筒体计算长度公式h1

合集下载

化工设备罐体和夹套的设计

化工设备罐体和夹套的设计

化⼯设备罐体和夹套的设计罐体和夹套的设计夹套式反应釜是由罐体和夹套两⼤部分组成。

罐体在规定的操作温度和操作压⼒下,为物料完成其搅拌过程提供了⼀定的空间。

夹套传热是⼀种最普遍的外部传热⽅式。

它是⼀个套在罐体外⾯能形成密封空间的容器,既简单⼜⽅便。

罐体合夹套的设计主要包括其结构设计,各部件⼏何尺⼨的确定和强度的计算与校核。

罐体和夹套的结构设计罐体⼀般是⽴式圆筒形容器,有顶盖,筒体和罐底,通过⽀座安装在基础或平台上。

顶盖在受压状态下操作选⽤椭圆形封头,(对于常压或操作压⼒不⼤⽽直径较⼤的设备,顶盖可采⽤薄钢板制造的平盖,在薄钢板上加设型钢制的横梁,⽤以⽀撑搅拌器及其传动装置。

顶盖与罐底分别与筒体相连。

罐底与筒体的连接采⽤焊接连接。

顶盖与筒体的连接形式为可拆连接。

夹套的型式与罐体相同。

罐体⼏何尺⼨计算确定筒体内径⼯艺条件给定容积V、筒体内径估算D1:D1==1.058m=1058mm式中V——⼯艺条件给定容积,m3;i——长径⽐,i=将D1估算值圆整到公称直径1000mm确定封头尺⼨椭圆封头选标准件内径与筒体内径相同曲边⾼度h1=250mm直边⾼度h2=25mm内径⾯积A=1.625m2封头容积V=0.1505m3封头厚度质量确定筒体⾼度式中圆整后的筒体⾼度为1500 则反应釜容积式中夹套⼏何尺⼨计算夹套和筒体的连接常焊接成密封结构夹套的安装尺⼨通常在。

夹套内径夹套下封头型式同罐体封头,其直径与夹套筒体封头相同为1100mm通常取夹套⾼式中夹套所包围的筒体表⾯积式中22——1⽶⾼内封头表⾯积查表为夹套反应釜的强度计算强度计算的原则及依据强度计算中各参数的选取及计算,均应符合GB 150—1988《钢制压⼒容器》的规定。

夹套反应釜设计计算举例⼏何尺⼨圆整筒体内径釜体封头容积圆整釜体⾼度夹套筒体内径装料系数,或按圆整夹套筒体⾼度罐体封头表⾯积⼀⽶⾼筒体内表⾯积,强度计算(按内压计算厚度),,罐体及夹套焊接接头系数设计温度下材料需⽤应⼒罐体筒体计算厚度夹套筒体计算厚度罐体筒体名义厚度罐体封头名义厚度夹套封头名义厚度稳定性校核(按外压校核厚度)筒体计算长度系数系数许⽤外压⼒罐体筒体名义厚度筒体计算长度系数系数许⽤外压⼒罐体筒体名义厚度罐体封头名义厚度,,罐体封头名义厚度⽔压试验校核,,材料屈服点应⼒反应釜的搅拌装置推进式搅拌装置是调和低粘度均相液体混合的。

薄壁圆筒外压失稳实验

薄壁圆筒外压失稳实验

薄壁圆筒外压失稳实验一、实验目的1.观察外压容器的失稳破坏现象及破坏后的形态。

2.验证外压筒体试件失稳时临界压力的理论计算式。

二、实验装置基本配置表一、实验装置基本配置表:图一、薄壁圆筒外压失稳实验装置三、实验原理薄壁容器在受外压作用时,往往在器壁内的应力还未达到材料的屈服极限,而在外压达到某一数值时,壳体会突然推动原来形状而出现褶皱,这种现象称为失稳,失稳时的压力称为临界压力,以P cr [MPa]表示。

它与材料的弹性性能(弹性模数E 和泊桑比μ)、几何尺寸(简体直径D 、壁厚S O 和筒体计算长度L)有关。

钢制薄壁容器的临界压力与波数的计算公式如下:长圆筒Bress 公式:202)(12DS E P cr μ-=(1) 短圆筒B.M.Pamm 公式:)()//()/(06.7/59.242002正整数D L S D n s D LD ES P cr ==(2)临界尺寸:0/17.1L S D D cr = (3) 当L >L cr 时,为长圆筒; 当L <L cr 时,为短圆筒。

式中:P—临界压力,MPa;crD—圆筒直径,mm;L—圆筒计算长度,mm;S0—圆筒壁厚,mm;E—材料弹性模数,MPa;μ—材料泊桑比;n—失稳时波数;Lcr—临界长度,mm。

四、实验操作步骤1.开启计算机,启动计算机、打开实验软件。

2.检查压力传感器和温度计是否正常。

3.测量试件几何尺寸,检查水箱内水是否充足,适量添加。

4.启动离心泵,向失稳灌内注入适量水(水加至试件放入不易水为宜),安装测试试件。

5.停止离心泵,将压力仪表输出值调至0,启动压缩机。

6.慢慢改变仪表输出值,增加压力,记录压力变化曲线。

7.通过有机玻璃观察试件受压及其变形情况(失稳瞬间有响声)。

8.关闭实验设备,释放压力,取出实验试件分析实验数据。

五、实验数据。

立式压力容器筒体计算书

立式压力容器筒体计算书

计算单位
压力容器专用计算软件 GB 150.3-2011 筒体简图
MPa C mm ( 板材 ) MPa MPa MPa mm mm 厚度及重量计算
计算厚度 有效厚度 名义厚度 重量 压力试验类型 试验压力值 压力试验允许通过 的应力水平 T 试验压力下 圆筒的应力 校核条件 校核结果
Pc Di = 2[ ]t P = 4.35 c
2
过 程 设 备 强 度 计 算 书
SW6-2011
内筒体外压计算 计算所依据的标准 计算条件 计算压力 Pc 设计温度 t 内径 Di 材料名称 试验温度许用应力 设计温度许用应力 试验温度下屈服点 s 钢板负偏差 C1 腐蚀裕量 C2 焊接接头系数 压力试验类型 试验压力值 压力试验允许通过的应力t 试验压力下圆筒的应力 校核条件 校核结果 计算厚度 有效厚度 名义厚度 外压计算长度 L 筒体外径 Do
T = p T .( D i e ) = 42.36 2 e . T T 合格 厚度及重量计算 = 14.95 e =n - C1- C2= 17.70 n = 18.00
MPa MPa MPa
mm mm mm mm mm
L= 1400.00 Do= Di+2n = 2336.00
过 程 设 备 强 度 计 算 书
立式搅拌容器校核 筒体设计条件 设计压力 p 设计温度 t 内径 Di 名义厚度 n 材料名称 许用应力 压力试验温度下的屈服点 钢材厚度负偏差 C1 腐蚀裕量 C2 厚度附加量 C=C1+C2 焊接接头系数 压力试验类型 试验压力 pT 筒体长度 Lw 内筒外压计算长度 L 封 头 设 计 条 件 封头形式 名义厚度 n 材料名称 设计温度下的许用应力 钢材厚度负偏差 C1 腐蚀裕量 C2 厚度附加量 C=C1+C2 焊接接头系数 主 要 计 算 结 果 内圆筒体 校核结果 质 量 m kg 搅拌轴计算轴径 mm 备 注 校核合格 2572.37 内筒上封头

附1 薄壁容器设计

附1 薄壁容器设计
t
2 p
C1 C2
37
内压薄壁容器设计计算步骤
1. 选材:Q235-A、Q235-B、20R、16MnR、不锈钢等
2. 选取参数:P、t、[σ]t、φ、σs、C1、C2 3. 计算筒体壁厚: n
2 p
t
pDi
C1 C2
4. 筒体水压试验应力校核:
35
椭圆形封头设计
组成:长短轴分别为Di和2h的半椭球和高度为h0的 短圆筒(直边)
36
标准椭圆形封头
定义Di /2h=2的椭圆封头为标准椭圆封头。
标准椭圆封头壁厚公式为
n
2 0.5 p
t
pDi
C1 C2
(8-8)
上式中各参数取法同筒体。 筒体: n
pDi
39
1.6 2600 n 0.8 1.0 14.2 2 170 1.0 1.6
圆整取δn=16mm厚的16MnR钢板制作罐体。 2.封头壁厚设计


采用标准椭圆形封头。φ =1.0 设计壁厚δ n按(8-8)式计算:
n
2 0.5 p 1.6 2600 1.8 14.1 2 1701.0 0.5 1.6
6~7 8~25 26~30 32~34 36~40 42~50 52~60 0.6 0.8 0.9 1 1.1 1.2 1.3
20
⑵腐蚀裕量C2
C2应根据各种钢材在不同介质中的腐蚀速度和容器设计寿 命确定。 C2=nλ n:设计寿命, λ :年腐蚀率 塔类、反应器类容器设计寿命 n一般按20年考虑,换热器 壳体、管箱及一般容器按10年考虑。 ①腐蚀速度λ<0.05mm/a(包括大气腐蚀)时:碳素钢和低合 金钢单面腐蚀C2=1mm,双面腐蚀取C2=2mm; ②当腐蚀速度λ>0.05mm/a时,单面腐蚀取C2=2mm,双 面腐蚀取C2=4mm。

开孔补强计算(接管计算厚度按内径算)

开孔补强计算(接管计算厚度按内径算)
筒体开孔补强计算 设计条件 筒体 计算压力 pc 焊接接头系数 φ 壳体内直径 Di 开孔处名义厚度 δ n 壳体厚度负偏差 C1 壳体腐蚀裕量 C2 壳体材料许用应力 [σ ] 接管 L1 L2 φ do δ nt C1t C2t [σ ]t 补强圈 补强圈外径 D 补强圈厚度 δ nr 补强圈厚度负偏差 C1r 补强计算 δ δ t fr dop B h1 h2 A A1 A2 A3
3.5 0.95 800 25 0.75 0 68
Mpa mm mm mm mm Mpa
封头开孔补强计算 设计条件 封头 计算压力 pc 焊接接头系数 φ 壳体内直径 Di 开孔处名义厚度 δ n 壳体厚度负偏差 C1 壳体腐蚀裕量 C2 壳体材料许用应力 [σ ] 接管 实际外伸长度 L1 实际内伸长度 L2 焊接接头系数 φ 接管外径 do 名义厚度 δ nt 接管厚度负偏差 C1t 接管腐蚀裕量 C2t 接管材料许用应力 [σ ]t 补强圈
δ δ t fr dop B h1 h2
开孔所需补强面积 A 壳体多余金属面积 A1 接管多余金属面积 A2 焊缝金属面积 A3 A-A1-A2-A3 补强圈面积 A4A4- Nhomakorabea mm2
头开孔补强计算 设计条件 封头 3.5 1 800 21 0 0 68 接管 130 0 1 265 33 0 0 68 补强圈 0 mm 0 mm 0 mm 补强计算 20.857 5.257 1.000 199.000 398.000 81.03703 0 4150.466 27.02697 4496.485 64 -437.046 mm mm mm mm mm mm mm2 mm2 mm2 mm2 mm2 mm mm mm mm mm mm MPa Mpa mm mm mm mm Mpa

外压薄壁圆筒的计算

外压薄壁圆筒的计算

doi:10.16576/ki.1007-4414.2017.04.040外压薄壁圆筒的计算∗罗永智,张传齐,罗海荣,陈丽萍(兰州兰石重型装备股份有限公司,甘肃兰州㊀730314)摘㊀要:外压圆筒的正确计算及圆筒加强圈的合理设计,是保证外压圆筒设计安全㊁经济的关键㊂介绍外压薄壁圆筒的稳定性问题,对外压薄壁圆筒设计中的解析公式法和图算法进行了分析概括,并对圆筒加强圈的设计进行介绍㊂关键词:外压薄壁圆筒;失稳;计算;加强圈中图分类号:TH49㊀㊀㊀㊀㊀㊀文献标志码:A㊀㊀㊀㊀㊀㊀文章编号:1007-4414(2017)04-0125-03Calculation of Thin-Walled External Pressure CylinderLUO Yong-zhi,ZHANG Chuan-qi,LUO Hai-rong,CHEN Li-ping(Lanzhou LS Heavy Equipment Co.,Ltd,Lanzhou Gansu㊀730314,China) Abstract:Correct calculation of thin-walled external pressure cylinder and correct design of cylinder reinforcing ring are the key points to ensure the safety and economy of the thin-walled external pressure cylinder.In this article,the stability problem of thin-walled external pressure cylinder is introduced.The analytical formula method and the nomography in design of the thin-walled external pressure cylinder are analyzed.In addition,the design of cylinder stiffening ring is introduced.Key words:thin-walled external pressure cylinder;instability;calculation;stiffening ring0㊀引㊀言外压薄壁圆筒即承受外压力的D o/δeȡ20的圆筒[1-2],其破坏以失稳为主,当发生失稳时,圆筒的形状发生改变,不能保持原状,导致结构失效㊂外压薄壁筒体的失稳属于弹性失稳,因为其薄膜应力要小于材料的比例极限,在计算时仅进行稳定性校核即可[3],即控制外载荷小于该结构发生失稳现象的临界载荷,并取一定的稳定安全系数㊂外压薄壁圆筒常用的计算方法是解析公式法和图算法[4],在计算过程中涉及到的因素和参数比较多,计算繁琐复杂,笔者结合实际工作过程中积累的经验,对外压薄壁圆筒的设计计算进行了归纳总结㊂1㊀外压薄壁圆筒的稳定性问题对于外压薄壁圆筒,刚度不够引起失稳是主要的失效形式,保证圆筒的稳定性是外压薄壁容器计算和分析的主要内容㊂在外压工况下,圆筒内的应力主要表现为压应力,当圆筒失稳后,筒壁的变形使其受力状态发生了重大改变,应力主要表现为弯曲应力㊂对于结构参数已定的圆筒,其能够承受的最大外压也是已定的,称之为临界压力,在外压低于临界压力时,圆筒承受压应力处于稳定状态,其形状保持不变,外压的变化只会引起圆筒压应力大小的变化,不会改变圆筒的受力状态,数值上二者成正比关系;但是,如果外压超过了圆筒的临界压力,圆筒的形状会发生突变,产生永久变形,其受力状态也随之改变,局部产生较大的弯曲应力㊂外压薄壁圆筒失稳时,筒体瞬间变为曲波形,其波数可能为2㊁3㊁4㊁ 等,外压薄壁圆筒的失稳形态如图1所示㊂图1㊀外压薄壁圆筒的失稳形态㊀㊀外压薄壁圆筒在进行稳定性计算时,根据圆筒两端的加强构件对圆筒稳定性是否产生影响,通常将圆筒分为长圆筒和短圆筒两类㊂长圆筒的失稳不受圆筒两端刚性支撑件的影响,在弹性失效时形成的波数为2,其特点是:计算长度与直径的比值较大,其临界压力不受计算长度的影响,仅与圆筒的有效厚度㊁外径有关㊂短圆筒的相对长度较短,两端的刚性支撑件对圆筒有约束作用,临界压力与圆筒壁厚㊁外径及计算长度有关,弹性失效时形成的波数大于2㊂2㊀外压薄壁圆筒的计算外压薄壁圆筒的计算是一个反复试算的过程,首先要根据圆筒的规格参数和材料假定圆筒的壁厚及加强结构的尺寸,然后采取正确的计算方法进行计算,直至设计出安全㊁合理的结果㊂文中涉及到的所㊃521㊃㊃机械研究与应用㊃2017年第4期(第30卷,总第150期)㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀经验交流∗收稿日期:2017-06-15作者简介:罗永智(1985-),男,甘肃武威人,工程师,主要从事压力容器设计和制造技术方面的工作㊂有术语㊁符号和定义均按照GB/T150.3-2011标准中的规定㊂2.1㊀解析公式法(临界压力计算方法) (1)圆筒外压计算长度L的确定㊂目前,国内外的设计标准中对外压计算长度如何确定都有详细的规定,它与圆筒的加强结构有关,如:当圆筒上焊接有加强圈㊁法兰等具有足够惯性矩的刚性构件时,外压计算长度等于两个相邻支撑线之间的最大间距;当圆筒部分没有设置加强圈等刚性构件时,外压计算长度等于圆筒长度加上每个凸形封头直边高度再加上每个凸形封头曲面深度的1/3㊂在工程设计时,应按相应设计标准中的规定执行,国内通常采用GB/T150.3 -2011标准中4.4.1条的规定㊂(2)根据圆筒的D o和δe计算临界长度(用L cr 表示),对圆筒进行判断分类,目的在于确定相应的计算公式,进而求得临界压力㊂㊀㊀L cr=1.17D o D oδe判断标准:当圆筒计算长度ȡ临界长度时,为长圆筒;当圆筒计算长度<临界长度时,为短圆筒㊂(3)对于钢制圆筒,当外部压力均匀作用于圆筒外侧时,根据圆筒的分类按以下公式进行圆筒临界压力的计算㊂长圆筒:P cr=2.2E(δe D o)3;σcr=1.1E(δe D o)2短圆筒:P cr=2.59E(δe/D o)2.5L/D oσcr=1.30E(δe/D o)1.5L/D o以上解析公式法仅适用于弹性范围,即临界应力σcr不大于材料设计温度下的屈服强度或比例极限;同时,由于圆筒的圆度误差会降低临界压力﹐所以在制造圆筒时还须将其圆度误差控制在设计标准允许的范围之内,国内通常按GB/T150.4-2011标准中6.5.11条的规定进行验收㊂(4)圆筒设计压力P c的校核㊂由于圆筒制造的误差㊁操作工况的变化及材料性能存在差异等因素会对圆筒的临界压力造成不良影响,在计算时须考虑安全系数m,即取临界压力是许用设计压力的m倍㊂P cɤ[P]=P cr m若P c>[P],则须重新设计圆筒的结构参数,按以上步骤再次计算,直至满足强度校核条件㊂在实际的设计中,由于需要反复试算,设计者都不愿意去重复计算以此优化结构,往往导致计算结果都偏保守,不够经济㊂2.2㊀图算法图算法是工程设计时经常使用的一种计算方法,采用图算法,可使设计变得较为简便,而且不论长圆筒还是短圆筒,弹性失稳还是非弹性失稳,薄壁圆筒还是厚壁圆筒,均可以采用图算法进行设计㊂GB/T150.3-2011中第4条中关于外压圆筒的稳定性校核就是采用图算法求取外压圆筒的许用设计压力,其将外压圆筒的设计划分为D o/δeȡ20㊁D o/δe<20两种情况,具体计算步骤按照GB/T150.3-2011标准的规定进行㊂虽然利用图算法可使外压圆筒的设计计算更为便捷,但由于要考虑多种因素,在计算时还是需要多次试算,比较麻烦㊂在实际设计时,通常借助SW6等强度计算软件进行计算,设计者设定圆筒的结构参数并完成条件输入,具体运算由计算机程序来完成,如果设计者对结果不满意,可调整参数,直至设计出最合理的结构㊂利用计算机程序计算,节省了大量的人工,对产品优化设计㊁节能降耗有积极的促进作用㊂2.3㊀外压薄壁圆筒的计算总结(1)对于圆筒有效厚度(δe)㊁外径(D o)㊁圆筒计算长度(L),由上述计算公式分析可知:当δe和D o确定时,L减小临界压力增高;当L和D o相同时,δe增大临界压力增高㊂(2)圆筒材料的弹性模量E增大,其抗变形能力越强,临界压力增高,但是各种钢材的弹性模量相差不大,所以选择高强度钢代替一般碳钢制造外压圆筒,并不能显著提高临界压力㊂(3)加强圈的设置㊂在外压薄壁圆筒上设置刚度较大的加强圈,可以缩短圆筒的计算长度,增加圆筒的刚性,从而提高临界压力㊂(4)圆筒的圆度偏差及材料性能的不均匀性,均会使其临界压力值下降㊂(5)与图算法相比,解析法的弹性理论公式计算过程相对复杂,若为非弹性失稳,弹性理论公式还不适用,适用范围有限㊂3㊀加强圈的设计计算外压薄壁圆筒采用加强圈结构是压力容器设计中最常用的设计方法㊂根据第2部分的计算分析可知,当圆筒的直径和材料确定时,有两种途径可提高圆筒的临界压力,分别是:加大圆筒的有效厚度和减小圆筒外压计算长度㊂但从便于生产制造㊁减轻容器重量㊁节约金属材料的角度考虑,减小外压计算长度更具合理性和优越性,通常采用的方法是;在圆筒外侧或内侧相隔一定距离焊接用型钢做的加强圈㊁要求加强圈具有足够刚性或截面惯性矩[5],常用的型钢有扁钢㊁角钢㊁槽钢㊁工字钢等㊂㊃621㊃经验交流㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀2017年第4期(第30卷,总第150期)㊃机械研究与应用㊃3.1㊀加强圈的结构要求为了确保加强圈对圆筒的有效加强,不允许随意割断加强圈或改变其截面尺寸,加强圈自身允许分瓣拼接,但须采用全截面焊透的对接接头㊂加强圈与圆筒之间可采用连续焊或间断焊接[6]以保证加强圈能和圆筒牢固地相连在一起承受外压㊂加强圈与圆筒采用间断焊时,两侧焊缝可以交错布置也可并列齐平,加强圈在圆筒外面时,焊缝间距应小于8δn ,且每侧焊缝长度的总和应大于圆筒外圆周长的1/2;加强圈在圆筒内部时,焊缝间距应小于12δn ,且每侧焊缝长度的总和不得小于圆筒内圆周长的1/3㊂加强圈与圆筒的焊角高度不得小于两相焊件中较薄件的厚度㊂在工程设计时,加强圈的设置可按照GB /T 150.3-2011中第4.5条的各项规定㊂3.2㊀加强圈的设计计算在设计加强圈时必须要考虑两个问题,①圆筒上要设置的加强圈的数量,即确定加强圈间距;②加强圈的规格尺寸,同时还要考虑圆筒厚度变化的对临界压力的影响,所以圆筒上如何设置加强圈才合理,是一个涉及材料㊁制造费用的经济核算问题,必须统筹考虑,目前没有确切的定论,最佳方案是圆筒和加强圈材料费用与设备制造费用之和为最小,但实际工程中很难达到㊂校核加强圈尺寸时,首先确定加强圈的数量和间距L s (L s ɤL cr ),然后选定加强圈的材料和规格,由手册查得或计算出A s ,并确定有效圆筒作用范围(即加强圈中心线两侧有效宽度各为0.55D o δe 的圆筒),从而计算出加强圈与有效圆筒实际的组合惯性矩I s ㊂根据已知的P c ㊁D o 和假定的L s ㊁δe 计算外压应力系数B ㊂B =P c D o /(δe +A s /L s )根据加强圈所用材料,查GB /T150.3-2011的表4-1,确定对应的外压应力系数B 曲线图,根据已经计算出的B 值和设计温度在横坐标上找到系数A值;若B 值超出设计温度曲线的最大值,则取对应温度曲线右端点的横坐标值为A 值;若B 值小于设计温度曲线的最小值,则采用下式计算A 值:A =1.5B /E t求取加强圈与圆筒加强截面需的最小惯性矩I 值:I =D 2o L s (δe +A s /L s )A /10.9校核条件:若I s ȡI ,所选加强圈校核通过;若I s <I ,则须按以上计算步骤再次试算,直至结果满足条件为止㊂在实际工程设计时,为了提高工作效率,在最快的时间里确定出最佳的结构设计方案,通常借助SW6等计算软件进行反复试算,直至计算出安全㊁合理的结果为止㊂4㊀结㊀语在日常的化工设备设计中,外压薄壁圆筒的正确计算非常重要,它不仅是关系到设备能否安全运行的关键因素,也关系到制造和使用单位的经济成本㊂文中对外压薄壁圆筒计算的归纳总结供广大技术人员在工程设计时参考,可以给设计工作带来了便利,有利于提高和优化设计质量㊂参考文献:[1]㊀GB /T150.1~150.4-2011,压力容器[S].北京:中国国家标准化管理委员会,2011.[2]㊀寿比南,杨国义,徐㊀锋,等.GB150-2011‘压力容器“标准释义[M].北京:新华出版社,2012.[3]㊀张康达.压力容器设计工程师培训教程[M].北京:新华出版社,2005.[4]㊀王志文,蔡仁良.化工容器设计[M].北京:化学工业出版社,2005.[5]㊀全国锅炉压力容器标准化技术委员会设计计算方法专业文员会,戚国胜,段㊀瑞.压力容器工程师设计指南[M].北京:中国石化出版社,2013.[6]㊀中石化集团上海工程有限公司,丁伯民,曹文辉.承压容器[M].北京:化学工业出版社,2008.ʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏ(上接第122页)[5]㊀高成冲,王志亮,汤文成.基于动态需求的复杂系统敏捷化布局优化策略[J].计算机集成制造系统,2010,16(9):1921-1927.[6]㊀刘㊀琼,许金辉,张超勇.基于改进蛙跳算法的鲁棒性车间布局[J].计算机集成制造系统,2014,20(8):1879-1886.[7]㊀周㊀娜,许可林,郭㊀爽.基于遗传算法的车间布局多目标优化[J].工业工程,2011,14(5):104-109.[8]㊀玄光男,程润伟.遗传算法与工程设计[M].北京:科学出版社,2000.[9]㊀张㊀屹,卢㊀超,张㊀虎,等.基于差分元胞多目标遗传算法的车间布局优化[J].计算机集成制造系统,2013,19(4):727-734.㊃721㊃㊃机械研究与应用㊃2017年第4期(第30卷,总第150期)㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀经验交流。

斜管沉淀池设计计算

斜管沉淀池设计计算
一、斜管沉淀池的尺寸计算
1.总高度计算公式:
H总=H2-H1+H悬-h连
其中,H总为总高度,H2为池体深度,H1为污泥底排底高度,H悬为悬浮物浓度高度,h连为连管的高度。

2.斜管长度计算公式:
Ls=H总-H悬
其中,Ls为斜管长度。

3.斜管直径计算公式:
Ds=K*Ls
其中,Ds为斜管直径,K为常数,可根据经验值选择。

二、斜管沉淀池的悬浮物沉降速度计算
悬浮物的沉降速度是斜管沉淀池设计中的重要参数,可以使用Stokes定律计算,公式如下:
Vs=(2*g*(ρs-ρm)*d^2)/(9*η)*(1-ρm/ρw)
其中,Vs为悬浮物的沉降速度,g为重力加速度,ρs为悬浮物颗粒密度,ρm为介质密度,d为悬浮物颗粒直径,η为介质黏度,ρw为水密度。

三、斜管沉淀池的流量计算
1.斜管污水处理流量计算公式:
Q=V*A*n
其中,Q为污水处理流量,V为平均水流速度,A为管道截面积,n为
管道数量。

2.斜管沉淀流量计算公式:
Qs=Q*(1-ηr)
其中,Qs为斜管沉淀流量,Q为污水处理流量,ηr为沉淀率。

四、斜管沉淀池的沉淀时间计算
沉淀时间是指水在斜管沉淀池中停留的时间,可以通过以下公式计算:t=V/Qs
其中,t为沉淀时间,V为池体体积,Qs为斜管沉淀流量。

以上是斜管沉淀池设计计算的基本内容,但实际设计中还需要根据工
程要求和实际情况进行具体参数的选择和优化。

同时,在进行设计计算时,还需考虑其他影响因素,如泥水比、悬浮物浓度、出水浊度等,以保证沉
淀效果和处理效果的达到要求。

筒体计算

直径mm 300 长度mm 1800 宽度mm 180 筒体长度 300 厚度mm 封头直边高度mm 筒体容积 25 0.02120575 碳钢重量kg 6 15.2604
平板重量计算
不锈钢重量kg 2752.867687 不锈钢重量kg 碳钢加损耗 不锈钢加损耗 3.300744659 4.57626539 4.62290249 不锈钢重量kg 54.49681506 不锈钢重量kg 60.28904798 不锈钢重量kg 换热面积 长度mm 0.346599744 0.03078761 封头容积 总容积 盘管直径mm 350 1100
34310315筒体封头容积计算封头直边高度m筒体容积直径mm筒体长度300300250
筒体重量计算
筒体直径mm 筒体板厚mm 筒体长度mm 碳钢重量kg 2200 10 5000 2725.09601
封头重量计算
封头直径mm 封头板厚mm 直边高度mm 碳钢重量kg 200 6 25 3.26744585
搅拌轴重量计算
轴径mm 轴长度mm 50 3500 碳钢重量kg 53.9470363 碳钢重量kg 59.6808356
管板重量计算
管板外径mm 管板厚度mm 1100 8
管子重量计算
管子直径mm 管子壁厚mm 管子长度mm 碳钢重量kg 28 1.5 350 0.34310315
筒体封头容积计算
0.005301438 0.02650719 ห้องสมุดไป่ตู้锈钢重量kg 15.41592
盘管圈数 0.1012804

(整理)反应釜设计

反应釜设计的有关内容一、设计条件及设计内容分析由设计条件单可知,设计的反应釜体积为1.03m ;搅拌轴的转速为200/min r ,轴的功率为4kw;搅拌桨的形式为推进式;装置上设有5个工艺接管、2个视镜、4个耳式支座、1个温度计管口。

反应釜设计的内容主要有:(1) 釜体的强度、刚度、稳定性计算和结构设计; (2) 夹套的的强度、刚度计算和结构设计; (3) 设计釜体的法兰联接结构、选择接管、管法兰; (4) 人孔的选型及补强计算; (5) 支座选型及验算; (6) 视镜的选型;(7) 焊缝的结构与尺寸设计; (8) 电机、减速器的选型;(9) 搅拌轴及框式搅拌桨的尺寸设计; (10)选择联轴器; (11)设计机架结构及尺寸; (12)设计底盖结构及尺寸; (13)选择轴封形式;(14)绘总装配图及搅拌轴零件图等。

第一章 反应釜釜体的设计1.1 釜体DN 、PN 的确定 1.1.1 釜体DN 的确定将釜体视为筒体,取L/D=1.1 由V=(π/4)L D i 2,L=1.1i D 则=Di 31.140.1π⨯⨯,m Di 0.1=,圆整mm Di 1000= 由[]1314页表16-1查得釜体的mm DN 1000= 1.1.2釜体PN 的确定由设计说明书知釜体的设计压力PN =0.2MPa 1.2 釜体筒体壁厚的设计 1.2.1设计参数的确定设计压力p1:p1=0.2MPa ;液柱静压力 p1H=10^(-6)×1.0×10^3×10×1.1=0.011MPa 计算压力p1c : p1c=p1+p1H=0.2+0.011=0.211MPa ; 设计温度t1: <100℃ ; 焊缝系数Φ: Φ=0.85许用应力[]t σ:根据材料Q235-B 、设计温度<100℃,由参考文献知[]t σ=113MPa ;钢板负偏差1C :1C =0.6mm (GB6654-96); 腐蚀裕量2C :2C =3.0mm 。

第14章 外压容器分析

➢ 同样,压力试验前也需要校核其圆筒应力, 与内压容器的校核计算一样,参见第13章。
18
(3)计算长度L
➢ 计算长度是指在外 压圆筒设计中用到 的筒体长度值,并 非筒体的实际长度。 它的定义为(如图所 示):
19
1)当圆筒上焊有刚性构件时, 其计算长度系 指两个刚性构件之间的距离,封头、法兰、 加强圈等均可视作刚性构件。
材料的E
μ
临界压力就高
各种钢材的E和μ 相差不大,所以,选用高强度钢代 替一般碳钢制造外压容器并不能提高筒体的临界压力
(3)筒体的椭圆度和材料不均匀的影响
(4)载荷的不对称性也影响临界压力的大小
9
14.2 外压圆筒的稳定性计算
14.2.1长圆筒、短圆筒和刚性圆筒
(1)长圆筒:L/D较大,两端的边界影响可以忽
m D
n D0 3
mp 2.2 E
C
23
2)短圆筒
➢ 当筒体的L/D0和D0/δe的值较小时,筒体的刚性较 大,两端封头对中间部分的支承作用也较显著, 在失稳时将出现两个以上的波纹,常被称为短圆 筒。其计算公式为:
[ p] 2.59E e 2
mLD0
D0
e
MPa
n
D0
(
mpL 2.59 ED0
容器类型
设计压力p
外压容器 真空容器
取不小于实际工作中可能产生的最大内 外压力差。
当装有安全控制装置时,取1.25倍的最 大内外压力差或0.1MPa两者中的较小 值;
当无安全控制装置时,取0.1MPa;
17
(2)试验压力pT
➢ 外压容器和真空容器均以内压进行压力试 验,其试验压力pT为: 1.25p(液压试验) pT = 1.15p(气压试验)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档