高中数学立体几何专题线面垂直典型例题的判定与性质

合集下载

高中数学高考总复习立体几何各种平行与垂直的判断习题及详解

高中数学高考总复习立体几何各种平行与垂直的判断习题及详解

高中数学高考总复习立体几何各种平行与垂直的判断习题及详解一、选择题1.设b 、c 表示两条不重合的直线,α、β表示两个不同的平面,则下列命题是真命题的是( )A.⎭⎪⎬⎪⎫b ⊂αc ∥α⇒b ∥c B.⎭⎪⎬⎪⎫b ⊂αb ∥c ⇒c ∥α C.⎭⎪⎬⎪⎫c ∥αc ⊥β⇒α⊥βD.⎭⎪⎬⎪⎫c ∥αα⊥β⇒c ⊥β[答案] C[解析] 选项A 中的条件不能确定b ∥c ;选项B 中条件的描述也包含着直线c 在平面α内,故不正确;选项D 中的条件也包含着c ⊂β,c 与β斜交或c ∥β,故不正确.[点评] 线线、线面、面面平行或垂直的性质定理和判定定理是解决空间图形位置关系推理的重要依据,在推理中容易把平面几何中的一些结论引用到立体几何中造成错误.对空间中位置关系的考虑不周,也是造成判断错误的因素,所以做这类题目应当考虑全面.2.定点A 和B 都在平面α内,定点P ∉α,PB ⊥α,C 是α内异于A 和B 的动点,且PC ⊥AC .那么,动点C 在平面α内的轨迹是( )A .一条线段,但要去掉两个点B .一个圆,但要去掉两个点C .一个椭圆,但要去掉两个点D .半圆,但要去掉两个点 [答案] B[解析] 连接BC ,∵PB ⊥α,∴AC ⊥PB . 又∵PC ⊥AC ,∴AC ⊥BC .∴C 在以AB 为直径的圆上.故选B. 3.设α、β、γ为平面,给出下列条件: ①a 、b 为异面直线,a ⊂α,b ⊂β,a ∥β,b ∥α; ②α内不共线的三点到β的距离相等; ③α⊥γ,β⊥γ.其中能使α∥β成立的条件的个数是( ) A .0 B .1 C .2D .3[答案] B[解析]对于②,三个点不一定在同侧;对于③,面面的垂直关系不具有传递性.对于①,过b作平面γ∩α=b′,则b∥b′,∵a与b异面,∴a与b′相交,容易证明b′∥β,又∵a∥β,∴α∥β,故只有①正确.4.a、b、c是三条直线,α、β是两个平面,b⊂α,c⊄α,则下列命题不成立的是() A.若α∥β,c⊥α,则c⊥βB.“若b⊥β,则α⊥β”的逆命题C.若a是c在α内的射影,b⊥a,则b⊥cD.“若b∥c,则c∥α”的逆否命题[答案] B[解析]一条直线垂直于两个平行平面中的一个,则垂直于另一个,故A正确;若c∥α,∵a是c在α内的射影,∴c∥a,∵b⊥a,∴b⊥c;若c与α相交,则c与a相交,由线面垂直的性质与判定定理知,若b⊥a,则b⊥c,故C正确;∵b⊂α,c⊄α,b∥c,∴c∥α,因此原命题“若b∥c,则c∥α”为真,从而其逆否命题也为真,故D正确.如图,α⊥β,α∩β=l,b⊂α,b与l不垂直,则b与β不垂直,∴B不成立.5.(文)(2010·天津河东区)已知直线a⊂平面α,直线AO⊥α,垂足为O,P A∩α=P,若条件p:直线OP不垂直于直线a,条件q:直线AP不垂直于直线a,则条件p是条件q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件[答案] C故OP⊥a⇔AP⊥a,从而p⇔q.(理)(2010·河南新乡调研)设α、β、γ为平面,l、m、n为直线,则m⊥β的一个充分条件为()A.α⊥β,α∩β=l,m⊥lB.n⊥α,n⊥β,m⊥αC.α∩γ=m,α⊥γ,β⊥γD.α⊥γ,β⊥γ,m⊥α[答案] B[解析]如图①知A错;如图②知C错;如图③在正方体中,两侧面α与β相交于l,都与底面γ垂直,γ内的直线m⊥α,但m与β不垂直,故D错.6.如图,四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°.将△ADB 沿BD折起,使平面ABD⊥平面BCD,构成三棱锥A-BCD,则在三棱锥A-BCD中,下列命题正确的是()A.平面ABD⊥平面ABCB.平面ADC⊥平面BDCC.平面ABC⊥平面BDCD.平面ADC⊥平面ABC[答案] D[解析]∵在四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,∴BD ⊥CD.又平面ABD⊥平面BCD,且平面ABD∩平面BCD=BD,故CD⊥平面ABD,则CD⊥AB.又AD⊥AB,故AB⊥平面ADC.∴平面ABC⊥平面ADC.7.(文)(2010·重庆文)到两互相垂直的异面直线的距离相等的点()A.只有1个B.恰有3个C.恰有4个D.有无穷多个[答案] D[解析]过两条互相垂直的异面直线的公垂线段中点且与两条直线都成45°角的直线上所有点到两条直线的距离都相等,故选D.(理)(2010·全国Ⅱ理)与正方体ABCD-A1B1C1D1的三条棱AB、CC1、A1D1所在直线的距离相等的点()A.有且只有1个B.有且只有2个C.有且只有3个D.有无数个[答案] D[解析]如图连结B1D,可知B1D上的点到AB、CC1、A1D1的距离均相等,故选D.8.(文)平行四边形ABCD的对角线交点为O,点P在平面ABCD之外,且PA=PC,PD=PB,则PO与平面ABCD的关系是()A.斜交B.平行C.垂直D.无法确定[答案] C[解析]∵PA=PC,∴PO⊥AC,∵PB=PD,∴PO⊥BD,∵AC∩BD=O,∴PO⊥平面ABCD.(理)棱长都为2的直平行六面体(底面为平行四边形的棱柱)ABCD-A1B1C1D1中,∠BAD =60°,则对角线A1C与侧面DCC1D1所成角的正弦值为()A.12B.22C.34D.38[答案] C[解析] 如图所示,过点A 1作直线A 1M ⊥D 1C 1,交D 1C 1延长线于点M ,连结MC ,A 1C ,则可得A 1M ⊥面DD 1C 1C ,∠A 1CM 就是直线A 1C 与面DD 1C 1C 所成的角.∵所有棱长均为2,∠A 1D 1C 1=120°,∴A 1M =A 1D 1sin60°=3,又A 1C =AC 12+CC 12=(23)2+22=4, ∴sin ∠A 1CM =A 1M A 1C =34C. [点评] 求直线与平面所成角时,一般要先观察分析是否可以找(或作)出直线上一点到平面的垂线,若能找出则可以将线面角归结到一个直角三角形中求解.若不容易找出线面角,则可以考虑能否进行转化或借助于空间向量求解,请再练习下题:(2010·全国Ⅰ文)正方体ABCD -A 1B 1C 1D 1中BB 1与平面ACD 1所成角的余弦值为( ) A.23B.33C.23D.63[答案] D[解析] 解法1:设BD 与AC 交于点O ,连结D 1O ,∵BB 1∥DD 1,∴DD 1与平面ACD 1所成的角就是BB 1与平面ACD 1成的角.∵AC ⊥BD ,AC ⊥DD 1,DD 1∩BD =D ,∴AC ⊥平面DD 1B ,平面DD 1B ∩平面ACD 1=OD 1,∴OD 1是DD 1在平面ACD 1内的射影,故∠DD 1O 为直线DD 1与平面ACD 1所成的角,设正方体的棱长为1,则DD 1=1,DO =22,D 1O =62,∴cos ∠DD 1O =DD 1D 1O =63,∴BB 1与平面ACD 1所成角的余弦值为63. 解法2:因为BB 1∥DD 1,所以BB 1与平面ACD 1所成角和DD 1与平面ACD 1所成角相等,设DO ⊥平面ACD 1,由等体积法得VD -ACD 1=VD 1-ACD ,即13S △ACD 1·DO =13S △ACD ·DD 1.设DD 1=a ,则S △ACD 1=12AC ·AD 1sin60°=12×(2a )2×32=32a 2,S △ACD =12·CD =122.所以DO =S △ACD ·DD 1S △ACD 1=a 33a2=33a ,设DD 1与平面ACD 1所成角为θ,则sin θ=DO DD 1=33, 所以cos θ=63.解法3:建立如图所示空间直角坐标系D -xyz ,设边长为1,BB 1→=(0,0,1),平面ACD 1的一个法向量n =(1,1,1),∴cos 〈BB 1→,n 〉=13·1=33,∴BB 1与面ACD 1所成角的余弦值为63. 9.(文)(2010·鞍山一中模拟)已知直线l ⊥平面α,直线m ⊂平面β,给出下列命题: ①α∥β⇒l ⊥m ;②α⊥β⇒l ∥m ;③l ∥m ⇒α⊥β;④l ⊥m ⇒α⊥β,其中正确的是( ) A .①②③ B .②③④ C .②④ D .①③ [答案] D∵m ⊂β,∴此时推不出l ∥m ,故②错,排除A ,故选D. (理)若平面α与平面β相交,直线m ⊥α,则( ) A .β内必存在直线与m 平行,且存在直线与m 垂直 B .β内不一定存在直线与m 平行,不一定存在直线与m 垂直 C .β内不一定存在直线与m 平行,但必存在直线与m 垂直 D .β内必存在直线与m 平行,不一定存在直线与m 垂直 [答案] C[解析] 若β内存在直线与m 平行,则必有β⊥α,但α与β不一定垂直,故否定A 、D ;在β内必存在与m 在β内射影垂直的直线,从而此线必与m 垂直,否定B ,故选C.10.(文)(2010·芜湖十二中)已知两条不同的直线m 、n ,两个不同的平面α、β,则下列命题中的真命题是( )A .若m ⊥α,n ⊥β,α⊥β,则m ⊥nB .若m ∥α,n ∥β,α∥β,则m ∥nC .若m ⊥α,n ∥β,α⊥β,则m ⊥nD .若m ∥α,n ⊥β,α⊥β,则m ∥n[答案] A[解析]如图(1),m⊥α,n⊥α满足n∥β,但m∥n,故C错;如图(2)知B错;如图(3)正方体中,m∥α,n⊥β,α⊥β,知D错.(理)(2010·浙江金华十校模考)设a,b为两条直线,α,β为两个平面,下列四个命题中真命题是()A.若a,b与α所成角相等,则a∥bB.若a∥α,b∥β,α⊥β,则a⊥bC.若a⊂α,b⊂β,a⊥b,则α⊥βD.若a⊥α,b⊥β,α⊥β,则a⊥b[答案] D[解析]正四棱锥P-ABCD中,PA、PC与底面ABCD所成角相等,但P A与PC相交,∴A错;如图(1)正方体中,a∥b∥c,满足a∥α,b∥β,α⊥β,故B错;图(2)正方体中,上、下底面为β、α,a、b为棱,满足a⊂α,b⊂β,a⊥b,但α∥β,故C错;二、填空题11.对于四面体ABCD,给出下列四个命题:①若AB=AC,BD=CD,则BC⊥AD;②若AB=CD,AC=BD,则BC⊥AD;③若AB ⊥AC ,BD ⊥CD ,则BC ⊥AD ; ④若AB ⊥CD ,AC ⊥BD ,则BC ⊥AD .其中真命题的序号是________.(把你认为正确命题的序号都填上) [答案] ①④[解析] 本题考查四面体的性质,取BC 的中点E ,则BC ⊥AE ,BC ⊥DE ,∴BC ⊥面ADE ,∴BC ⊥AD ,故①正确.设O 为A 在面BCD 上的射影,依题意OB ⊥CD ,OC ⊥BD ,∴O 为垂心,∴OD ⊥BC ,∴BC ⊥AD ,故④正确,②③易排除,故答案为①④.12.(文)P 为△ABC 所在平面外一点,PA 、PB 、PC 与平面ABC 所成角均相等,又PA 与BC 垂直,那么△ABC 形状可以是________.①正三角形 ②等腰三角形 ③非等腰三角形 ④等腰直角三角形(将你认为正确的序号全填上) [答案] ①②④[解析] 设点P 在底面ABC 上的射影为O ,由P A 、PB 、PC 与平面ABC 所成角均相等,得OA =OB =OC ,即点O 为△ABC 的外心,又由P A ⊥BC ,得OA ⊥BC ,即AO 为△ABC 中BC 边上的高线,∴AB =AC ,即△ABC 必为等腰三角形,故应填①②④.(理)如图将边长为1的正方形纸板ABCD 沿对角线AC 折起,使平面ACB ⊥平面ACD ,然后放在桌面上,使点B 、C 、D 落在桌面,这时点A 到桌面的距离为________.[答案]63[解析] 取AC 中点O ,∵OB ⊥AC ,OD ⊥AC ,OB ∩OD =O ,∴AC ⊥平面BOD ,∴∠BOD =90°.又∵BO =OD =22,∴BD =1,S △BOD =14, ∴V A -BCD =13S △BOD ·AC =212,设A 到桌面距离为h ,V A -BCD =13S △BCD ·h =13×34×h =212,∴h =63,即A 到桌面距离为63. 13.(2010·安徽淮北一中)已知四棱锥P -ABCD 的底面ABCD 是矩形,PA ⊥底面ABCD ,点E 、F 分别是棱PC 、PD 的中点,则①棱AB 与PD 所在的直线垂直; ②平面PBC 与平面ABCD 垂直; ③△PCD 的面积大于△PAB 的面积;④直线AE 与直线BF 是异面直线.以上结论正确的是________.(写出所有正确结论的编号) [答案] ①③[解析] 由条件可得AB ⊥平面PAD ,所以AB ⊥PD ,故①正确;∵P A ⊥平面ABCD ,∴平面PAB 、平面P AD 都与平面ABCD 垂直,故平面PBC 不可能与平面ABCD 垂直,②错;S △PCD =12CD ·PD ,S △P AB =12·PA ,由AB =CD ,PD >P A 知③正确;由E 、F 分别是棱PC 、PD 的中点可得EF ∥CD ,又AB ∥CD ,所以EF ∥AB ,故AE 与BF 共面,故④错.14.(文)(2010·河北唐山)如图,在直四棱柱ABCD -A 1B 1C 1D 1中,∠ADC =90°,且AA 1=AD =DC =2,M ∈平面ABCD ,当D 1M ⊥平面A 1C 1D 时,DM =________.[答案] 2 2[解析] ∵DA =DC =DD 1且DA 、DC 、DD 1两两垂直,故当点M 使四边形ADCM 为正方形时,D 1M ⊥平面A 1C 1D ,∴DM =2 2.(理)(2010·安徽巢湖市质检)已知正方体ABCD -A 1B 1C 1D 1的棱长为1,E ,F ,G 分别是AB ,BC ,B 1C 1的中点.下列命题正确的是________(写出所有正确命题的编号).①以正方体的顶点为顶点的三棱锥的四个面最多只有三个面是直角三角形; ②P 在直线FG 上运动时,AP ⊥DE ;③Q 在直线BC 1上运动时,三棱锥A -D 1QC 的体积不变;④M 是正方体的面A 1B 1C 1D 1内到点D 和C 1距离相等的点,则M 点的轨迹是一条线段. [答案] ②③④[解析] 三棱锥A 1-ABC 的四个面都是Rt △,故①错;F 在FG 上运动时,PF ⊥平面ABCD ,∴PF ⊥DE ,又在正方体ABCD 中,E 、F 为AB 、BC 中点,∴AF ⊥DE ,∴DE ⊥平面PAF ,∴DE ⊥P A ,故②真;VA -D 1QC =VQ -AD 1C ,∵BC 1∥AD 1,∴BC 1∥平面AD 1C ,∴无论点Q 在BC 1上怎样运动,Q 到平面AD 1C 距离都相等,故③真;到点D 和C 1距离相等的点在经过线段C 1D 的中点与DC 1垂直的平面α上,故点M 为平面α与正方体的面A 1B 1C 1D 1相交线段上的点,这条线段即A 1D 1.三、解答题15.(文)(2010·江苏,16)如图,四棱锥P -ABCD 中,PD ⊥平面ABCD ,PD =DC =BC =1,AB =2,AB ∥DC ,∠BCD =90°(1)求证:PC ⊥BC(2)求点A 到平面PBC 的距离.[解析] (1)∵PD ⊥平面ABCD ,BC ⊂平面ABCD ,∴PD ⊥BC . 由∠BCD =90°知,BC ⊥DC , ∵PD ∩DC =D ,∴BC ⊥平面PDC , ∴BC ⊥PC .(2)设点A 到平面PBC 的距离为h , ∵AB ∥DC ,∠BCD =90°,∴∠ABC =90°, ∵AB =2,BC =1,∴S △ABC =12AB ·BC =1,∵PD ⊥平面ABCD ,PD =1, ∴V P -ABC =13S △ABC ·PD =13∵PD ⊥平面ABCD ,∴PD ⊥DC , ∵PD =DC =1,∴PC =2, ∵PC ⊥BC ,BC =1, ∴S △PBC =12PC ·BC =22,∵V A -PBC =V P -ABC , ∴13S △PBC ·h =13,∴h =2, ∴点A 到平面PBC 的距离为 2.(理)如图,已知三棱锥A -BPC 中,AP ⊥PC ,AC ⊥BC ,M 为AB 的中点,D 为PB 中点,且△PMB 为正三角形.(1)求证:DM ∥平面APC ; (2)求证:平面ABC ⊥平面APC ;(3)若BC =4,AB =20,求三棱锥D -BCM 的体积.[解析] (1)∵M 为AB 中点,D 为PB 中点,∴DM ∥AP ,又DM ⊄平面APC ,AP ⊂平面APC .∴DM ∥平面APC .(2)∵△PMB 为正三角形,且D 为PB 中点,∴MD ⊥PB ,又由(1)知MD ∥AP ,∴AP ⊥PB又已知AP ⊥PC ,∴AP ⊥平面PBC ,∴AP ⊥BC ,又∵AC ⊥BC∴BC ⊥平面APC∴平面ABC ⊥平面APC .(3)∵AB =20,∴MP =10,∴PB =10又BC =4,PC =100-16=221∴S △BDC =12S △PBC =14PC ·BC =14×4×221 =221又MD =12AP =12202-102=5 3 ∴V D -BCM =V M -BCD =13S △BDC ·DM =13×221×5 3 =107.16.(文)如图,已知在直四棱柱ABCD -A1B 1C 1D 1中,AD ⊥DC ,AB ∥DC ,DC =DD 1=2AD =2AB =2.(1)求证:DB ⊥平面B 1BCC 1;(2)设E 是DC 上一点,试确定E 的位置,使得D 1E ∥平面A 1BD ,并说明理由.[解析] (1)证明:∵AB ∥DC ,AD ⊥DC ,∴AB ⊥AD ,在Rt △ABD 中,AB =AD =1,∴BD =2,易求BC =2,又∵CD =2,∴BD ⊥BC .又BD ⊥BB 1,B 1B ∩BC =B ,∴BD ⊥平面B 1BCC 1.(2)DC 的中点即为E 点.∵DE ∥AB ,DE =AB ,∴四边形ABED 是平行四边形.∴AD 綊BE .又AD 綊A 1D 1,∴BE 綊A 1D 1,∴四边形A 1D 1EB 是平行四边形.∴D 1E ∥A 1B .∵D 1E ⊄平面A 1BD ,A 1B ⊂平面A 1BD .∴D 1E ∥平面A 1BD .(理)在三棱锥P -ABC 中,△P AC 和△PBC 是边长为2的等边三角形,AB =2,O 是AB 中点.(1)在棱P A 上求一点M ,使得OM ∥平面PBC ;(2)求证:平面P AB ⊥平面ABC ;(3)求二面角P -BC -A 的余弦值.[解析] (1)当M 为棱P A 的中点时,OM ∥平面PBC .证明如下:∵M 、O 分别为P A 、AB 中点,∴OM ∥PB又PB ⊂平面PBC ,OM ⊄平面PBC∴OM ∥平面PBC .(2)连结OC 、OP∵AC =CB =2,O 是AB 中点,AB =2,∴OC ⊥AB ,OC =1.同理,PO ⊥AB ,PO =1.又PC =2,∴PC 2=OC 2+PO 2=2,∴∠POC =90°,∴PO ⊥OC .∵PO ⊥OC ,PO ⊥AB ,AB ∩OC =O ,∴PO ⊥平面ABC .∵PO ⊂平面PAB ,∴平面PAB ⊥平面ABC .(3)如图,建立空间直角坐标系O -xyz .则B (1,0,0),C (0,1,0),P (0,0,1),∴BC →=(-1,1,0),PB →=(1,0,-1).由(2)知OP →=(0,0,1)是平面ABC 的一个法向量.设平面PBC 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧ n ·BC →=0n ·PB →=0⇒⎩⎪⎨⎪⎧-x +y =0x -z =0, 令z =1,则x =1,y =1,∴n =(1,1,1).∴cos 〈OP →,n 〉=OP →·n |OP →|·|n |=11×3=33. ∵二面角P -BC -A 的平面角为锐角,∴所求二面角P -BC -A 的余弦值为33. 17.(文)如图,在△BCD 中,∠BCD =90°,BC =CD =1,AB ⊥平面BCD ,∠ADB =60°,E 、F 分别是AC 、AD 上的动点,且AE AC =AF AD=λ(0<λ<1).(1)判断EF 与平面ABC 的位置关系并给予证明;(2)是否存在λ,使得平面BEF ⊥平面ACD ,如果存在,求出λ的值,如果不存在,说明理由.[分析] (1)EF 与平面ABC 相交于点E ,故其关系只能是垂直或斜交,由条件AE AC =AF AD=λ易知,EF ∥CD ,由∠BCD =90°及AB ⊥平面BCD ,易证CD ⊥平面ABC .(2)∵EF ∥CD ,故问题相当于过点B 作一个平面与ACD 垂直,这样的平面一定存在,故只须计算出λ即可,由条件不难得到BE ⊥CD ,故只须BE ⊥AC .[解析] (1)EF ⊥平面ABC .证明:因为AB ⊥平面BCD ,所以AB ⊥CD ,又在△BCD 中,∠BCD =90°,所以BC ⊥CD ,又AB ∩BC =B ,所以CD ⊥平面ABC ,又在△ACD 中,E 、F 分别是AC 、AD 上的动点,且AEAC =AF AD=λ(0<λ<1),∴EF ∥CD ,∴EF ⊥平面ABC .(2)∵CD ⊥平面ABC ,BE ⊂平面ABC ,∴BE ⊥CD ,在Rt △ABD 中,∠ADB =60°,∴AB =BD tan60°=6,则AC =AB 2+BC 2=7,当BE ⊥AC 时,BE =AB ×BC AC =67,AE =AB 2-BE 2=367, 则AE AC =3677=67,即λ=AE AC =67时,BE ⊥AC , 又BE ⊥CD ,AC ∩CD =C ,∴BE ⊥平面ACD ,∵BE ⊂平面BEF ,∴平面BEF ⊥平面ACD .所以存在λ,且当λ=67时,平面BEF ⊥平面ACD . [点评] 高考整体降低了对立体几何的考查要求,故线线、线面、面面的位置关系成了主要的考查点,其中平行、垂直的证明题与探索题是重点,同时也要注意由三视图与几何体的结合进行表面积与体积的计算等问题.(理)已知四棱锥P -ABCD 的三视图如下图所示,E 是侧棱PC 上的动点.(1)求四棱锥P -ABCD 的体积;(2)是否不论点E 在何位置,都有BD ⊥AE ?证明你的结论;(3)若点E 为PC 的中点,求二面角D -AE -B 的大小.[解析] (1)由三视图可知,四棱锥P -ABCD 的底面是边长为1的正方形,侧棱PC ⊥底面ABCD ,且PC =2.∴V P -ABCD =13S 正方形ABCD ·PC =13×12×2=23,即四棱锥P -ABCD 的体积为23.(2)不论点E 在何位置,都有BD ⊥AE .证明如下:连结AC ,∵ABCD 是正方形,∴BD ⊥AC .∵PC ⊥底面ABCD ,且BD ⊂平面ABCD ,∴BD ⊥PC .又∵AC ∩PC =C ,∴BD ⊥平面PAC .∵不论点E 在何位置,都有AE ⊂平面P AC .∴不论点E 在何位置,都有BD ⊥AE .(3)解法1:在平面DAE 内过点D 作DF ⊥AE 于F ,连结BF .∵AD =AB =1,DE =BE =12+12=2,AE =AE =3,∴Rt △ADE ≌Rt △ABE ,从而△ADF ≌△ABF ,∴BF ⊥AE .∴∠DFB 为二面角D -AE -B 的平面角.在Rt △ADE 中,DF =AD ·DE AE =1×23=63, ∴BF =63. 又BD =2,在△DFB 中,由余弦定理得cos ∠DFB =DF 2+BF 2-BD 22DF ·BF =-12, ∴∠DFB =2π3, 即二面角D -AE -B 的大小为2π3. 解法2:如图,以点C 为原点,CD ,CB ,CP 所在的直线分别为x ,y ,z 轴建立空间直角坐标系.则D (1,0,0),A (1,1,0),B (0,1,0),E (0,0,1),从而DA →=(0,1,0),DE →=(-1,0,1),BA→=(1,0,0),BE →=(0,-1,1).设平面ADE 和平面ABE 的法向量分别为n 1=(x 1,y 1,z 1),n 2=(x 2,y 2,z 2),由⎩⎪⎨⎪⎧n 1·DA →=0n 1·DE →=0⇒⎩⎪⎨⎪⎧ y 1=0-x 1+z 1=0,取n 1=(1,0,1).由⎩⎪⎨⎪⎧n 2·BA →=0n 2·BE →=0⇒⎩⎪⎨⎪⎧ x 2=0-y 2+z 2=0,取n 2=(0,-1,-1). 设二面角D -AE -B 的平面角为θ,则 cos θ=n 1·n 2|n 1|·|n 2|=-12·2=-12,∴θ=2π3,即二面角D -AE -B 的大小为2π3。

(江苏专版)高考数学一轮复习 第十三章 立体几何 13.3 垂直的判定与性质讲义-人教版高三全册数学

(江苏专版)高考数学一轮复习 第十三章 立体几何 13.3 垂直的判定与性质讲义-人教版高三全册数学

§13.3 垂直的判定与性质考纲解读考点内容解读 要求五年高考统计常考题型 预测热度2013 2014 2015 2016 20171.线面垂直的判定与性质1.线面垂直的证明2.线面垂直的性质应用B16题14分解答题 ★★★2.面面垂直的判定与性质1.面面垂直的证明2.面面垂直的性质应用B15题14分 解答题 ★★★分析解读 空间垂直问题是某某高考的热点内容,主要考查线面垂直和面面垂直的判定与性质运用,复习时要认真掌握解决垂直问题常用的方法,识别一些基本图形如:锥体、柱体的特征.五年高考考点一 线面垂直的判定与性质1.(2016某某理,2,5分)已知互相垂直的平面α,β交于直线l.若直线m,n 满足m∥α,n⊥β,则以下说法正确的是.①m∥l;②m∥n;③n⊥l;④m⊥n. 答案 ③2.(2015某某,16,14分)如图,在直三棱柱ABC-A 1B 1C 1中,已知AC⊥BC,BC=CC 1,设AB 1的中点为D,B 1C∩BC 1=E. 求证:(1)DE∥平面AA 1C 1C; (2)BC 1⊥AB1.证明 (1)由题意知,E 为B 1C 的中点, 又D 为AB 1的中点,因此DE∥AC. 又因为DE ⊄平面AA 1C 1C,AC ⊂平面AA 1C 1C, 所以DE∥平面AA 1C 1C.(2)因为棱柱ABC-A1B1C1是直三棱柱,所以CC1⊥平面ABC.因为AC⊂平面ABC,所以AC⊥CC1.又因为AC⊥BC,CC1⊂平面BCC1B1,BC⊂平面BCC1B1,BC∩CC1=C,所以AC⊥平面BCC1B1.又因为BC1⊂平面BCC1B1,所以BC1⊥AC.因为BC=CC1,所以矩形BCC1B1是正方形,因此BC1⊥B1C.因为AC,B1C⊂平面B1AC,AC∩B1C=C,所以BC1⊥平面B1AC.又因为AB1⊂平面B1AC,所以BC1⊥AB1.3.(2015某某,19,13分)如图,三棱锥P-ABC中,PA⊥平面ABC,PA=1,AB=1,AC=2,∠BAC=60°.(1)求三棱锥P-ABC的体积;(2)证明:在线段PC上存在点M,使得AC⊥BM,并求的值.解析(1)由题设AB=1,AC=2,∠BAC=60°,可得S△ABC=·AB·AC·sin 60°=.由PA⊥平面ABC,可知PA是三棱锥P-ABC的高,又PA=1,所以三棱锥P-ABC的体积V=·S△ABC·PA=.(2)在平面ABC内,过点B作BN⊥AC,垂足为N.在平面PAC内,过点N作MN∥PA交PC于点M,连结BM.由PA⊥平面ABC知PA⊥AC,所以MN⊥AC.由于BN∩MN=N,故AC⊥平面MBN.又BM⊂平面MBN,所以AC⊥BM.在直角△BAN中,AN=AB·cos∠BAC=,从而NC=AC-AN=.由MN∥PA,得==.4.(2015某某,20,12分)如图,三棱锥P-ABC中,平面PAC⊥平面ABC,∠ABC=,点D,E在线段AC上,且AD=DE=EC=2,PD=PC=4,点F在线段AB上,且EF∥BC.(1)证明:AB⊥平面PFE;(2)若四棱锥P-DFBC的体积为7,求线段BC的长.解析(1)证明:如图,由DE=EC,PD=PC知,E为等腰△PDC中DC边的中点,故PE⊥AC.又平面PAC⊥平面ABC,平面PAC∩平面ABC=AC,PE⊂平面PAC,PE⊥AC,所以PE⊥平面ABC,从而PE⊥AB.因∠ABC=,EF∥BC,故AB⊥EF.从而AB与平面PFE内两条相交直线PE,EF都垂直,所以AB⊥平面PFE.(2)设BC=x,则在直角△ABC中,AB==,从而S△ABC=AB·BC=x.由EF∥BC知,==,得△AFE∽△ABC,故==,即S△AFE=S△ABC.由AD=AE,S△AFD=S△AFE=·S△ABC=S△ABC=x,从而四边形DFBC的面积为S DFBC=S△ABC-S△AFD=x-x=x.由(1)知,PE⊥平面ABC,所以PE为四棱锥P-DFBC的高.在直角△PEC中,PE===2.体积V P-DFBC=·S DFBC·PE=·x·2=7,故得x4-36x2+243=0,解得x2=9或x2=27,由于x>0,可得x=3或x=3,所以,BC=3或BC=3.5.(2014某某,20,13分)如图,在正方体ABCD-A1B1C1D1中,E,F,P,Q,M,N分别是棱AB,AD,DD1,BB1,A1B1,A1D1的中点. 求证:(1)直线BC1∥平面EFPQ;(2)直线AC1⊥平面PQMN.证明(1)连结AD1,由ABCD-A1B1C1D1是正方体,知AD1∥B C1,因为F,P分别是AD,DD1的中点,所以FP∥AD1.从而BC1∥FP.而FP⊂平面EFPQ,且BC1⊄平面EFPQ,故直线BC1∥平面EFPQ.(2)如图,连结AC,BD,则AC⊥BD.由CC1⊥平面ABCD,BD⊂平面ABCD,可得CC1⊥BD.又AC∩CC1=C,所以BD⊥平面ACC1.而AC1⊂平面ACC1,所以BD⊥AC1.因为M,N分别是A1B1,A1D1的中点,所以MN∥BD,从而MN⊥AC1.同理可证PN⊥AC1.又PN∩MN=N,所以直线AC1⊥平面PQMN.教师用书专用(6—8)6.(2014某某,19,12分)如图,△ABC和△BCD所在平面互相垂直,且AB=BC=BD=2,∠ABC=∠DBC=120°,E,F,G分别为AC,DC,AD的中点.(1)求证:EF⊥平面BCG;(2)求三棱锥D-BCG的体积.附:锥体的体积公式V=Sh,其中S为底面面积,h为高.解析(1)证明:由已知得△ABC≌△DBC.因此AC=DC.又G为AD的中点,所以CG⊥AD.同理BG⊥AD,因此AD⊥平面BGC.又EF∥AD,所以EF⊥平面BCG.(2)在平面ABC内,作AO⊥CB,交CB延长线于O,由平面ABC⊥平面BCD,知AO⊥平面BDC.又G为AD中点,因此G到平面BDC的距离h是AO长度的一半.在△AOB中,AO=AB·sin 60°=,所以V D-BCG=V G-BCD=·S△DBC·h=×BD·BC·sin 120°·=.7.(2014某某,20,12分)如图,四棱锥P-ABCD中,底面是以O为中心的菱形,PO⊥底面ABCD,AB=2,∠BAD=,M为BC上一点,且BM=.(1)证明:BC⊥平面POM;(2)若MP⊥AP,求四棱锥P-ABMO的体积.解析(1)证明:如图,连结OB,因为ABCD为菱形,O为菱形的中心,所以AO⊥OB.因为∠BAD=,所以OB=AB·sin∠OAB=2sin=1,又因为BM=,且∠OBM=,所以在△OBM中,OM2=OB2+BM2-2OB·BM·cos∠OBM=12+-2×1××cos=.所以OB2=OM2+BM2,故OM⊥BM.又PO⊥底面ABCD,所以PO⊥BC.从而BC与平面POM内两条相交直线OM,PO都垂直,所以BC⊥平面POM.(2)由(1)可得,OA=AB·cos∠OAB=2·cos=.设PO=a,由PO⊥底面ABCD知,△POA为直角三角形,故PA2=PO2+OA2=a2+3.又△POM也是直角三角形,故PM2=PO2+OM2=a2+.连结AM,在△ABM中,AM2=AB2+BM2-2AB·BM·cos∠ABM=22+-2×2××cos=.由于MP⊥AP,故△APM为直角三角形,则PA2+PM2=AM2,即a2+3+a2+=,得a=或a=-(舍去),即PO=.此时S四边形ABMO=S△AOB+S△OMB=·AO·OB+·BM·OM=××1+××=.所以V P-ABMO=·S四边形ABMO·PO=××=.8.(2013某某,18,12分)如图,四棱锥P-ABCD的底面ABCD是边长为2的菱形,∠BAD=60°.已知PB=PD=2,PA=.(1)证明:PC⊥BD;(2)若E为PA的中点,求三棱锥P-BCE的体积.解析(1)证明:连结AC,交BD于O点,连结PO.因为底面ABCD是菱形,所以AC⊥BD,BO=DO.由PB=PD知,PO⊥BD.再由PO∩AC=O知,BD⊥面APC.因此BD⊥PC.(2)因为E是PA的中点,所以V P-BCE=V C-PEB=V C-PAB=V B-APC.由PB=PD=AB=AD=2知,△ABD≌△PBD.因为∠BAD=60°,所以PO=AO=,AC=2,BO=1.又PA=,PO2+AO2=PA2,即PO⊥AC,故S△APC=PO·AC=3.由(1)知,BO⊥面APC,因此V P-BCE=V B-APC=×·BO·S△APC=.考点二面面垂直的判定与性质1.(2017某某,15,14分)如图,在三棱锥A-BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,F(E与A,D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.证明(1)在平面ABD内,因为AB⊥AD,EF⊥AD,所以EF∥AB.又因为EF⊄平面ABC,AB⊂平面ABC,所以EF∥平面ABC.(2)因为平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,BC⊂平面BCD,BC⊥BD,所以BC⊥平面ABD.因为AD⊂平面ABD,所以BC⊥AD.又AB⊥AD,BC∩AB=B,AB⊂平面ABC,BC⊂平面ABC,所以AD⊥平面ABC.又因为AC⊂平面ABC,所以AD⊥AC.2.(2017某某文,18,12分)由四棱柱ABCD-A1B1C1D1截去三棱锥C1-B1CD1后得到的几何体如图所示.四边形ABCD 为正方形,O为AC与BD的交点,E为AD的中点,A1E⊥平面ABCD.(1)证明:A1O∥平面B1CD1;(2)设M是OD的中点,证明:平面A1EM⊥平面B1CD1.证明本题考查线面平行与面面垂直.(1)取B1D1的中点O1,连结CO1,A1O1,由于ABCD-A1B1C1D1是四棱柱,所以A1O1∥OC,A1O1=OC,因此四边形A1OCO1为平行四边形,所以A1O∥O1C.又O1C⊂平面B1CD1,A1O⊄平面B1CD1,所以A1O∥平面B1CD1.(2)因为AC⊥BD,E,M分别为AD和OD的中点,所以EM⊥BD,又A1E⊥平面ABCD,BD⊂平面ABCD,所以A1E⊥BD,因为B1D1∥BD,所以EM⊥B1D1,A1E⊥B1D1,又A1E,EM⊂平面A1EM,A1E∩EM=E,所以B1D1⊥平面A1EM,又B1D1⊂平面B1CD1,所以平面A1EM⊥平面B1CD1.教师用书专用(3)3.(2016,18,14分)如图,在四棱锥P-ABCD中,PC⊥平面ABCD,AB∥DC,DC⊥AC.(1)求证:DC⊥平面PAC;(2)求证:平面PAB⊥平面PAC;(3)设点E为AB的中点.在棱PB上是否存在点F,使得PA∥平面CEF?说明理由.解析(1)证明:因为PC⊥平面ABCD,所以PC⊥DC.(2分)又因为DC⊥AC,AC∩PC=C,所以DC⊥平面PAC.(4分)(2)证明:因为AB∥DC,DC⊥AC,所以AB⊥AC.(6分)因为PC⊥平面ABCD,所以PC⊥AB.(7分)又AC∩PC=C,所以AB⊥平面PAC.又AB⊂平面PAB,所以平面PAB⊥平面PAC.(9分)(3)棱PB上存在点F,使得PA∥平面CEF.证明如下:(10分)取PB中点F,连结EF,CE,CF.又因为E为AB的中点,所以EF∥PA.(13分)又因为PA⊄平面CEF,所以PA∥平面CEF.(14分)三年模拟A组2016—2018年模拟·基础题组考点一线面垂直的判定与性质1.(苏教必2,一,2,变式)如图所示,已知矩形ABCD中,AB=1,BC=a,PA⊥平面ABCD,若在BC上只有一个点Q满足PQ⊥QD,则a的值等于.答案 22.(苏教必2,一,2,变式)如图,已知四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,则图中共有个直角三角形.答案 43.(2018某某海安高级中学高三阶段考试)如图,在斜三棱柱ABC-A1B1C1中,侧面A1ACC1是边长为2的菱形,∠A1AC=60°,在平面ABC中,AB=2,BC=4,M为BC的中点,过A1,B1,M三点的平面交AC于点N.(1)求证:N为AC的中点;(2)求证:AC⊥平面A1B1MN.证明(1)在三棱柱ABC-A1B1C1中,AB∥A1B1,平面ABC∥平面A1B1C1,∵平面A1B1M∩平面ABC=MN,平面A1B1M∩平面A1B1C1=A1B1,所以MN∥A1B1.因为AB∥A1B1,所以MN∥AB,所以=.因为M为BC的中点,所以N为AC的中点.(2)因为四边形A1ACC1是边长为2的菱形,∠A1AC=60°,所以在三角形A1AN中,AN=1,AA1=2,由余弦定理得A1N=,故A1A2=AN2+A1N2,所以∠A1NA=90°,即A1N⊥AC.在三角形ABC中,AC=2,AB=2,BC=4,所以BC2=AB2+AC2,所以∠BAC=90°,即AB⊥AC.又MN∥AB,所以AC⊥MN.因为MN∩A1N=N,MN⊂面A1B1MN,A1N⊂面A1B1MN,所以AC⊥平面A1B1MN.4.(2017某某某某期末调研,16)如图,在四棱锥E-ABCD中,平面EAB⊥平面ABCD,四边形ABCD为矩形,EA⊥EB,点M,N分别是AE,CD的中点.求证:(1)直线MN∥平面EBC;(2)直线EA⊥平面EBC.证明(1)取BE的中点F,连结CF,MF,因为M是AE的中点,所以MF∥AB,MF=AB,又N是矩形ABCD的边CD的中点,所以NC∥AB,NC=AB,所以MF NC,所以四边形MNCF是平行四边形,所以MN∥CF,又MN⊄平面EBC,CF⊂平面EBC,所以MN∥平面EBC.(2)在矩形ABCD中,BC⊥AB,因为平面EAB⊥平面ABCD,平面ABCD∩平面EAB=AB,BC⊂平面ABCD,所以BC⊥平面EAB,又EA⊂平面EAB,所以BC⊥EA,又EA⊥EB,BC∩EB=B,EB,BC⊂平面EBC,所以EA⊥平面EBC.5.(2017苏锡常镇四市教学情况调研(一),16)如图,在斜三棱柱ABC-A1B1C1中,侧面AA1C1C是菱形,AC1与A1C交于点O,E是棱AB上一点,且OE∥平面BCC1B1.(1)求证:E是AB的中点;(2)若AC1⊥A1B,求证:AC1⊥CB.证明(1)连结BC1,因为OE∥平面BCC1B1,且OE⊂平面ABC1,平面BCC1B1∩平面ABC1=BC1,所以OE∥BC1.因为侧面AA1C1C是菱形,AC1∩A1C=O,所以O是AC1的中点,所以E是AB的中点.(2)因为侧面AA1C1C是菱形,所以AC1⊥A1C,又AC1⊥A1B,A1C∩A1B=A1,A1C,A1B⊂面A1BC,所以AC1⊥面A1BC,因为BC⊂平面A1BC,所以AC1⊥BC.考点二面面垂直的判定与性质6.(2018某某某某中学高三阶段测试)如图,在几何体中,四边形ABCD为菱形,对角线AC与BD的交点为O,四边形DCEF为梯形,EF∥CD,FB=FD.(1)若CD=2EF,求证:OE∥平面ADF;(2)求证:平面ACF⊥平面ABCD.证明(1)取AD的中点G,连结OG,FG,∵对角线AC与BD的交点为O,∴OG∥CD,OG=CD.∵EF∥CD,CD=2EF,∴OG∥EF,OG=EF,∴四边形OGFE为平行四边形,∴OE∥FG.∵FG⊂平面ADF,OE⊄平面ADF,∴OE∥平面ADF.(2)连结OF.∵四边形ABCD为菱形,∴OC⊥BD,∵FB=FD,O是BD的中点,∴OF⊥BD.又∵OF∩OC=O,∴BD⊥平面ACF.∵BD⊂平面ABCD,∴平面ACF⊥平面ABCD.7.(2017某某某某辅仁中学质检,16)如图,在四棱锥P-ABCD中,AB∥CD,AC⊥BD,AC与BD交于点O,且平面PAC⊥平面ABCD,E为棱PA上一点.(1)求证:BD⊥OE;(2)若AB=2CD,AE=2EP,求证:EO∥平面PBC.证明(1)因为平面PAC⊥底面ABCD,平面PAC∩底面ABCD=AC,BD⊥AC,BD⊂平面ABCD,所以BD⊥平面PAC,又因为OE⊂平面PAC,所以BD⊥OE.(2)因为AB∥CD,AB=2CD,AC与BD交于O,所以CO∶OA=CD∶AB=1∶2,又因为AE=2EP,所以CO∶OA=PE∶EA,所以EO∥PC,又因为PC⊂平面PBC,EO⊄平面PBC,所以EO∥平面PBC.8.(2017某某某某,某某一模,15)如图,在直三棱柱ABC-A1B1C1中,BC⊥AC,D,E分别是AB,AC的中点.(1)求证:B1C1∥平面A1DE;(2)求证:平面A1DE⊥平面ACC1A1.证明(1)因为D,E分别是AB,AC的中点,所以DE∥BC,又因为在三棱柱ABC-A1B1C1中,B1C1∥BC,所以B1C1∥DE.又B1C1⊄平面A1DE,DE⊂平面A1DE,所以B1C1∥平面A1DE.(2)在直三棱柱ABC-A1B1C1中,CC1⊥底面ABC,又DE⊂底面ABC,所以CC1⊥DE.又BC⊥AC,DE∥BC,所以DE⊥AC,又CC1,AC⊂平面ACC1A1,且CC1∩AC=C,所以DE⊥平面ACC1A1.又DE⊂平面A1DE,所以平面A1DE⊥平面ACC1A1.9.(苏教必2,一,2,变式)如图所示,四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°.将△ABD沿对角线BD折起,记折起后A的位置为点P,且使平面PBD⊥平面BCD.求证:(1)CD⊥平面PBD.(2)平面PBC⊥平面PDC.证明(1)∵AD=AB,∠BAD=90°,∴∠ABD=∠ADB=45°,又∵AD∥BC,∴∠DBC=45°,又∠DCB=45°,∴∠BDC=90°,即BD⊥DC.∵平面PBD⊥平面BCD,平面PBD∩平面BCD=BD,∴CD⊥平面PBD.(2)由CD⊥平面PBD得CD⊥BP.又BP⊥PD,PD∩CD=D,∴BP⊥平面PDC.又BP⊂平面PBC,∴平面PBC⊥平面PDC.B组2016—2018年模拟·提升题组(满分:20分时间:10分钟)一、填空题(每小题5分,共5分)1.(苏教必2,一,2,变式)设m、n是两条不同的直线,α、β是两个不同的平面,则下列命题正确的是.①若m⊥n,n∥α,则m⊥α;②若m∥β,β⊥α,则m⊥α;③若m⊥β,n⊥β,n⊥α,则m⊥α;④若m⊥n,n⊥β,β⊥α,则m⊥α.答案③二、解答题(共15分)2.(2017某某某某、某某、某某三模,16)如图,在四棱锥P-ABCD中,底面ABCD是矩形,平面PAD⊥平面ABCD,AP=AD,M,N分别为棱PD,PC的中点.求证:(1)MN∥平面PAB;(2)AM⊥平面PCD.证明(1)因为M,N分别为棱PD,PC的中点,所以MN∥DC,又因为底面ABCD是矩形,所以AB∥DC,所以MN∥AB.又AB⊂平面PAB,MN⊄平面PAB,所以MN∥平面PAB.(2)因为AP=AD,M为PD的中点,所以AM⊥PD.因为平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,CD⊥AD,CD⊂平面ABCD,所以CD⊥平面PAD.又AM⊂平面PAD,所以CD⊥AM.因为CD,PD⊂平面PCD,CD∩PD=D,所以AM⊥平面PCD.C组2016—2018年模拟·方法题组方法1 证明线面垂直的方法1.(2017某某某某师X大学附属中学调研)如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,点E是PC的中点,作EF⊥PB交PB于点F.(1)求证:PA∥平面EBD;(2)求证:PB⊥平面EFD.证明(1)连结BE,BD,AC,设AC交BD于G,连结EG,则G为AC的中点,在△PAC中,E为PC的中点,G为AC的中点,故PA∥EG,又EG⊂面BED,PA⊄面BED,所以PA∥平面EBD.(2)∵PD⊥面ABCD,∴PD⊥BC.∵BC⊥CD,PD∩CD=D,PD,CD⊂面PCD,∴BC⊥面PCD,又DE⊂面PCD,∴BC⊥DE,∵PD=CD,E为PC的中点,∴DE⊥PC,又BC∩PC=C,BC,PC⊂面PBC,∴DE⊥面PBC,又PB⊂面PBC,∴DE⊥PB,又∵PB⊥EF,EF∩DE=E,EF,DE⊂面EFD,∴PB⊥平面EFD.方法2 证明面面垂直的方法2.(2017某某某某期中,17)如图,在正方体ABCD-A1B1C1D1中,E为棱DD1的中点,求证: (1)BD1∥平面EAC;(2)平面EAC⊥平面AB1C.证明(1)连结BD交AC于O,连结EO.易知O为BD的中点,因为E为DD1的中点,所以EO∥BD1. 又BD1⊄平面EAC,EO⊂平面EAC,所以BD1∥平面EAC.(2)易知AC⊥BD,DD1⊥平面ABCD,所以DD1⊥AC,因为BD∩DD1=D,所以AC⊥平面BDD1,所以AC⊥BD1,同理可证AB1⊥BD1,又AC∩AB1=A,所以BD1⊥平面AB1C,因为EO∥BD1,所以EO⊥平面AB1C,又EO⊂平面EAC,所以平面EAC⊥平面AB1C.。

高中数学必修2立体几何专题-线面、面面垂直专题总结

高中数学必修2立体几何专题-线面、面面垂直专题总结
又∵AD⊥BC,∴AD⊥平面SBC.
∵AD平面ABC,
∴平面ABC⊥平面SBC.
证法二:∵SA=SB=SC=a,又 ∠ASB=∠ASC=60°, ∴△ASB,△ASC都是等边三角形. ∴AB=AC=a. 作AD⊥平面BSC于点D, ∵AB=AC=AS, ∴D为△BSC的外心. 又∵△BSC是以BC为斜边的直角三角形,
2 3
.
即CE与底面BCD所成角的正弦值为
2 3
.
【评析】求平面的斜线与平面所成的角的一般方法是: 在斜线上找一具有特殊性的点,过该点向平面作垂线, 连接垂足和斜足,即为斜线在平面上的射影,进而作出 斜线与平面所成的角,再解直角三角形求出线面角的大 小,同时要注意其取值范围.
在三棱锥O—ABC中,三条棱OA,OB,OC两两
又∵CE∩BE=E,
∴SA⊥平面BCE.∵BC平面BCE,
图2-4-2
返回目录
∴SA⊥BC. 又∵AD⊥BC,AD∩AS=A, ∴BC⊥平面SAD.
∵SH 平面SAD,∴SH⊥BC.
又∵SH⊥AD,AD∩BC=D, ∴SH⊥平面ABC.
【评析】证明线面垂直,需先有线线垂直,抓住条件中 两个等腰三角形共用一条边,抓住公共边的中点,通过 作辅助平面,找到所需要的另一条直线.
【分析】欲证面面垂直,需证线面垂直.故找出垂线是关键.
【证明】证法一:如图1-10-4所示,取BC的中点D,连
接AD,SD.
由题意知△ASB与△ASC是等边三角形,则AB=AC,
∴AD⊥BC,SD⊥BC. 令SA=a,在△SBC中,SD=2 a,
2
又AD=AC2 -CD=2 a,2
2
∴AD2+SD2=SA2,即AD⊥SD.

高一数学 直线与平面垂直的判定及性质【经典整理含答案】

高一数学 直线与平面垂直的判定及性质【经典整理含答案】

直线与平面垂直的判定直线与平面垂直的判定与证明方法:①用线面垂直定义:若一直线垂直于平面内任一直线,这条直线垂直于该平面. ②用线面垂直判定定理:若一直线与平面内两相交直线都垂直,这条直线与平面垂直.③用线面垂直性质:两平行线之一垂直平面,则另一条也必垂直这个平面.④用面面垂直性质定理:两平面垂直,在一个平面内垂直于交线的直线必垂直于另一平面.⑤用面面平行性质:一直线垂直于两平行平面之一,则必垂直于另一平面.⑥用面面垂直性质:两相交平面同时垂直于第三个平面,那么两平面交线垂直于第三个平面.线面垂直的判定1. 如图,直角ABC △所在平面外一点S ,且SA SB SC ==,点D 为斜边AC 的中点.(1) 求证:SD ⊥平面ABC ;(2) 若AB BC =,求证:BD ⊥面SAC .答案:证明:(1)SA SC =∵,D 为AC 的中点,SD AC ⊥∴.连结BD .在ABC Rt △中,则AD DC BD ==.ADS BDS ∴△≌△,SD BD ⊥∴. 又AC BD D = ,SD ⊥∴面ABC . (2)BA BC =∵,D 为AC 的中点,BD AC ⊥∴.又由(1)知SD ⊥面ABC , SD BD ⊥∴.于是BD 垂直于平面SAC 内的两条相交直线.∴BD ⊥面SAC . 2. 如图,已知P 是△ABC 所在平面外一点,PA 、PB 、PC 两两垂直,H 是△ABC 的垂心,求证:PH ⊥平面ABC. 【探究】 根据判定定理,要证线面垂直,需证直线和平面内的两条相交直线垂直,根据H 是△ABC 的垂心,可知BC ⊥AH ,又PA 、PB 、PC 两两垂直,得PA ⊥面PBC ,于是PA ⊥BC ,由此可知BC 垂直于平面PAH 内的相交直线PA 和AH ,结论得证. 证明:∵H 是△ABC 的垂心,∴AH ⊥BC. ① ∵PA ⊥PB ,PA ⊥PC ,∴PA ⊥平面PBC. 又∵BC ⊂平面PBC ,PA ⊥BC , ② 由①②知,BC ⊥PH , 同理,AB ⊥PH ,∴PH ⊥平面ABC. 二面角的求解3. 已知四边形PABC 为空间四边形,∠PCA=90°,△ABC 是边长为32的正三角形,PC=2,D 、E 分别是PA 、AC 的中点,BD=10.试判断直线AC 与平面BDE的位置关系,并且求出二面角P-AC-B 的大小. 解:∵D 、E 分别是PA 、AC 的中点, ∴DE ∥PC 且DE=21PC=1. ∵∠PCA=90°,∴AC ⊥DE. ∵△ABC 是边长为32的正三角形,并且E 是AC 的中点, ∴AC ⊥BE ,并且BE=3. ∵DE∩BE=E ,∴直线AC 与平面DEB 垂直. ∴∠DEB 为二面角P-AC-B 的平面角. 在△BDE 中,由DE=1,BE=3,BD=10得DE 2+BE 2=BD 2,∴∠DEB=90°.综上所述,直线AC 与平面BDE 垂直,二面角P-AC-B 的大小为90°. 【规律总结】 与二面角的棱垂直的平面和二面角的两个面相交的两条射线构成的角就是这个二面角的平面角.利用作与棱垂直的平面得到二面角的方法称为“垂面法”. 4. 已知△ABC 是正三角形,PA ⊥平面ABC ,且PA=AB=a ,求二面角A-PC-B 的正切值.A【探究】 要求二面角的正切值,首先要在图形中构造出二面角的平面角,利用其平面角度量二面角的大小,过棱上一点,分别在两个面内作或证棱的垂线,即可产生二面角的平面角,充分利用三角函数定义求得正切值. 解:取AC 的中点M ,连结BM ,作MN ⊥PC 于N ,连结BN. ∵PA ⊥平面ABC ,∴平面PAC ⊥平面ABC.易证BM ⊥AC ,AC=平面PAC∩平面ABC. ∴BM ⊥平面PAC(面面垂直的性质). ∵MN ⊥PC ,∴NB ⊥PC.∴∠MNB 是二面角A-PC-B 的平面角.易知MN=a 42,BM=a 23.∴tan ∠MNB=64223==a aMN BM .∴二面角的正切值为6【规律总结】 度量二面角的大小是通过其平面角进行,所以在图形中构造出二面角的平面角,就能将空间问题转化为平面问题,利用直角三角形中锐角三角函数定义,有些问题也可用斜三角形中的直角三角形加以处理.5. 如图,已知三棱锥的三个侧面与底面全等,且2AB AC BC ===,求以BC 为棱,以面BCD 与面BCA 为面的二面角的大小。

考点33 高中数学-直线、平面垂直的判定及其性质-考点总结和习题

考点33 高中数学-直线、平面垂直的判定及其性质-考点总结和习题

考点34直线、平面垂直的判定及其性质【命题趋势】线面位置关系的证明是高考的重点,常出现在解答题的第一问中,是容易得分的试题,我们必须掌握.(1)以立体几何的定义、公理和定理为出发点,认识和理解空间中线面垂直的有关性质与判定定理.理解以下判定定理:·如果一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直.·如果一个平面经过另一个平面的垂线,那么这两个平面互相垂直.理解以下性质定理,并能够证明:·如果两个平面垂直,那么一个平面内垂直于它们交线的直线与另一个平面垂直.(2)能运用公理、定理和已获得的结论证明一些空间图形的位置关系的简单命题.【重要考向】一、线面垂直的判定与性质二、面面垂直的判定与性质线面垂直的判定与性质1.定义如果直线l与平面α内的任意一条直线都垂直,我们就说直线l与平面α互相垂直.记作:l ⊥α.图形表示如下:【注意】定义中的“任意一条直线”这一词语与“所有直线”是同义语,与“无数条直线”不是同义语.2.直线与平面垂直的判定定理文字语言一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直.简记为:线线垂直⇒线面垂直图形语言符号语言l ⊥a ,l ⊥b ,a ⊂α,b ⊂α,a b P = ⇒l ⊥α作用判断直线与平面垂直【注意】在应用该定理判断一条直线和一个平面垂直时,一定要注意是这条直线和平面内的两条相交..直线垂直,而不是任意的两条直线.3.直线与平面垂直的性质定理文字语言垂直于同一个平面的两条直线平行.简记为:线面垂直⇒线线平行图形语言符号语言a b αα⊥⎫⎬⊥⎭⇒a b ∥①证明两直线平行;作用②构造平行线.【巧学妙记】1.如图所示,在直三棱柱ABC-A1B1C1中,AB=AC=AA1=3,BC=2,D是BC的中点,F 是CC1上一点.当CF=2时,证明:B1F⊥平面ADF.【证明】因为AB=AC,D是BC的中点,所以AD⊥BC.在直三棱柱ABC-A1B1C1中,因为BB1⊥底面ABC,AD⊂底面ABC,所以AD⊥B1B.因为BC∩B1B=B,BC,B1B⊂平面B1BCC1,所以AD⊥平面B1BCC1.因为B1F⊂平面B1BCC1,所以AD⊥B1F.方法一在矩形B1BCC1中,因为C1F=CD=1,B1C1=CF=2,所以Rt△DCF≌Rt△FC1B1,所以∠CFD=∠C1B1F,所以∠B1FD=90°,所以B1F⊥FD.因为AD∩FD=D,AD,FD⊂平面ADF,所以B1F⊥平面ADF.2.如图,在三棱锥ABCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,F(E与A,D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.【证明】(1)在平面ABD内,因为AB⊥AD,EF⊥AD,则AB∥EF.又因为EF⊄平面ABC,AB⊂平面ABC,所以EF∥平面ABC.(2)因为平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,BC⊂平面BCD,BC⊥BD,所以BC⊥平面ABD.因为AD⊂平面ABD,所以BC⊥AD.又AB⊥AD,BC∩AB=B,AB⊂平面ABC,BC⊂平面ABC,所以AD⊥平面ABC.又因为AC⊂平面ABC,所以AD⊥AC.3.在长方体ABCD ﹣A 1B 1C 1D 1中,2AB =,2BC =,14CC =,M 为棱CC 1的中点.(1)求证:BM ⊥平面11A B M ;【答案】:(1)证明见详解;【分析】(1)由题中长度关系,可以证明22211BB BM B M =+,即1BM B M ⊥,由11A B ⊥平面11BCC B ,可以证明11A B BM ⊥,即得证;【详解】(1)由题意,2AB =,2BC =,14CC =,M 为棱1CC 的中点.故22221111122,22,4BM BC CM B M B C C M BB =+==+==即:222111BB BM B M BM B M=+∴⊥又长方体1111ABCD A B C D -,故11A B ⊥平面11BCC B BM ⊂平面11BCC B ,11A B BM∴⊥又1111A B B M B = BM ∴⊥平面11A B M面面垂直的判定与性质平面与平面垂直1.定义两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直.平面α⊥.图形表示如下:与平面β垂直,记作αβ2.平面与平面垂直的判定定理一个平面过另一个平面的垂线,则这两个平面垂直.文字语言简记为:线面垂直⇒面面垂直图形语言⊂⇒α⊥β符号语言l⊥α,lβ作用判断两平面垂直3.平面与平面垂直的性质定理两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.文字语言简记为:面面垂直⇒线面垂直图形语言符号语言=l a a a l αβαββα⎫⎪⎪⇒⎬⊂⎪⎪⊥⎭ ⊥⊥作用证明直线与平面垂直【巧学妙记】4.如图,在平行四边形ABCM 中,AB =AC =3,∠ACM =90°.以AC 为折痕将△ACM 折起,使点M 到达点D 的位置,且AB ⊥DA .(1)证明:平面ACD ⊥平面ABC ;(2)Q 为线段AD 上一点,P 为线段BC 上一点,且BP =DQ =23DA ,求三棱锥Q -ABP 的体积.(1)证明由已知可得,∠BAC =90°,即BA ⊥AC .又BA ⊥AD ,AD ∩AC =A ,AD ,AC ⊂平面ACD ,所以AB ⊥平面ACD .又AB ⊂平面ABC ,所以平面ACD ⊥平面ABC .(2)解由已知可得,DC =CM =AB =3,DA =32.又BP =DQ =23DA ,所以BP =22.如图,过点Q 作QE ⊥AC ,垂足为E ,则QE ∥DC 且QE =13DC .由已知及(1)可得,DC ⊥平面ABC ,所以QE ⊥平面ABC ,QE =1.因此,三棱锥Q -ABP 的体积为V Q -ABP =13×S △ABP ×QE =13×12×3×22sin 45°×1=1.5.如图,三棱锥P -ABC 中,底面ABC 是边长为2的正三角形,PA ⊥PC ,PB =2.(1)求证:平面PAC ⊥平面ABC ;(2)若PA =PC ,求三棱锥P -ABC 的体积.证明(1)如图,取AC 的中点O ,连接BO ,PO ,因为△ABC 是边长为2的正三角形,所以BO ⊥AC ,BO = 3.因为PA ⊥PC ,所以PO =12AC =1.因为PB =2,所以OP 2+OB 2=PB 2,所以PO ⊥OB .因为AC ∩OP =O ,AC ,OP ⊂平面PAC ,所以BO ⊥平面PAC .又OB ⊂平面ABC ,所以平面PAC ⊥平面ABC .(2)解因为PA =PC ,PA ⊥PC ,AC =2,所以PA =PC = 2.由(1)知BO ⊥平面PAC ,所以V P -ABC =V B -APC =13S △P AC ·BO =13×12×2×2×3=33.一、解答题1.如图所示,四棱锥P ABCD -的底面ABCD 是矩形,4PA PB AB ===,BC =PC =,点E 为AB 的中点,AC 与BD 交于点O .(1)求证:PE ⊥平面ABCD ;(2)求三棱锥D PAE -的体积.2.如图,四棱锥P ABCD -中,PA ⊥平面ABCD ,AB AD ⊥,//AB CD ,222PD AB AD CD ====,E 为线段PA 上一点,且32PE PA =.(1)证明:平面EBC ⊥平面PAC ;(2)求点A 到平面EBC 的距离.3.如图所示,四面体PABC 中,AP ⊥平面PBC ,AC =BC =2,AB =,PC =1,E ,F 分别为AB ,AC 的中点,过EF 作四面体的截面EFGH 交PC 于点G ,交PB 于点H .(1)证明:GH /平面ABC ;(2)若G 为PC 上靠近P 的一个三等分点,求四边形GHBC 的面积.4.如图,在直四棱柱1111 ABCD A B C D -中,底面ABCD 为菱形,E 为1DD 中点.(1)求证:1//BD 平面ACE ;(2)求证:1BD AC ⊥.5.在三棱柱111ABC A B C -中,侧面11AA C C ⊥底面ABC ,112AA A C AB BC ====,AC =O 为AC 的中点.(1)证明:平面1A OB ⊥平面ABC ;(2)求点A 到平面1A BC 的距离.6.如图,在四棱锥P ﹣ABCD 中,底面ABCD 为正方形,PA ⊥底面ABCD ,PA =AB =4,E 为PB 的中点,F 为线段BC 上的点,且BF =14BC .(1)求证:平面AEF ⊥平面PBC ;(2)求点F 到平面PCD 的距离.7.在五面体EF ABCD -中,正方形CDEF 所在平面与平面ABCD 垂直,四边形ABCD 为等腰梯形,//AB CD ,12AD DC BC AB ===.(1)求证:平面BCF ⊥平面ACE ;(2)若三棱锥A BCE -的体积为433,求线段AB 的长.1.(2021·全国高考真题(文))已知直三棱柱111ABC A B C -中,侧面11AA B B 为正方形,2AB BC ==,E ,F 分别为AC 和1CC 的中点,11BF A B ⊥.(1)求三棱锥F EBC -的体积;(2)已知D 为棱11A B 上的点,证明:BF DE ⊥.2.(2021·全国高考真题(文))如图,四棱锥P ABCD -的底面是矩形,PD ⊥底面ABCD ,M 为BC 的中点,且PB AM ⊥.(1)证明:平面PAM ⊥平面PBD ;(2)若1PD DC ==,求四棱锥P ABCD -的体积.3.(2020·江苏高考真题)在三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,B 1C ⊥平面ABC ,E ,F 分别是AC ,B 1C 的中点.(1)求证:EF ∥平面AB 1C 1;(2)求证:平面AB 1C ⊥平面ABB 1.4.(2020·全国高考真题(文))如图,D 为圆锥的顶点,O 是圆锥底面的圆心,ABC 是底面的内接正三角形,P 为DO 上一点,∠APC =90°.(1)证明:平面PAB ⊥平面PAC ;(2)设DO ,求三棱锥P −ABC 的体积.5.(2019·全国高考真题(文))如图,直四棱柱ABCD–A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ;(2)求点C 到平面C 1DE 的距离.6.(2015·陕西高考真题(文))如图1,在直角梯形ABCD 中,//,,2AD BC BAD AB BC π∠==12AD a ==,E 是AD 的中点,O 是OC 与BE 的交点,将ABE ∆沿BE 折起到图2中1A BE ∆的位置,得到四棱锥1A BCDE -.(Ⅰ)证明:CD ⊥平面1A OC ;(Ⅱ)当平面1A BE ⊥平面BCDE 时,四棱锥1A BCDE -的体积为362,求a 的值.一、单选题1.(2021·安徽华星学校高三其他模拟(文))已知四面体ABCD 中,平面ABD ⊥平面BCD ,ABD △是边长为2的等边三角形,BD CD =,BD CD ⊥,则四面体ABCD 的体积为()A .233B .45C .433D .23二、解答题2.(2020·河北高三其他模拟(文))如图,在四面体ABCD 中,E 为线段BD 上的点,且22BE ED ==,26BC CD ==AB CE ^.(1)求证:平面ABD ⊥平面BCD ;(2)若AE BE ⊥,AE BE =,求点D 到平面ABC 的距离.3.(2021·河南高三其他模拟(文))如图,在四棱锥P ABCD -中,底面ABCD 为边长为4的菱形,60DAB ∠=︒,13PA PD ==,E 为AB 的中点,O 为AD 的中点,PE AC ⊥.(1)证明:AC PO ⊥.(2)求点O 到平面PBD 的距离.4.(2019·吉林高三其他模拟(文))如图,在平行四边形ABCD 中,AD =BD =1,2AB =,将平面ABD 沿BD 翻折得到四面体A '﹣BCD ,点E 为棱A 'B 的中点,过点D 作DF ⊥A 'C 于点F ,当四面体A '﹣BCD 的体积最大时.(1)证明:EF ⊥A 'C ;(2)求点B 到平面DEF 的距离.5.(2021·河南商丘市·高三月考(文))在如图所示的多面体中,△ABC 是等边三角形,AD ⊥平面ABC ,AD CP //,E 是BC 的中点.(1)证明:平面BCP ⊥平面ADE ;(2)若22AB PC AD ===,求点C 到平面PBD 的距离.6.(2021·贵州省思南中学高三月考(文))如图,三棱柱111ABC A B C -各棱长均为2,160A AB ∠=︒.(1)求证:1AB A C ⊥;(2)若面1A AB ⊥面ABC ,求四边形11BCC B 的面积.7.(2021·重庆一中高三其他模拟)如图所示,在矩形ABCD 中,1AD =,2AB =,点E 是线段AB 的中点,把三角形AED 沿DE 折起,设折起后点A 的位置为P ,F 是PD 的中点.(1)求证:无论P 在什么位置,都有//AF 平面PEC ;(2)当点P 在平面ABCD 上的射影落在线段DE 上时,若三棱锥P ECD -的四个顶点都在一个球上,求这个球的体积.8.(2021·全国高一课时练习)如图,正方体ABCD -A 1B 1C 1D 1中,E 为棱C 1D 1的中点,F 为棱BC 的中点.(1)求证:直线AE ⊥直线A 1D ;(2)在线段AA 1上求一点G ,使得直线AE ⊥平面DFG .参考答案跟踪训练1.(1)证明见解析;(2)463.【分析】(1)由E 为AB 的中点得PE AB ⊥,勾股定理得PE EC ⊥,可得答案;(2)连接ED ,转化为--=D PAE P ADE V V ,由PE ⊥平面ABCD 得PE 为三棱锥P ADE -的高,计算出ADE S ,再由体积公式可得答案.【详解】(1)4=== PA PB AB ,点E 为AB 的中点,PE AB ∴⊥,又336,,,== PE EC PC PE EC ∴⊥,又,,=⊂ AB EC E AB EC 平面ABCD ,PE ∴⊥平面ABCD .(2)连接ED ,D PAE P ADE V V --= ,由(1)可知,PE ⊥平面ABCD ,13-∴=⋅ P ADE ADE V PE S ,11222=⋅=⨯⨯ ADE S AE AD ,133P ADE V -∴=⨯=.2.(1)证明见解析;(2)7.【分析】(1)通过证明BC ⊥平面PAC 来证得平面EBC ⊥平面PAC .(2)利用等体积法求得A 到平面EBC 的距离.【详解】(1)∵PA ⊥平面ABCD ,BC ⊂平面ABCD ,∴PA BC ⊥,∵AD DC ⊥,222AB AD CD ===,∴45ACD CAB ABC ∠=∠=∠=︒,AC CB ⊥,又,AC PA ⊂平面PAC ,AC PA A ⋂=,∴BC ⊥平面PAC ,∵BC ⊂平面BCE ,∴平面EBC ⊥平面PAC .(2)依题意PA ⊥平面ABCD ,PA ==,111332133239E ABC ABC V S AE -=⋅⋅=⋅⋅⋅⋅= ,BC AC ===,3CE ==,由(1)知BC CE ⊥,所以14226EBC S BC CE =⨯⨯= ,设A 到平面EBC 的距离为h ,则1423143697A EBC V h h -=⋅⋅=⇒=.3.(1)见解析;(2)5718【分析】(1)利用线面平行的判定定理证明EF ∥平面PBC ,进而利用线面平行的性质定理证明EF ∥GH ,然后再由判定定理证得GH ∥平面ABC ;(2)根据已知条件,;利用线面垂直判定定理证得BC ⊥平面PAC ,进而判定,EF ⊥平面PAC ,得到EF ⊥FG ,GH ⊥FG ,然后通过计算求得直角梯形GHBC 的面积.【详解】(1)∵E ,F 分别为AB ,AC 的中点,∴EF ∥BC ,又∵EF ⊄平面PBC ,BC ⊂平面PBC ,∴EF ∥平面PBC ,∵EF ⊂平面EFGH ,平面EFGH ∩平面PBC =GH ,∴EF ∥GH ,又∵GH ⊄平面ABC ,EF ⊂平面ABC ,∴GH ∥平面ABC ;(2)∵AP ⊥平面PBC ,∴AP ⊥BC ,AP ⊥PC ,又∵AC =BC =2,AB =,∴222AC BC AB +=,∴AC ⊥BC ,又∵AP ∩AC =A ,∴BC ⊥平面PAC ,∵EF ∥BC ,∴EF ⊥平面PAC ,∴EF ⊥FG ,GH ⊥FG ,∵BC =2,EF 是△ABC 的中位线,∴EF =1,GH ∥EF ∥BC ,∴GH ∥BC ,G 为为PC 上靠近P 的一个三等分点,∴GH =1233BC =,∵AC =2,F 为AC 中点,∴CF =1,∵PC =1,∴CG =23,∵AP ⊥PC ,PC =1,AC =2,∴∠ACP =60°,∴FG ,3===∴四边形GHBC 的面积为()1127571223318EF GH FG ⎛⎫+=+⨯= ⎪⎝⎭.【点睛】本题考查线面平行,垂直的判定与性质,属中档题,关键是熟练使用线面平行和垂直的判定与性质进行平行,垂直的转化与证明.4.(1)证明见解析;(2)证明见解析;【分析】(1)设AC 与BD 交于点O ,接OE ,可得1//OE D BB ,即可证明1//BD 平面ACE ;(2)由底面ABCD 是菱形,得AC BD ⊥,又1DD ⊥底面ABCD ,可得1DD AC ⊥,证明AC ⊥平面11BDB D ,利用线面垂直的性质可证1AC BD ⊥.【详解】证明:(1)设AC 与BD 交于点O ,接OE ,底面ABCD 是菱形,O ∴为DB 中点,又因为E 是1DD 的中点,1//OE D BB ∴,OE ⊂ 面AEC ,1BD ⊂平面AEC1//BD ∴平面ACE .(2) 底面ABCD 是菱形,AC BD ∴⊥,1DD ⊥Q 底面ABCD ,AC ⊂底面ABCD ,1DD AC ∴⊥,且1DB DD D = ,1,DB DD ⊂平面11BDB D .AC ∴⊥平面11BDB D .1BD ⊂ 平面11BDB D ,1AC BD ∴⊥.5.(1)证明见解析;(2)2217.【分析】(1)先证明1A O AC ⊥,结合平面11AA C C ⊥平面ABC ,证得1A O ⊥平面ABC ,再根据面面垂直的判定定理证明即可;(2)利用等体积法,由11A ABC A A BC V V --=,即解得结果.【详解】(1)证明:因为11A A A C =,且O 为AC 的中点,所以1A O AC ⊥.因为平面11AA C C ⊥平面ABC ,平面11AA C C 平面ABC AC =,所以1A O ⊥平面ABC .因为1A O ⊂平面1A OB ,所以平面1A OB ⊥平面ABC ;(2)解:设点A 到平面1A BC 的距离为h .由(1)知,1A O ⊥平面ABC .因为112AA A C AB BC ====,AC =,所以AO =所以11A O =,1BO ==.因为11BO AO ==,所以1A B =,所以12ABC S AC BO =⋅=△,等腰三角形1A BC 中,以1A B142=,11111472222A BC S A B ===△,因为11A ABC A A BC V V --=,111131333A ABC ABC V S A O -=⋅==△.所以1332h =⨯,所以7h =.6.(1)证明见解析;(2)322.【分析】(1)根据题意可得AE ⊥平面PBC ,进而可证明平面AEF ⊥平面PBC ;(2)利用等体积法求点到面的距离.【详解】(1)证明:因为PA ⊥底面ABCD ,BC ⊂底面ABCD ,所以PA BC ⊥,又因为底面ABCD 为正方形,所以AB BC ⊥,又因为AB ⊂平面PBC ,PA ⊂平面PBC ,且PA BA A = ,所以BC ⊥底面PAB ,又因为AE ⊂平面PBA ,所以BC AE ⊥,因为PA =AB ,E 为PB 的中点,所以PB AE ⊥,又因为PB ⊂平面PBC ,BC ⊂平面PBC ,所以AE ⊥平面PBC ,因为AE ⊂平面AEF ,所以平面AEF ⊥平面PBC ;(2)解:因为AD BC ∥,=AD BC ,所以B PCD A PCD V V --=,又=A PCD P ACD V V --,所以1132444323B PCD P ACD V V --==⨯⨯⨯⨯=,因为142PCD S =⨯= ,设点B 到平面PCD 的距离为h ,所以3B PCD PCDV h S -== 由BF =14BC ,知点F 到平面PCD的距离为342=.7.(1)证明见解析;(2)4AB =.【分析】(1)首先证得AC ⊥面BCF ,然后根据面面垂直的判定即可得出结论;(2)根据已知条件列出方程,解之即可.【详解】(1)证明:取AB 中点O ,连CO .12AD DC BC AB === ,//AB CD ,∴四边形AOCD 为菱形,CO OA OB ∴==,OCB ∴ 为正三角形,AC BC ∴⊥, 正方形CDEF 所在平面与平面ABCD 垂直,又∵平面CDEF 平面ABCD 垂直CD =,CD CF⊥∴FC ⊥面ABCD ,AC ⊂面ABCD ,FC AC ∴⊥.BC FC C ⋂=,AC ∴⊥面BCF ,AC ⊂ 面ACE ,∴面ACE ⊥面BCF ,得证.(2)解:设BC x =,则2AB x =,由勾股定理得AC =,由(1)可知ED ⊥面ABCD ,故13A BCE E ABC ABC V V S ED --==⋅△,21322ABC S x x =⋅=即363x =,解得2x =.4AB ∴=.真题再现1.(1)13;(2)证明见解析.【分析】(1)首先求得AC 的长度,然后利用体积公式可得三棱锥的体积;(2)将所给的几何体进行补形,从而把线线垂直的问题转化为证明线面垂直,然后再由线面垂直可得题中的结论.【详解】(1)如图所示,连结AF ,由题意可得:BF ===,由于AB ⊥BB 1,BC ⊥AB ,1BB BC B = ,故AB ⊥平面11BCC B ,而BF ⊂平面11BCC B ,故AB BF ⊥,从而有3AF ===,从而AC ===,则222,AB BC AC AB BC +=∴⊥,ABC 为等腰直角三角形,111221222BCE ABC S s ⎛⎫==⨯⨯⨯= ⎪⎝⎭△△,11111333F EBC BCE V S CF -=⨯⨯=⨯⨯=△.(2)由(1)的结论可将几何体补形为一个棱长为2的正方体1111ABCM A B C M -,如图所示,取棱,AM BC 的中点,H G ,连结11,,A H HG GB ,正方形11BCC B 中,,G F 为中点,则1BF B G ⊥,又111111,BF A B A B B G B ⊥= ,故BF ⊥平面11A B GH ,而DE ⊂平面11A B GH ,从而BF ⊥DE .【点睛】求三棱锥的体积时要注意三棱锥的每个面都可以作为底面,例如三棱锥的三条侧棱两两垂直,我们就选择其中的一个侧面作为底面,另一条侧棱作为高来求体积.对于空间中垂直关系(线线、线面、面面)的证明经常进行等价转化.2.(1)证明见解析;(2)3.【分析】(1)由PD ⊥底面ABCD 可得PD AM ⊥,又PB AM ⊥,由线面垂直的判定定理可得AM ⊥平面PBD ,再根据面面垂直的判定定理即可证出平面PAM ⊥平面PBD ;(2)由(1)可知,AM BD ⊥,由平面知识可知,~DAB ABM ,由相似比可求出AD ,再根据四棱锥P ABCD -的体积公式即可求出.【详解】(1)因为PD ⊥底面ABCD ,AM ⊂平面ABCD ,所以PD AM ⊥,又PB AM ⊥,PB PD P = ,所以AM ⊥平面PBD ,而AM ⊂平面PAM ,所以平面PAM ⊥平面PBD .(2)由(1)可知,AM ⊥平面PBD ,所以AM BD ⊥,从而~DAB ABM ,设BM x =,2AD x =,则BM AB AB AD =,即221x =,解得22x =,所以AD =.因为PD ⊥底面ABCD ,故四棱锥P ABCD -的体积为(11133V =⨯⨯=.【点睛】本题第一问解题关键是找到平面PAM 或平面PBD 的垂线,结合题目条件PB AM ⊥,所以垂线可以从,PB AM 中产生,稍加分析即可判断出AM ⊥平面PBD ,从而证出;第二问关键是底面矩形面积的计算,利用第一问的结论结合平面几何知识可得出~DAB ABM ,从而求出矩形的另一个边长,从而求得该四棱锥的体积.3.(1)证明详见解析;(2)证明详见解析.【分析】(1)通过证明1//EF AB ,来证得//EF 平面11AB C .(2)通过证明AB ⊥平面1AB C ,来证得平面1AB C ⊥平面1ABB .【详解】(1)由于,E F 分别是1,AC B C 的中点,所以1//EF AB .由于EF ⊂/平面11AB C ,1AB ⊂平面11AB C ,所以//EF 平面11AB C .(2)由于1B C ⊥平面ABC ,AB Ì平面ABC ,所以1B C AB ⊥.由于1,AB AC AC B C C ⊥⋂=,所以AB ⊥平面1AB C ,由于AB Ì平面1ABB ,所以平面1AB C ⊥平面1ABB .【点睛】本小题主要考查线面平行的证明,考查面面垂直的证明,属于中档题.4.(1)证明见解析;(2)68.【分析】(1)根据已知可得PA PB PC ==,进而有PAC △≌PBC ,可得90APC BPC ∠=∠= ,即PB PC ⊥,从而证得PC ⊥平面PAB ,即可证得结论;(2)将已知条件转化为母线l 和底面半径r 的关系,进而求出底面半径,由正弦定理,求出正三角形ABC 边长,在等腰直角三角形APC 中求出AP ,在Rt APO 中,求出PO ,即可求出结论.【详解】(1)连接,,OA OB OC ,D Q 为圆锥顶点,O 为底面圆心,OD ∴⊥平面ABC ,P 在DO 上,,OA OB OC PA PB PC ==∴==,ABC 是圆内接正三角形,AC BC ∴=,PAC △≌PBC ,90APC BPC ∴∠=∠=︒,即,PB PC PA PC ⊥⊥,,PA PB P PC =∴⊥ 平面,PAB PC ⊂平面PAC ,∴平面PAB ⊥平面PAC ;(2)设圆锥的母线为l ,底面半径为r ,圆锥的侧面积为3,3rl rl ππ==,2222OD l r =-=,解得1,3r l ==,2sin 603AC r == ,在等腰直角三角形APC 中,2622AP AC ==,在Rt PAO 中,2262142PO AP OA =-=-=,∴三棱锥P ABC -的体积为11333248P ABC ABC V PO S -=⋅=⨯⨯⨯=△.【点睛】本题考查空间线、面位置关系,证明平面与平面垂直,求锥体的体积,注意空间垂直间的相互转化,考查逻辑推理、直观想象、数学计算能力,属于中档题.5.(1)见解析;(2)41717.【分析】(1)利用三角形中位线和11//AD BC 可证得//ME ,证得四边形MNDE 为平行四边形,进而证得//MN DE ,根据线面平行判定定理可证得结论;(2)根据题意求得三棱锥1C CDE -的体积,再求出1C DE ∆的面积,利用11C CDE C C DE V V --=求得点C 到平面1C DE 的距离,得到结果.【详解】(1)连接ME ,1B CM ,E 分别为1BB ,BC 中点M E ∴为1B BC ∆的中位线1//M E BC ∴且112ME B C =又N 为1A D 中点,且11//AD 1//ND BC ∴且112ND B C =//M E ∴∴四边形MNDE 为平行四边形//MN DE ∴,又MN ⊄平面1C DE ,DE ⊂平面1C DE //MN ∴平面1C DE(2)在菱形ABCD 中,E 为BC 中点,所以DE BC ⊥,根据题意有3DE =117C E =,因为棱柱为直棱柱,所以有DE ⊥平面11BCC B ,所以1DE EC ⊥,所以113172DEC S ∆=设点C 到平面1C DE 的距离为d ,根据题意有11C CDE C C DE V V --=,则有11113171343232d ⨯=⨯⨯,解得171717d ==,所以点C 到平面1C DE 的距离为41717.【点睛】该题考查的是有关立体几何的问题,涉及到的知识点有线面平行的判定,点到平面的距离的求解,在解题的过程中,注意要熟记线面平行的判定定理的内容,注意平行线的寻找思路,再者就是利用等积法求点到平面的距离是文科生常考的内容.6.(Ⅰ)证明见解析,详见解析;(Ⅱ)6a =.【详解】试题分析:(1)依据直线与平面垂直的判定定理推证;(2)借助题设条件运用等积法建立方程求解.试题解析:(1)在图1中,易得//,BE AOC OE CD CD AO CD OC⊥∴⊥⊥ 所以,在图2中,1,CD OC CD A O CD ⊥⊥∴⊥平面1A OC(2)由已知,平面1A BE ⊥平面BCDE ,1CD A O⊥所以1A O ⊥平面BCDE211126332BCDE A O S a a a ∴⋅=⋅==考点:空间线面垂直的位置关系和棱锥的体积公式等有关知识的运用.模拟检测1.A【分析】证明出CD ⊥平面ABD ,然后利用锥体的体积公式可求得四面体ABCD 的体积.【详解】因为平面ABD ⊥平面BCD ,平面ABD ⋂平面BCD BD =,CD BD ⊥,CD ⊂平面BCD ,CD \^平面ABD ,2CD BD ==,224ABD S =⨯=△,所以,11232333C ABD ABD V S CD -=⋅==△.故选:A.【点睛】方法点睛:求空间几何体体积的方法如下:(1)求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解;(2)若所给几何体的体积不能直接利用公式得出,则常用等积法、分割法、补形法等方法进行求解.2.(1)证明见解析;(2)32.【分析】(1)由勾股定理的逆定理知BC CD ⊥,再由余弦定理求得CE =从而证明CE BD ⊥,然后结合线面、面面垂直的判定定理,即可得证;(2)由平面ABD ⊥平面BCD ,推出AE ⊥平面BCD ,从而知点A 到平面BCD 的距离为AE ,再由等体积法,D ABC A BCD V V --=,得解.【详解】(1)证明:在BCD △中,=BC CD =,3BD =,∴222BD BC CD =+,即BC CD ⊥,∴cos 3BC CBD BD ∠==,由余弦定理知,2222cos 642223CE BC BE BC BE CBD =+-⋅⋅∠=+-⨯⨯,∴CE =∴222BC BE CE =+,∴CE BD ⊥,∵AB CE ⊥,AB BD B = ,AB 、BD ⊂平面ABD ,∴CE ⊥平面ABD ,又CE ⊂平面BCD ,∴平面ABD ⊥平面BCD .(2)解:∵AE BE ⊥,平面ABD ⊥平面BCD ,平面ABD ⋂平面BCD BD =,∴AE ⊥平面BCD ,∴点A 到平面BCD 的距离为AE ,且2AE BE ==,AB ==,∴AC BC ====,∴ABC 为等腰三角形,∴1122ABC S AB =⨯ ,设点D 到平面ABC 的距离为h ,∵D ABC A BCD V V --=,∴111332ABC h S AE BC CD ⋅=⋅⋅⋅△,∴122h ⋅=⋅∴32h =,故点D 到平面ABC 的距离为32.3.(1)证明见解析;(2)32.【分析】(1)利用菱形结合中位线证得AC OE ⊥,然后利用线面垂直判定定理证得AC ⊥平面POE ,然后利用线面垂直的性质定理证得结论.(2)利用等体积法求得点面距离.【详解】(1)证明:如图,连接OE .因为底面ABCD 是菱形,所以AC BD ⊥.又OE 为ABD △的中位线,所以OE BD ,从而AC OE ⊥.因为PE AC ⊥,PE OE E = ,所以AC ⊥平面POE ,所以 AC PO ⊥.(2)解:因为PO 是等腰三角形PAD 的中线,所以PO AD ⊥,由(1)知AC PO ⊥,所以PO ⊥平面ABCD ,3PO ==.由题可知点O 到平面PBD 的距离等于点A 到平面PBD 距离的一半.设点A 到平面PBD 的距离为h ,在ABD △中,4BD =,PD =,PB ==,可求cosPDB ∠=sin PDB ∠=所以142PBD S =⨯=△易求14422△=⨯⨯⨯=ABD S .由A PBD P ABD V V --=,得11333⨯=⨯,解得3h =.故点O 到平面PBD 的距离为32.4.(1)证明见解析;(2)33.【分析】(1)利用线面垂直的判定定理和性质定理加以证明;(2)利用等体积法求距离.【详解】证明:(1)∵在平行四边形ABCD 中,AD =BD =1,AB ,∴AD 2+BD 2=AB 2,∴△ABD 为等腰直角三角形,且AD ⊥BD ,∴BC ⊥BD ,设点A ′到面BCD 的距离为h ,则1111 3326A BCD BCD V S h BC BD h h '-=⋅=⨯⋅⋅⋅=△,∴当四面体A '﹣BCD 的体积最大时,h 最大,此时h =A ′D ,即A ′D ⊥面BCD ,∵BC ⊂面BCD ,∴A ′D ⊥BC ,∵BD ⊥BC ,BD ∩A ′D =D ,BD ,A ′D ⊂面A ′BD ,∴BC ⊥面A ′BD ,∵DE ⊂面A ′BD ,∴BC ⊥DE ,∵A ′D =BD ,E 为A ′D 中点,∴DE ⊥A ′B ,∵A ′B ∩BC =B ,A ′B ,BC ⊂面A ′BC ,∴DE ⊥面A ′BC ,∵A ′C ⊂面A ′BC ,∴DE ⊥A ′C ,∵DF ⊥A ′C ,DF ∩DE =D ,DF ,DE ⊂面DEF ,∴A ′C ⊥面DEF ,∵EF ⊂面DEF ,∴EF ⊥A ′C .解:(2)过点F 作FH ⊥A ′B 交A ′B 于点H .由(1)知DE ⊥面A ′BC ,∵EF ⊂面A ′BC ,∴DE ⊥EF ,∵A ′D =BD =1,∴AB ,∵E 是A ′B 的中点,∴DE =BE =22,在Rt △A ′BC 中,EF =26BC A E A C '⋅==',A ′F 33=,∴FH =1133A F BC A C '⋅=⨯=',设点B 到面DEF 的距离为d ′,则V B ﹣DEF =V D ﹣BEF ,∴11'33DEF BEF S d S DE ∆∆⋅=⋅,d ′=132132BEF DEF BE FH DE S DE S DE EF ∆∆⋅⋅⋅==⋅.5.(1)证明见解析;(2.【分析】(1)根据线面垂直的性质可得.AD BC ⊥再由面面垂直的判定可得证;(2)取BP 的中点F ,连接,,CF EF DF .根据平面几何知识可得//EF AD 且EF AD =,根据线面垂直的性质可得ADFE 是矩形.从而得DF FE ⊥,由面面垂直的性质可得证CF ⊥平面PBD ,从而求得点C 到平面PBD 的距离.【详解】解:(1)因为E 是BC 的中点,且AB AC =,所以.AE BC ^因为AD ⊥平面ABC ,所以.AD BC ⊥又因为AE AD A = ,所以BC ⊥平面.ADE 又BC ⊂平面BCP ,所以平面BCP ⊥平面.ADE (2)如图,取BP 的中点F ,连接,,CF EF DF .所以EF 是BCP 的中位线,所以//EF PC ,且12EF PC =,因为1//,2AD PC AD PC =,所以//EF AD 且EF AD =,又因为AD ⊥平面ABC ,所以ADFE 是矩形.所以DF FE ⊥,由(1)知,平面BCP ⊥平面ADE ,交线为EF ,所以DF ⊥平面BCP ,所以DF CF ⊥.又在等腰三角形BCP 中可得,CF BP BP DF F ⊥⋂=,所以CF ⊥平面PBD ,所以点C 到平面PBD 的距离即CF =.6.(1)证明见解析;(2【分析】(1)取AB 中点D 连接11,,A D CD A B ,即可得到AB ⊥面1A DC ,从而得证;(2)连接11,B C B D ,由面面垂直的性质定理,可得CD ⊥面1A AB ,即可得到1CD B D ⊥,利用余弦定理求出1B D ,再利用勾股定理求出1B C ,然后利用余弦定理求出1cos CBB ∠,从而得到1sin CBB ∠,最后根据1111sin 2CBB S B B BC CBB =⨯⨯∠ 、1112C BCC B BB S S = 计算可得;【详解】(1)证明:取AB 中点D 连接11,,A D CD A B ,三棱柱111ABC A B C -各棱长均为2,160A AB ∠=︒,∴1A AB 和ABC 都是等边三角形,∴11,,AB A D AB CD A D CD D ⊥⊥⋂=,1,A D CD ⊂面1A DCAB ∴⊥面1A DC ,1AC ⊂ 面1A DC ,∴1AB A C⊥(2)连接11,B C B D ,因为面1A AB ⊥面ABC ,CD AB ⊥,面1A AB 面ABC AB =,所以CD ⊥面1A AB ,面1B D ⊂面1A AB ,所以1CD B D ⊥,在1BDB △中,由余弦定理得22211112cos B D BB BD BB BD B BD =+-⋅∠,即222112122172B D ⎛⎫=+-⨯⨯⨯-= ⎪⎝⎭,所以17B D =,所以22211B C B D CD =+,即222173B C =+,所以110B C =在1BCB △中由余弦定理得22211112cos B C BB BC BB BC CBB =+-⋅∠,即22211022222cos CBB =+-⨯⨯∠,解得11cos 4CBB ∠=-,所以21115sin 1cos 4CBB CBB ∠=-∠=,所以111111515sin 222242CBB S B B BC CBB =⨯⨯∠=⨯⨯⨯= 所以111152B BCC B CB S S ==7.(1)证明见解析;(2)4 3 .【分析】(1)取PC的中点G,连接FG,EG,可证FG与AE平行且相等,进而得到AF∥EG,然后利用线面平行的判定定理证明即可;(2)设P的射影为H,由已知条件证得平面PDE⊥平面CDE,进而利用线面、面面垂直的判定与性质,证明△CPD和△CED都是直角三角形,进而得到外接球的球心就是公共斜边CD 的中点,进而求解计算即可.【详解】(1)如图所示,取PC的中点G,连接FG,EG,∵F为PD的中点,∴FG平行且等于DC的一半,又∵E为矩形ABCD的AB边的中点,∴AE平行且等于DC的一半,∴FG与AE平行且相等,∴四边形AEGF为平行四边形,∴AF∥EG,又∵AF⊄平面PEC,EG⊂平面PEC,∴无论P在什么位置,都有//AF平面PEC;(2)由于在折起过程中,△PDE 中,PD =PE =1,PD ⊥PE 始终成立,∴△PDE 为等腰直角三角形,当点P 在平面ABCD 上的射影落在线段DE 上时,设P 的射影为H ,则H 在DE 上,∴PH ⊂平面PDE ,又∵PH ⊥平面CDE ,∴平面PDE ⊥平面CDE ,由于∠CEE =180°-∠AED -∠BEC =180°-45°-45°=90°,∴CE ⊥DE ,∴CE ⊥平面PDE ,∴CE ⊥PE ,CE ⊥PD ,由PD ⊥CE ,PD ⊥PE ,PE ∩CE =E ,可得PD ⊥平面PCE ,∴PD ⊥PC ,取CD 的中点为O ,由直角三角形的中线性质可得OD =OE =OC =OP ,∴O 就是三棱锥P ECD -的外接球的球心,∴外接球的半径为1,外接球的体积34433V R ππ==.【点睛】本题考查线面平行的证明,几何体的外接球的体积问题,求证线面平行,关键是在平面内找到与直线平行的直线,常常利用平行四边形的判定定理和性质定理,求外接球的问题时,关键是找到外接球的球心所在位置,本题题中利用线面、面面垂直的判定与性质,证明了△CPD 和△CED都是直角三角形,这是关键.8.(1)证明见解析;(2)G点即为A1点.【分析】(1)利用线面垂直的判定定理证明DA1⊥平面ABC1D1,然后证得;(2)取CD的中点H,可证DF⊥平面AHE,得到DF⊥AE,进而AE⊥平面DFA1,从而判定G 点即为A1点.【详解】(1)连接AD1,BC1,由正方体的性质可知,DA1⊥AD1,DA1⊥AB,又AB∩AD1=A,所以DA1⊥平面ABC1D1,又AE⊂平面ABC1D1,所以DA1⊥AE.(2)如图所示,G点即为A1点,证明如下:由(1)可知AE⊥DA1,取CD的中点H,连接AH,EH,由DF⊥AH,DF⊥EH,AH∩EH=H,可证DF⊥平面AHE,所以DF⊥AE,又DF∩A1D=D,所以AE⊥平面DFA1,即AE⊥平面DFG.。

直线、平面垂直的判定及其性质课件

直线、平面垂直的判定及其性质课件
第5讲 直线、平面垂直的判定及其性质
Page 1
【2013 年高考会这样考】 1.以选择题、填空题的形式考查垂直关系的判定,经常与命题 或充要条件相结合. 2.以锥体、柱体为载体考查线面垂直的判定.考查空间想象能 力、逻辑思维能力,考查转化与化归思想的应用能力. 3.能以立体几何中的定义、公理和定理为出发点,运用公理、 定理和已获得的结论,证明一些有关空间中线面垂直的有关性 质和判定定理的简单命题.
Page 2
【复习指导】 1. 垂直是立体几何的必考题目, 且几乎每年都有一个解答题出 现,所以是高考的热点,是复习的重点.纵观历年来的高考题, 立体几何中没有难度过大的题,所以复习要抓好三基:基础知 识,基本方法,基本能力. 2.要重视和研究数学思想、数学方法.在本节中“化归”思想 尤为重要,不论何种“垂直”都要化归到“线线垂直”,观察 与分析几何体中线与线的关系是解题的突破口.
Page 24
考向三 平行与垂直关系的综合应用 【例3】►如图,在四面体ABCD中,CB=CD,AD⊥BD,点 E、F分别是AB、BD的中点.求证: (1)直线EF∥平面ACD; (2)平面EFC⊥平面BCD. [审题视点] EFC. 第(1)问需证明EF∥AD;第(2)问需证明BD⊥平面
Page 25
A.l与平面α内的两条直线垂直 B.l与平面α内无数条直线垂直 C.l与平面α内的某一条直线垂直 D.l与平面α内任意一条直线垂直 解析 由直线与平面垂直的定义,可知D正确. 答案 D
Page 10
2.(2012· 安庆月考)在空间中,下列命题正确的是( A.平行直线的平行投影重合 B.平行于同一直线的两个平面平行 C.垂直于同一平面的两个平面平行 D.垂直于同一平面的两条直线平行
Page 3

高中数学知识点总结(第八章 立体几何 第五节 直线、平面垂直的判定与性质)

高中数学知识点总结(第八章 立体几何 第五节 直线、平面垂直的判定与性质)

第五节 直线、平面垂直的判定与性质一、基础知识1.直线与平面垂直 (1)直线和平面垂直的定义:直线l 与平面α内的任意一条直线都垂直, 就说直线l 与平面α互相垂直.(2)直线与平面垂直的判定定理及性质定理:文字语言 图形语言符号语言判定定理一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直⎭⎪⎬⎪⎫a ,b ⊂αa ∩b =Ol ⊥a l ⊥b⇒l ⊥α 性质定理 垂直于同一个平面的两条直线平行⎭⎪⎬⎪⎫a ⊥αb ⊥α⇒a ∥b⎣⎢⎡⎦⎥⎤❶如果一条直线与平面内再多(即无数条)的直线垂直,但这些直线不相交就不能说明这条直线与此平面垂直. 2.平面与平面垂直的判定定理与性质定理文字语言 图形语言符号语言判定定理一个平面过另一个平面的垂线❷,则这两个平面垂直⎭⎪⎬⎪⎫l ⊂βl ⊥α⇒α⊥β 性质定理两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直⎭⎪⎬⎪⎫α⊥βl ⊂βα∩β=a l ⊥a ⇒l ⊥α[❷要求一平面只需过另一平面的垂线.]二、常用结论直线与平面垂直的五个结论(1)若一条直线垂直于一个平面,则这条直线垂直于这个平面内的任意直线.(2)若两条平行线中的一条垂直于一个平面,则另一条也垂直于这个平面.(3)垂直于同一条直线的两个平面平行.(4)一条直线垂直于两平行平面中的一个,则这一条直线与另一个平面也垂直.(5)两个相交平面同时垂直于第三个平面,它们的交线也垂直于第三个平面.考点一直线与平面垂直的判定与性质[典例]如图,在四棱锥P­ABCD中,P A⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,P A=AB=BC,E是PC的中点.求证:(1)CD⊥AE;(2)PD⊥平面ABE.[证明](1)在四棱锥P­ABCD中,∵P A⊥底面ABCD,CD⊂底面ABCD,∴P A⊥CD,又∵AC⊥CD,且P A∩AC=A,∴CD⊥平面P AC.∵AE⊂平面P AC,∴CD⊥AE.(2)由P A=AB=BC,∠ABC=60°,可得AC=P A.∵E是PC的中点,∴AE⊥PC.由(1)知AE⊥CD,且PC∩CD=C,∴AE⊥平面PCD.∵PD⊂平面PCD,∴AE⊥PD.∵P A⊥底面ABCD,AB⊂底面ABCD,∴P A⊥AB.又∵AB⊥AD,且P A∩AD=A,∴AB⊥平面P AD,∵PD⊂平面P AD,∴AB⊥PD.又∵AB∩AE=A,∴PD⊥平面ABE.[解题技法]证明线面垂直的4种方法(1)线面垂直的判定定理:l ⊥a ,l ⊥b ,a ⊂α,b ⊂α,a ∩b =P ⇒l ⊥α. (2)面面垂直的性质定理:α⊥β,α∩β=l ,a ⊂α,a ⊥l ⇒a ⊥β. (3)性质:①a ∥b ,b ⊥α⇒a ⊥α,②α∥β,a ⊥β⇒a ⊥α. (4)α⊥γ,β⊥γ,α∩β=l ⇒l ⊥γ.(客观题可用) [口诀归纳]线面垂直的关键,定义来证最常见, 判定定理也常用,它的意义要记清. 平面之内两直线,两线相交于一点, 面外还有一直线,垂直两线是条件. [题组训练]1.(2019·安徽知名示范高中联考)如图,在直三棱柱ABC ­A 1B 1C 1中,AB =BC =BB 1,AB 1∩A 1B =E ,D 为AC 上的点,B 1C ∥平面A 1BD .(1)求证:BD ⊥平面A 1ACC 1;(2)若AB =1,且AC ·AD =1,求三棱锥A ­BCB 1的体积. 解: (1)证明:如图,连接ED ,∵平面AB 1C ∩平面A 1BD =ED ,B 1C ∥平面A 1BD , ∴B 1C ∥ED , ∵E 为AB 1的中点, ∴D 为AC 的中点, ∵AB =BC ,∴BD ⊥AC .∵A 1A ⊥平面ABC ,BD ⊂平面ABC ,∴A 1A ⊥BD . 又∵A 1A ,AC 是平面A 1ACC 1内的两条相交直线, ∴BD ⊥平面A 1ACC 1.(2)由AB =1,得BC =BB 1=1,由(1)知AD =12AC ,又AC ·AD =1,∴AC 2=2,∴AC 2=2=AB 2+BC 2,∴AB ⊥BC , ∴S △ABC =12AB ·BC =12,∴V A ­BCB 1=V B 1­ABC =13S △ABC ·BB 1=13×12×1=16.2.如图,S是Rt△ABC所在平面外一点,且SA=SB=SC,D为斜边AC的中点.(1)求证:SD⊥平面ABC;(2)若AB=BC,求证:BD⊥平面SAC.证明:(1)如图所示,取AB的中点E,连接SE,DE,在Rt△ABC中,D,E分别为AC,AB的中点.∴DE∥BC,∴DE⊥AB,∵SA=SB,∴SE⊥AB.又SE∩DE=E,∴AB⊥平面SDE.又SD⊂平面SDE,∴AB⊥SD.在△SAC中,∵SA=SC,D为AC的中点,∴SD⊥AC.又AC∩AB=A,∴SD⊥平面ABC.(2)∵AB=BC,∴BD⊥AC,由(1)可知,SD⊥平面ABC,又BD⊂平面ABC,∴SD⊥BD,又SD∩AC=D,∴BD⊥平面SAC.考点二面面垂直的判定与性质[典例](2018·江苏高考)在平行六面体ABCD­A1B1C1D1中,AA1=AB,AB1⊥B1C1.求证:(1)AB∥平面A1B1C;(2)平面ABB1A1⊥平面A1BC.[证明](1)在平行六面体ABCD­A1B1C1D1中,AB∥A1B1.因为AB⊄平面A1B1C,A1B1⊂平面A1B1C,所以AB∥平面A1B1C.(2)在平行六面体ABCD­A1B1C1D1中,四边形ABB1A1为平行四边形.又因为AA1=AB,所以四边形ABB1A1为菱形,因此AB1⊥A1B.因为AB1⊥B1C1,BC∥B1C1,所以AB1⊥BC.因为A1B∩BC=B,A1B⊂平面A1BC,BC⊂平面A1BC,所以AB1⊥平面A1BC.因为AB1⊂平面ABB1A1,所以平面ABB1A1⊥平面A1BC.[解题技法] 证明面面垂直的2种方法 定义法利用面面垂直的定义,即判定两平面所成的二面角为直二面角,将证明面面垂直问题转化为证明平面角为直角的问题定理法 利用面面垂直的判定定理,即证明其中一个平面经过另一个平面的一条垂线,把问题转化成证明线线垂直加以解决[题组训练]1.(2019·武汉调研)如图,三棱锥P ­ABC 中,底面ABC 是边长为2的正三角形,P A ⊥PC ,PB =2.求证:平面P AC ⊥平面ABC .证明:取AC 的中点O ,连接BO ,PO . 因为△ABC 是边长为2的正三角形, 所以BO ⊥AC ,BO = 3.因为P A ⊥PC ,所以PO =12AC =1.因为PB =2,所以OP 2+OB 2=PB 2,所以PO ⊥OB . 因为AC ∩OP =O , 所以BO ⊥平面P AC . 又OB ⊂平面ABC , 所以平面P AC ⊥平面ABC .2.(2018·安徽淮北一中模拟)如图,四棱锥P ­ABCD 的底面是矩形,P A ⊥平面ABCD ,E ,F 分别是AB ,PD 的中点,且P A =AD .求证:(1)AF ∥平面PEC ; (2)平面PEC ⊥平面PCD .证明:(1)取PC 的中点G ,连接FG ,EG , ∵F 为PD 的中点,G 为PC 的中点, ∴FG 为△CDP 的中位线, ∴FG ∥CD ,FG =12CD .∵四边形ABCD 为矩形,E 为AB 的中点, ∴AE ∥CD ,AE =12CD .∴FG =AE ,FG ∥AE , ∴四边形AEGF 是平行四边形,∴AF ∥EG ,又EG ⊂平面PEC ,AF ⊄平面PEC ,∴AF∥平面PEC.(2)∵P A=AD,F为PD中点,∴AF⊥PD,∵P A⊥平面ABCD,CD⊂平面ABCD,∴P A⊥CD,又∵CD⊥AD,AD∩P A=A,∴CD⊥平面P AD,∵AF⊂平面P AD,∴CD⊥AF.又PD∩CD=D,∴AF⊥平面PCD.由(1)知EG∥AF,∴EG⊥平面PCD,又EG⊂平面PEC,∴平面PEC⊥平面PCD.[课时跟踪检测]A级1.设a,b是两条不同的直线,α,β是两个不同的平面,则能得出a⊥b的是() A.a⊥α,b∥β,α⊥βB.a⊥α,b⊥β,α∥βC.a⊂α,b⊥β,α∥βD.a⊂α,b∥β,α⊥β解析:选C对于C项,由α∥β,a⊂α可得a∥β,又b⊥β,得a⊥b,故选C.2.(2019·湘东五校联考)已知直线m,l,平面α,β,且m⊥α,l⊂β,给出下列命题:①若α∥β,则m⊥l;②若α⊥β,则m∥l;③若m⊥l,则α⊥β;④若m∥l,则α⊥β.其中正确的命题是()A.①④B.③④C.①②D.①③解析:选A对于①,若α∥β,m⊥α,l⊂β,则m⊥l,故①正确,排除B.对于④,若m∥l,m⊥α,则l⊥α,又l⊂β,所以α⊥β.故④正确.故选A.3.已知P A垂直于以AB为直径的圆所在的平面,C为圆上异于A,B两点的任一点,则下列关系不正确的是()A.P A⊥BC B.BC⊥平面P ACC.AC⊥PB D.PC⊥BC解析:选C由P A⊥平面ACB⇒P A⊥BC,故A不符合题意;由BC⊥P A,BC⊥AC,P A∩AC=A,可得BC⊥平面P AC,所以BC⊥PC,故B、D不符合题意;AC⊥PB显然不成立,故C符合题意.4.如图,在四面体ABCD中,已知AB⊥AC,BD⊥AC,那么点D在平面ABC内的射影H必在()A.直线AB上B.直线BC上C.直线AC上D.△ABC内部解析:选A因为AB⊥AC,BD⊥AC,AB∩BD=B,所以AC⊥平央ABD,又AC⊂平面ABC,所以平面ABC⊥平面ABD,所以点D在平面ABC内的射影H必在直线AB上.5.如图,在正四面体P­ABC中,D,E,F分别是AB,BC,CA的中点,则下面四个结论不成立的是()A.BC∥平面PDFB.DF⊥平面P AEC.平面PDF⊥平面P AED.平面PDE⊥平面ABC解析:选D因为BC∥DF,DF⊂平面PDF,BC⊄平面PDF,所以BC∥平面PDF,故选项A正确.在正四面体中,AE⊥BC,PE⊥BC,AE∩PE=E,所以BC⊥平面P AE,又DF∥BC,则DF⊥平面P AE,从而平面PDF⊥平面P AE.因此选项B、C均正确.6.如图,已知∠BAC=90°,PC⊥平面ABC,则在△ABC,△P AC的边所在的直线中,与PC垂直的直线有________个;与AP垂直的直线有________个.解析:∵PC⊥平面ABC,∴PC垂直于直线AB,BC,AC.∵AB⊥AC,AB⊥PC,AC∩PC=C,∴AB⊥平面P AC,又∵AP⊂平面P AC,∴AB⊥AP,与AP垂直的直线是AB.答案:317.设α和β为不重合的两个平面,给出下列命题:①若α内的两条相交直线分别平行于β内的两条直线,则α∥β;②若α外的一条直线l与α内的一条直线平行,则l∥α;③设α∩β=l,若α内有一条直线垂直于l,则α⊥β;④直线l⊥α的充要条件是l与α内的两条直线垂直.其中所有的真命题的序号是________.解析:①正确;②正确;满足③的α与β不一定垂直,所以③错误;直线l⊥α的充要条件是l与α内的两条相交直线垂直,所以④错误.故所有的真命题的序号是①②.答案:①②8.在直三棱柱ABC­A1B1C1中,平面α与棱AB,AC,A1C1,A1B1分别交于点E,F,G,H,且直线AA1∥平面α.有下列三个命题:①四边形EFGH是平行四边形;②平面α∥平面BCC1B1;③平面α⊥平面BCFE.其中正确命题的序号是________.解析:如图所示,因为AA1∥平面α,平面α∩平面AA1B1B=EH,所以AA1∥EH.同理AA1∥GF,所以EH∥GF,又ABC­A1B1C1是直三棱柱,易知EH=GF=AA1,所以四边形EFGH是平行四边形,故①正确;若平面α∥平面BB1C1C,由平面α∩平面A1B1C1=GH,平面BCC1B1∩平面A1B1C1=B1C1,知GH∥B1C1,而GH∥B1C1不一定成立,故②错误;由AA1⊥平面BCFE,结合AA1∥EH知EH⊥平面BCFE,又EH⊂平面α,所以平面α⊥平面BCFE,故③正确.答案:①③9.(2019·太原模拟)如图,在四棱锥P­ABCD中,底面ABCD是菱形,∠BAD=60°,P A=PD=AD=2,点M在线段PC上,且PM=2MC,N为AD的中点.(1)求证:AD⊥平面PNB;(2)若平面P AD⊥平面ABCD,求三棱锥P­NBM的体积.解:(1)证明:连接BD.∵P A=PD,N为AD的中点,∴PN⊥AD.又底面ABCD是菱形,∠BAD=60°,∴△ABD为等边三角形,∴BN⊥AD,又PN∩BN=N,∴AD⊥平面PNB.(2)∵P A=PD=AD=2,∴PN=NB= 3.又平面P AD⊥平面ABCD,平面P AD∩平面ABCD=AD,PN⊥AD,∴PN⊥平面ABCD,∴PN⊥NB,∴S△PNB=12×3×3=32.∵AD⊥平面PNB,AD∥BC,∴BC ⊥平面PNB .又PM =2MC , ∴V P ­NBM =V M ­PNB =23V C ­PNB =23×13×32×2=23.10.如图,在直三棱柱ABC ­A 1B 1C 1中,D ,E 分别为AB ,BC 的中点,点F 在侧棱B 1B 上,且B 1D ⊥A 1F ,A 1C 1⊥A 1B 1.求证:(1)直线DE ∥平面A 1C 1F ; (2)平面B 1DE ⊥平面A 1C 1F .证明:(1)在直三棱柱ABC ­A 1B 1C 1中,AC ∥A 1C 1, 在△ABC 中,因为D ,E 分别为AB ,BC 的中点. 所以DE ∥AC ,于是DE ∥A 1C 1,又因为DE ⊄平面A 1C 1F ,A 1C 1⊂平面A 1C 1F , 所以直线DE ∥平面A 1C 1F .(2)在直三棱柱ABC ­A 1B 1C 1中,AA 1⊥平面A 1B 1C 1, 因为A 1C 1⊂平面A 1B 1C 1,所以AA 1⊥A 1C 1,又因为A 1C 1⊥A 1B 1,A 1B 1∩AA 1=A 1,AA 1⊂平面ABB 1A 1,A 1B 1⊂平面ABB 1A 1, 所以A 1C 1⊥平面ABB 1A 1, 因为B 1D ⊂平面ABB 1A 1, 所以A 1C 1⊥B 1D ,又因为B 1D ⊥A 1F ,A 1C 1∩A 1F =A 1,A 1C 1⊂平面A 1C 1F ,A 1F ⊂平面A 1C 1F , 所以B 1D ⊥平面A 1C 1F , 因为直线B 1D ⊂平面B 1DE , 所以平面B 1DE ⊥平面A 1C 1F .B 级1.(2018·全国卷Ⅱ)如图,在三棱锥P ­ABC 中,AB =BC =22,P A =PB =PC =AC =4,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且MC =2MB ,求点C 到平面POM 的距离. 解:(1)证明:因为P A =PC =AC =4,O 为AC 的中点, 所以PO ⊥AC ,且PO =2 3. 连接OB , 因为AB =BC =22AC , 所以△ABC 为等腰直角三角形,且OB ⊥AC ,OB =12AC =2.所以PO 2+OB 2=PB 2,所以PO ⊥OB . 又因为AC ∩OB =O ,所以PO ⊥平面ABC . (2)作CH ⊥OM ,垂足为H , 又由(1)可得OP ⊥CH , 所以CH ⊥平面POM .故CH 的长为点C 到平面POM 的距离.由题设可知OC =12AC =2,CM =23BC =423,∠ACB =45°,所以OM =253,CH =OC ·MC ·sin ∠ACB OM =455.所以点C 到平面POM 的距离为455.2.(2019·河南中原名校质量考评)如图,在四棱锥P ­ABCD 中,AB ∥CD ,AB ⊥AD ,CD =2AB ,平面P AD ⊥底面ABCD ,P A ⊥AD ,E ,F 分别是CD ,PC 的中点.求证:(1)BE ∥平面P AD ; (2)平面BEF ⊥平面PCD .证明:(1)∵AB ∥CD ,CD =2AB ,E 是CD 的中点, ∴AB ∥DE 且AB =DE , ∴四边形ABED 为平行四边形,∴AD ∥BE ,又BE ⊄平面P AD ,AD ⊂平面P AD , ∴BE ∥平面P AD .(2)∵AB ⊥AD ,∴四边形ABED 为矩形, ∴BE ⊥CD ,AD ⊥CD ,∵平面P AD ⊥底面ABCD ,平面P AD ∩底面ABCD =AD ,P A ⊥AD , ∴P A ⊥底面ABCD , ∴P A ⊥CD ,又P A ∩AD =A , ∴CD ⊥平面P AD ,∴CD ⊥PD , ∵E ,F 分别是CD ,PC 的中点, ∴PD ∥EF ,∴CD ⊥EF ,又EF ∩BE =E , ∴CD ⊥平面BEF ,∵CD ⊂平面PCD ,∴平面BEF ⊥平面PCD .。

直线与平面垂直的判定定理与性质定理ppt课件

直线与平面垂直的判定定理与性质定理ppt课件
24
7. 如图,在△ABC中,∠ACB=90°,AB=8,∠ABC=60°,PC⊥平 面ABC,PC=4,M是AB上的一个动点,则PM的最小值为________.
M
25
11. 如图,在△ABC中,∠ABC=90°,D是AC的中点,S是△ABC 所在平面外一点,且SA=SB=SC. (1)求证:SD⊥平面ABC; (2)若AB=BC,求证:BD⊥平面SAC.
6
②二面角的平面角
如图,过二面角 α-l-β 的棱 l 上一点 O 在两个半平面内分别 作 BO⊥l,AO⊥l,则__∠__A_O_B__就叫做二面角 α-l-β 的平面角. ③二面角的范围 设二面角的平面角为 θ,则 θ∈_[_0_,__π_]__.
π ④当 θ=___2_____时,二面角叫做直二面角.
7
2.学会三种垂直关系的转化
在证明两平面垂直时一般先从现有的直线中寻找平面的垂 线,若图中不存在这样的直线,则可通过作辅助线来解决.如 有平面垂直时,一般要用性质定理,在一个平面内作交线的 垂线,使之转化为线面垂直,然后进一步转化为线线垂直.
8
1.(2015·高考浙江卷)设 α,β是两个不同的平面,l,m 是
质 个平面的两
定 条直线 理 __平__行____
符号语言
a⊥α b⊥α
⇒a∥
b
3
2.平面与平面垂直的判定定理与性质定理
文字语言
图形语言
一个平面过另一 判定 个平面的_垂_线__,
定理 则这两个平面互
相垂直
两个平面互相垂
直,则一个平面
性质 定理
内垂直于_交__线___
的直线垂直于另
一个平面
符号语言
16
3.如图,在四棱锥 P-ABCD 中,AB∥CD,AB⊥AD, CD=2AB,平面 PAD⊥底面 ABCD,PA⊥AD,E 和 F 分别是 CD 和 PC 的中点.求证: (1)PA⊥底面 ABCD; (2)BE∥平面 PAD; (3)平面 BEF⊥平面 PCD.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线面垂直 ●知识点 1.直线和平面垂直定义 如果一条直线和一个平面内的任何一条直线都垂直,就说这条直线和这个平面垂直. 2.线面垂直判定定理和性质定理 判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面. 判定定理:如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于同一平面. 判定定理:一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面. 性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行. 3.三垂线定理和它的逆定理. 三垂线定理:在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它和这条斜线垂直. 逆定理:在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线在该平面上的射影垂直.

●题型示例 【例1】 如图所示,已知点S是平面ABC外一点, ∠ABC=90°,SA⊥平面ABC,点A在直线SB和SC上的 射影分别为点E、F,求证:EF⊥SC. 【解前点津】 用分析法寻找解决问题的途径,假设 EF⊥SC成立,结合AF⊥SC可推证SC⊥平面AEF,这样 SC⊥AE,结合AE⊥SB,可推证AE⊥平面SBC,因此证明 AE⊥平面SBC是解决本题的关键环节.由题设SA⊥平面ABC, ∠ABC=90°,可以推证BC⊥AE,结合AE⊥SB完成AE⊥平 面SBC的证明. 【规范解答】

【解后归纳】 题设中条件多,图形复杂,结合题设理清图形中基本元素之间的位置关系是解决问题的关键.

例1题图 【例2】 已知:M∩N=AB,PQ⊥M于Q,PO⊥N于O,OR⊥M于R,求证:QR⊥AB. 【解前点津】 由求证想判定,欲证线线垂直,方法有(1)a∥b,a⊥cb⊥c;(2)a⊥α,bαa⊥b;(3)三垂线定理及其逆定理. 由已知想性质,知线面垂直,可推出线线垂直或线线平行.

【解后归纳】 处于非常规位置图形上的三垂线定理或逆定理的应用问题,要抓住“一个面”、“四条线”. 所谓“一个面”:就是要确定一个垂面,三条垂线共处于垂面之上. 所谓“四条线”:就是垂线、斜线、射影以及平面内的第四条线,这四条线中垂线是关键的一条线,牵一发而动全身,应用时一般可按下面程序进行操作:确定垂面、抓准斜线、作出垂线、连结射影,寻第四条线. 【例3】 已知如图(1)所示,矩形纸片AA′A′1A1,B、C、B1、C1 分别为AA′,A1A′的三等分点,将矩形纸片沿BB1,CC1折成如图(2)形状(正三棱柱),若面对角线AB1⊥BC1,求证:A1C⊥AB1.

例3题图解(1) 【解前点津】 题设主要条件是AB1⊥BC,而结论是AB1⊥A1C,题设,题断有对答性,可在ABB1A1上作文章,只要取A1B1中点D1,就把异面直线AB1与BC1垂直关系转换到ABB1A1同一平面内AB1与BD1垂直关系,这里要感谢三垂线逆定理.自然想到题断AB1与A1C垂直用同法(对称原理)转换到同一平面,取AB中点D即可,只要证得A1D垂直于AB1,事实上DBD1A1,为平行四边形,解题路子清楚了.

【解后归纳】 证线线垂直主要途径是: (1)三垂线正逆定理,(2)线面,线线垂直互相转化. 利用三垂线正逆定理完成线线归面工作,在平面内完成作解任务. 证线线垂直,线面垂直,常常利用线面垂直,线线垂直作为桥梁过渡过来,这种转化思想有普遍意义,利用割补法把几何图形规范化便于应用定义定理和公式,也是不容忽视的常用方法. 【例4】 空间三条线段AB,BC,CD,AB⊥BC,BC⊥CD,已知AB=3,BC=4,CD=6,则AD的取值范围是 . 【解前点津】 如图,在直角梯形ABCD1中,CD1=6, AD1的长是AD的最小值,其中AH⊥CD1,AH=BC=4,HD1=3, ∴AD1=5;在直角△AHD2中,CD2=6,AD2是AD的最大值为

974)36(22222AHHD

【解后归纳】 本题出题形式新颖、灵活性大,很多学生对此类题感到无从入手,其实冷静分析,找出隐藏的条件很容易得出结论.

例4题图 ●对应训练 分阶提升 一、基础夯实 1.设M表示平面,a、b表示直线,给出下列四个命题:

①MbMaba// ②baMbMa// ③baMab∥M ④baMa//b⊥M. 其中正确的命题是 ( ) A.①② B.①②③ C.②③④ D.①②④ 2.下列命题中正确的是 ( ) A.若一条直线垂直于一个平面内的两条直线,则这条直线垂直于这个平面 B.若一条直线垂直于一个平面内的无数条直线,则这条直线垂直于这个平面 C.若一条直线平行于一个平面,则垂直于这个平面的直线必定垂直于这条直线 D.若一条直线垂直于一个平面,则垂直于这条直线的另一条直线必垂直于这个平面 3.如图所示,在正方形ABCD中,E、F分别是AB、BC的中点.现在沿DE、DF及EF把△ADE、△CDF和△BEF折起,使A、B、C三点重合,重合后的点记为P.那么,在四面体P—DEF中,必有 ( )

A.DP⊥平面PEF B.DM⊥平面PEF C.PM⊥平面DEF D.PF⊥平面DEF 4.设a、b是异面直线,下列命题正确的是 ( ) A.过不在a、b上的一点P一定可以作一条直线和a、b都相交 B.过不在a、b上的一点P一定可以作一个平面和a、b都垂直 C.过a一定可以作一个平面与b垂直 D.过a一定可以作一个平面与b平行 5.如果直线l,m与平面α,β,γ满足:l=β∩γ,l∥α,mα和m⊥γ,那么必有 ( ) A.α⊥γ且l⊥m B.α⊥γ且m∥β C.m∥β且l⊥m D.α∥β且α⊥γ 6.AB是圆的直径,C是圆周上一点,PC垂直于圆所在平面,若BC=1,AC=2,PC=1,则P到AB的距离为 ( )

A.1 B.2 C.552 D.553 7.有三个命题: ①垂直于同一个平面的两条直线平行; ②过平面α的一条斜线l有且仅有一个平面与α垂直; ③异面直线a、b不垂直,那么过a的任一个平面与b都不垂直 其中正确命题的个数为 ( ) A.0 B.1 C.2 D.3 8.d是异面直线a、b的公垂线,平面α、β满足a⊥α,b⊥β,则下面正确的结论是 ( )

第3题图 A.α与β必相交且交线m∥d或m与d重合 B.α与β必相交且交线m∥d但m与d不重合 C.α与β必相交且交线m与d一定不平行 D.α与β不一定相交 9.设l、m为直线,α为平面,且l⊥α,给出下列命题 ① 若m⊥α,则m∥l;②若m⊥l,则m∥α;③若m∥α,则m⊥l;④若m∥l,则m⊥α, 其中真命题...的序号是 ( )

A.①②③ B.①②④ C.②③④ D.①③④ 10.已知直线l⊥平面α,直线m平面β,给出下列四个命题: ①若α∥β,则l⊥m;②若α⊥β,则l∥m;③若l∥m,则α⊥β;④若l⊥m,则α∥β. 其中正确的命题是 ( ) A.③与④ B.①与③ C.②与④ D.①与②

二、思维激活 11.如图所示,△ABC是直角三角形,AB是斜边,三个顶点在平面α的同侧,它们在α内的射影分别为A′,B′,C′,如果△A′B′C′是正三角形,且AA′=3cm,BB′=5cm,CC′=4cm,则△A′B′C′的面积是 .

12.如图所示,在直四棱柱A1B1C1D1—ABCD中,当底面四边形ABCD满足条件 时,有A1C⊥B1D1(注:填上你认为正确的一种条件即可,不必考虑所有可能的情形) 13.如图所示,在三棱锥V—ABC中,当三条侧棱VA、VB、VC之间满足条件 时,有VC⊥AB.(注:填上你认为正确的一种条件即可) 三、能力提高 14.如图所示,三棱锥V-ABC中,AH⊥侧面VBC,且H是△VBC的垂心,BE是VC边上的高. (1)求证:VC⊥AB; (2)若二面角E—AB—C的大小为30°,求VC与平面ABC 所成角的大小.

第11题图 第12题图 第13题图

第14题图 15.如图所示,PA⊥矩形ABCD所在平面,M、N分别是AB、PC的中点. (1)求证:MN∥平面PAD. (2)求证:MN⊥CD. (3)若∠PDA=45°,求证:MN⊥平面PCD.

16.如图所示,在四棱锥P—ABCD中,底面ABCD是平行四边形,∠BAD=60°,AB=4,AD=2,侧棱PB=15,PD=3. (1)求证:BD⊥平面PAD. (2)若PD与底面ABCD成60°的角,试求二面角P—BC—A的大小.

17.已知直三棱柱ABC-A1B1C1中,∠ACB=90°,∠BAC=30°,BC=1,AA1=6,M是CC1的中点,求证:AB1⊥A1M.

18.如图所示,正方体ABCD—A′B′C′D′的棱长为a,M是AD的中点,N是BD′上一点,且D′N∶NB=1∶2,MC与BD交于P. (1)求证:NP⊥平面ABCD. (2)求平面PNC与平面CC′D′D所成的角. (3)求点C到平面D′MB的距离.

第15题图 第16题图

第18题图 第4课 线面垂直习题解答 1.A 两平行中有一条与平面垂直,则另一条也与该平面垂直,垂直于同一平面的两直线平行. 2.C 由线面垂直的性质定理可知. 3.A 折后DP⊥PE,DP⊥PF,PE⊥PF. 4.D 过a上任一点作直线b′∥b,则a,b′确定的平面与直线b平行. 5.A依题意,m⊥γ且mα,则必有α⊥γ,又因为l=β∩γ则有lγ,而m⊥γ则l⊥m,故选A.

6.D过P作PD⊥AB于D,连CD,则CD⊥AB,AB=522BCAC,52ABBCACCD,

∴PD=55354122CDPC. 7.D 由定理及性质知三个命题均正确. 8.A 显然α与β不平行. 9.D 垂直于同一平面的两直线平行,两条平行线中一条与平面垂直,则另一条也与该平面垂直. 10.B ∵α∥β,l⊥α,∴l⊥m

11.23cm2 设正三角A′B′C′的边长为a. ∴AC2=a2+1,BC2=a2+1,AB2=a2+4, 又AC2+BC2=AB2,∴a2=2.

S△A′B′C′=23432acm2. 12.在直四棱柱A1B1C1D1—ABCD中当底面四边形ABCD满足条件AC⊥BD(或任何能推导出这个条件的其它条件,例如ABCD是正方形,菱形等)时,有A1C⊥B1D1(注:填上你认为正确的一种条件即可,不必考虑所有可能的情形).

点评:本题为探索性题目,由此题开辟了填空题有探索性题的新题型,此题实质考查了三垂线

定理但答案不惟一,要求思维应灵活. 13.VC⊥VA,VC⊥AB. 由VC⊥VA,VC⊥AB知VC⊥平面VAB. 14.(1)证明:∵H为△VBC的垂心, ∴VC⊥BE,又AH⊥平面VBC, ∴BE为斜线AB在平面VBC上的射影,∴AB⊥VC. (2)解:由(1)知VC⊥AB,VC⊥BE, ∴VC⊥平面ABE,在平面ABE上,作ED⊥AB,又AB⊥VC, ∴AB⊥面DEC. ∴AB⊥CD,∴∠EDC为二面角E—AB—C的平面角, ∴∠EDC=30°,∵AB⊥平面VCD, ∴VC在底面ABC上的射影为CD. ∴∠VCD为VC与底面ABC所成角,又VC⊥AB,VC⊥BE, ∴VC⊥面ABE,∴VC⊥DE,

相关文档
最新文档