提高知识和综合能力;设计过程中,我查阅了大量的有关资料,并与同学交流,学到了不少知识,也经历了不少艰辛,但收获还是很多的;在设计中培养了我独立工作的能力,树立了对自己工作能力的信心;让我充分体会到在创造过程中探索的艰辛和成功的喜悦;经过对这些资料的整理、理解和消化,使我对直流电机的调速尤其是对他励直流电动机的串电阻调速有了更深一层的理解;这次课程设计也许会又很多不足的地方,希望老师多多批评,我也会在以后的日子里不断学习提高自己动手的能力,使以后的设计会更好,也使自己得到更全面的提高参考文献1.唐介. 电机与拖动. 北京:高等教育出版社.2.唐介. 控制微电机. 北京:高等教育出版社.3.周绍英.电机与拖动.中国广播电视大学出版社1995年出版4.李海发. 电机学.科学出版社2001年出版5.刘起新. 电机与拖动基础. 中国电力出版社2005年出版。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摘要近年来由于微型机的快速发展,国外交直流系统数字化已经达到实用阶段。
由于以微处理器为核心的数字控制系统硬件电路的标准化程度高,制作成本低,且不受器件温度漂移的影响。
其控制软件能够进行逻辑判断和复杂运算,可以实现不同于一般线性调节的最优化、自适应、非线性、智能化等控制规律。
所以微机数字控制系统在各个方面的性能都远远优于模拟控制系统且应用越来越广泛。
本文介绍的是用一台直流电动机,构成的数字化直流调速系统。
特点是用单片机取代模拟触发器、电流调节器、速度调节器及逻辑切换等硬件设备。
最后进行软件编程、调试以及计算机仿真。
实时控制结果表明,本数字化直流调速系统实现了电流和转速双闭环的恒速调节,并具有结构简单,控制精度高,成本低,易推广等特点,而且各项性能指标优于模拟直流调速系统,从而能够实际的应用到生产生活中,满足现代化生产的需要。
关键词:单片机双闭环直流调速系统数字方式ABSTRACTAs the fast development of microcomputer,AC/DC speed control system for digitization has reached the applied stage overseas.Since the hardware circuit of digital control system centered by microprocessor possesses the advantages that it has higher standardization and lower cost,and it doesn’t be influenced by temperature drift of devices.Furthermore,the control software of digital control system can carry through logical judgment and sophisticated operation,and it has the control laws of optimality, adaptive trait,nonlinear and intelligence,which are different from the ordinary linear adjustability.In every aspects the function of digital control system has exceeded analog control system and is being used widely.Here is a digital DC speed control system composed by26KW DC motor and8051 single-chip computer,which has the characteristic that the analog trigger,current regulator, rotation regulator,logical handoff and other devices were replaced by single-chip computer;and finally put through the software programmer,testing and computer simulation.The result of real time control indicates that the digital DC speed control system realized the constant speed adjustability of the double closed-loop of electric current and rotate speed.This system also has the specialties such as simple structure, high control accuracy,low cost and easiness to be spread.In addition,its entire performance index is better than analog DC speed control system.As a result,the digital DC speed control system could be applied into production and ordinary life to satisfy the needs of modern manufacture.Keywords:Single-chip computer;Double closed-loop;DC speed control system;Digital mode目录1设计课题任务、总体方案选择与介绍 (4)1.1设计课题任务 (4)1.2总体方案选择与介绍 (4)第2章设计方案论证 (7)2.1思路 (7)2.2设计方法 (7)第3章总体电路的功能 (10)3.1用调压器调速 (10)3.2速度负反馈电磁调速异步电动机控制电路 (10)第4章单元电路的设计 (13)第5章总体电路原理图 (14)第6章设计结果与分析 (16)6.1指标内容 (16)6.2设计结果 (16)6.3分析 (16)第7章仿真 (17)第8章心得体会 (18)第9章参考文献 (19)一设计课题任务、总体方案选择与介绍1.1设计课题任务直流电机调速方案。
1.2总体方案选择与介绍1.2.1改变电枢回路电阻调速可以通过改变电枢回路电阻来调速,此时转速特性公式为n=U-【I(R+Rw)】/KeФ式中Rw为电枢回路中的外接电阻(Ω)。
当负载一定时,随着串入的外接电阻Rw的增大,电枢回路总电阻R=(Ra+Rw)增大,电动机转速就降低。
Rw的改变可用接触器或主令开关切换来实现。
这种调速方法为有级调速,转速变化率大,轻载下很难得到低速,效率低,故现在这种调速方法已极少采用,本次设计不采用。
1.2.2改变励磁电流调速当电枢电压恒定时,改变电动机的励磁电流也能实现调速。
电动机的转速与磁通Ф(也就是励磁电流)成反比,即当磁通减小时,转速n升高;反之,则n 降低。
与此同时,由于电动机的转矩Te是磁通Ф和电枢电流Ia的乘积(即Te=CT ФIa),电枢电流不变时,随着磁通Ф的减小,其转速升高,转矩也会相应地减小。
所以,在这种调速方法中,随着电动机磁通Ф的减小,其转矩升高,转矩也会相应地降低。
在额定电压和额定电流下,不同转速时,电动机始终可以输出额定功率,因此这种调速方法称为恒功率调速。
为了使电动机的容量能得到充分利用,通常只是在电动机基速以上调速时才采用这种调速方法。
本次设计不采用。
1.2.3采用PWM控制的调速方法采用脉冲宽度调制(PWM)的高频开关控制方式形成的脉宽调制变换器-直流电动机调速系统,简称直流脉宽调速系统,即直流PWM调速系统。
直流斩波器-电动机系统的原理图1.1和电压波形图1.2图1.1图1.2工作原理:VT 表示电力电子开关器件,VD 表示续流二极管。
当VT 导通时间ton,直流电源电压Us 加到电动机上;当VT 关断时T–ton,直流电源与电机脱开,电动机电枢经VD 续流,两端电压接近于零。
T—功率器件的开关周期;ton—开通时间;ρ—占空比,ρ=ton/T=ton f ,其中f 为开关频率。
电动机得到的平均电压为:占空比ρ=Ton/T ρ为一个周期T 中,晶体管VT 导通时间的比率,称为负载率或占空比。
使用下面三种方法中的任何一种,都可以改变ρ的值,从而达到调压的目的:(1)定宽调频法:Ton 保持一定,使T-Ton 在0~∞范围内变化;(2)调宽调频法:T-Ton 保持一定,使Ton 在0~∞范围内变化(3)定频调宽法:使T,在0~T 范围内变化。
不管哪种方法,ρ的变化范围均为0≤ρ≤l,因而电枢电压平均值Ua 的调节范围为0~Ud,均为正值,即电动机只能在某一方向调速,称为不可逆调速。
当需要电动机在正、反向两个方向调速运转,即可逆调速时,就要使用图1.3所示的桥式(或称H 型)降压斩波电路。
在图1.3中,晶体管V 1、V 4是同时导通同时关断的,V 2、V 3也是同时导通同时关断的,但V 1与V 2、V 3与V 4都不允许同时导通,否则电源Ud 直通短路。
设V 1、V 4先同时导通T1秒后同时关断,间隔一定时间(为避免电源直通短路。
该间隔时间称为死区时问)之后,再使V 2、V 3同时导通T2秒后同时关断,如此反复,则电动机电枢端电压波形如图1.4所示。
s s on d U U Tt U ρ==桥式PWM 降压斩波器原理电路及输出电压波形图1.3图1.4电动机电枢端电压的平均值为12112(21)(21)a d d d T T T U U U U T T Tα−==−=−+由于0≤α≤1,Ua 值的范围是-Ud~+Ud,因而电动机可以在正、反两个方向调速运转。
本次实验不要求正、反转,所以采用但想不可逆调速方案。
1.2.4基于IGBT 和MOSFET 功率管的驱动电路设计的比较IGBT 驱动电路能驱动大型的功率设备,但价格高。
MOSFET 能驱动较大的功率设备,价格比IGBT 低很多。
本课程设计是驱动小功率直流电动机,可以用IGBT 和MOSFET 功率管的驱动电路设计。
但电动机功率仅为100W,所以本课程设计采用MOSFET 管来进行控制。
功率场效应管(MOSFET)与双极型功率相比具有如下特点:1.场效应管(MOSFET)是电压控制型器件(双极型是电流控制型器件),因此在驱动大电流时无需推动级,电路较简单;2.工作频率范围宽,开关速度高(开关时间为几十纳秒到几百纳秒),开关损耗小;3.有较优良的线性区,并且场效应管(MOSFET)的输入电容比双极型的输入电容小得多,所以它的交流输入阻抗极高;噪声也小。
二设计方案论证2.1、思路电磁调速异步电动机又称滑差电机,它是一种恒转矩交流无级变速电动机。
由于它具有调速范围广、速度调节开滑、启动转矩大、控制功率小、有速度负反馈的自动调节系统时机械特性硬度高等一系列优点。
直流电动机的调速是由电磁调速异步电动机的调速控制。
电磁异步电动机主要是由主电路,控制电路和保护电路等几大部分组成,改变触发角,改变直流电压,达到调速的目的。
2.2、设计方法电磁调速异步电动机是由普通鼠笼式异步电动机、电磁滑差离合器和电气控制装置三部分组成。