认识晶体(完整版)

合集下载

认识晶体(完整版).

认识晶体(完整版).

2.非等径圆球的密堆积
由离子构成的晶体可视为不等径圆球的密堆 积,即将不同半径的圆球的堆积看成是大球先 按一定方式做等径圆球的密堆积。小球再填充 在大球所形成的空隙中。
配位数:一个原子或离子周围所邻接的原子或离
子的数目。 如NaCl配位数为6,即每个Na+离子周 围直接连有6个CI-,反之亦然。
常见三种密堆积的晶胞
顶 ----1/8 棱----1/4 面----1/2 心----1
2001年报道的硼和镁形成的化合物刷新了 金属化合物超导温度的最高记录。如图所 示的是该化合物的晶体结构单元:镁原子 间形成正六棱柱,且棱柱的上下底面还各 有1个镁原子,6个硼原子位于棱柱内。则 该化合物的化学式可表示为
A. MgB B. MgB2 C. Mg2B D. Mg3B2
微粒数为:12×1/6 + 2×1/2 + 3 = 6
(2)面心立方:在立方体顶点的微粒为8 个晶胞共有,在面心的为2个晶胞共有。
微粒数为:8×1/8 + 6×1/2 = 4
(3)体心立方:在立方体顶点的微粒 为8个晶胞共享,处于体心的金属原 子全部属于该晶胞。
微粒数为:8×1/8 + 1 = 2 长方体晶胞中不同位置的粒子对晶胞的贡献:
1.等径圆球的密堆积 由于金属键没有方向性,每个金属原子中的
电子分布基本是球对称的,所以可以把金属晶 体看成是由直径相等的圆球的三维空间堆积而 成的。等径圆球的密堆积方式有A3型最密堆积, A1型最密堆积。
在一个层中,最紧密的堆积方式,是一个球与周围 6 个球相切,在中心的周围形成 6 个凹位,将其算为第 一层。
o原子
Ti原子
Ba原子
练习5:下图为高温超导领域的一种化合物——钙钛矿晶体结构, 该结构是具有代表性的最小重复单元。

人教化学选修3第三章第一节 晶体的常识(共19张PPT)

人教化学选修3第三章第一节 晶体的常识(共19张PPT)

5.晶体具有各向异性。如蓝晶石(Al2O3·SiO2)在不同方向上 的硬度不同;又如石墨在与层垂直的方向上的导电率与层平 行的方向上的导电率1∕104。晶体的各向异性主要表现在是: ()
①硬度 ②导热性 ③导电性 ④光学性质
A.①③
B.②④
C.①②③
D.①②③④
6.下列关于晶体自范性的叙述中,不正确的是
自范性
微观结构
晶体
有(能自发呈现多面体外 形)
非晶 没有(不能自发呈现多面
体 体外形)
原子在三维空间里 呈周期性有序排列
原子排列相对无序
自范性:①晶体自范性的本质:是晶体中粒子微观空间里呈现
周期性的有序排列的宏观表象。
②晶体自范性的条件之一:生长速率适当。
2、分类
归纳新知
晶体
离子晶体 原子晶体 分子晶体 金属晶体
D.玛瑙
2.下列关于晶体与非晶体的说法正确的是:( )
A.晶体一定比非晶体的熔点高
B.晶体有自范性但排列无序
C.非晶体无自范性而且排列无序
D.固体SiO2一定是晶体
3.区别晶体与非晶体最可靠的科学方法是:( )
A.熔沸点
B.硬度
C.颜色
D.x-射线衍射实验
4.下列过程不可以得到晶体的有:( ) A.对NaCl饱和溶液降温,所得到的固体 B.气态H2O冷却为液态,然后再冷却成的固态 C.熔融的KNO3冷却后所得的固体 D.将液态的玻璃冷却成所得到的固体
为什么晶体呈现规则的几何外形 ,而非晶体没有规则的几何外形 呢?你认为可能和什么因素有关 ?
2、晶体自范性本质:
自范性条件之一:生长速率适当
知识拓 展
粒子微观空间里呈现周期性有序排列的宏观表 象

第一节:认识晶体

第一节:认识晶体

A B
化学式: A2B
BA2
练习3:根据离子晶体的晶胞结构,判断下 列离子晶体的化学式:(A表示阳离子)
A
B
化学式: AB
练习4:根据离子晶体的晶胞结构,判断下 列离子晶体的化学式:(A表示阳离子)
A B
C
化学式: ABC3
例题分析:
• 如图所示的晶体结构是一种具有优良的压 电、铁电、光电等功能的晶体材料的晶胞。 晶体内与每个“Ti”紧邻的氧原子数和这 种晶体材料的化学式分别是(各元素所带 的电荷均已略去) O原子 Ti原子 Ba原子
单斜
2 种 ; 三斜
1 种 。共有 14 种类型的晶胞。
练习:
课本第66页
巩固练习:
某晶胞结 构如图所示, 晶胞中各微粒 个数分别为: 3 铜________个 钡________个 2 钇________个 1
认识晶 体
K2Cr2O7

食盐
(一)性质差异:
1、晶体有规则的几何外形、
质点排列有序 2、晶体有各向异性
3、晶体有固定的熔沸点
(二)、晶体的特性
1、晶体有哪些特性?为什么由这些特性? 2、什么是晶体?非晶体?有何区别? 3、晶体分类的依据?分成哪几种类型? 4、举例说明晶体材料有哪些用途?
例题解析:
O原子 Ti原子 Ba原子
Ba:1x1 Ti:8x(1/8) O:12x(1/4) 化学式为:BaTiO3
属 于 8 个 小 立 方 体
属于4个小立方体
第二层的离子
NaCl晶体中的结构微粒:
(Cl-) (Na+)
NaCl晶体的结构示意图 再请看:CsCl晶体的结构示意图
返回
CsCl晶体的结构:

认识晶体优秀教学课件

认识晶体优秀教学课件

铜晶胞
铜晶体
认识晶体
知识点2、晶胞中微粒数的计算 不规则
习题导第学33 页
正六边形顶点:石墨中的每个C被3个共用,各环分享1/3 正六棱柱顶点:晶体中原子被6个共用,各环分享1/6 正六棱柱纵棱:晶体中原子被3个共用,各环分享1/3
认识晶体
知识点2、晶胞中微粒数的计算 不规则
习题导第学34 页
A
秀出优秀的你
化学 ·选修 3
3.1 认识晶体
认识晶体
第3 页
一、晶体的特征
认识晶体
图片导第学4 页
4
认识晶体

明 矾
的 各 种




图片导第学5 页
5
认识晶体
观察这些固体在外形上区别
图片导第学6 页
6
认识晶体
观察构成晶体与非晶体的微粒在空间的排列有何不同?
Cu晶体 结构示
意图
问题导第学7 页
都有应用。如图为钛酸钡晶体的结构示意图,其化学式是( D )
A.BaTi8O12
B.BaTi4O5 C.BaTi2O4 Ba在中心属于晶胞
D.BaTiO3
O在棱上12×1/4
N(Ba):N(Ti):N(O)=1:1:3
Ti在顶点8×1/8
助你进步.
认识晶体
2、下面晶胞中含有原子个数及其化学式
当堂巩第固38 页
A+
A= 4 × 1/8=1/2
B-
B= 4 × 1/8=1/2
A与B离子的个数比等于: 1:1 该物质化学式: A B
晶体化学式确定——晶胞内不同微粒的个数最简整数比
认识晶体
当堂巩第固39 页
3.钛酸钡的热稳定性好,介电常数高,在小型变压器、话筒和扩音器

3.1晶体的常识PPT课件

3.1晶体的常识PPT课件

许多固体粉末用肉眼看不到晶体外形,但在光 学显微镜下可视察到规则的晶体外形
学与问
1、某同学在网站上找到一张 玻璃的结构示意图,如右 图,这张图说明玻璃是不是 晶体?为什么?
非晶体
玻璃的结构示意图
2、根据晶体的物理性质的各向异性的特点, 人们很容易辨认用玻璃仿造的假宝石。你能列 举一些可能有效的方法鉴别假宝石吗?
视察图片:构成晶体与非晶体的微粒在空间的 排列有何不同?
3、特点和性质: (1)自范性:晶体能自发地呈现多面体外形的 性质——是晶体中粒子在微观空间里呈现周期性 有序排列的宏观表现
(2)物理性质表现各向异性(强度、导热性、 光学性质)——同样反应了晶体内部粒子排列 的有序性 (3)晶体具有固定的熔点
1:1:3
3、下列是NaCl晶胞示意图,晶胞中 Na+和Cl¯的个数比是多少?
4、最近发现一种由钛原子和碳原子构成的气
态团簇分子,如下图所示,顶角和面心的原子
是钛原子,棱的中心和体心的原子是碳原子,
它的化学式是

解析:由于本题团簇分子指的 是一个分子的具体结构,并不 是晶体中的最小的一个重复单 位,不能采用均摊法分析,所 以只需数出该结构内两种原子 的数目就可以了。答案为:
固定 有
非晶 体
不具有规 则的几何
粒子排列相 对无序
没有

外形
不固 定
本质 区分 微观粒子在三维空间是否呈现周期性有序排列(自范
性)
鉴别
最科学的方法是用X—射线衍射实验
晶体具有各向异性: 如蓝晶石(Al2O3·SiO2)在不同方向上的硬度不
同;又如石墨在与层垂直的方向上的导电率与层平 行的方向上的导电率1∕104。

晶体的认识

晶体的认识

晶体的认识
晶体是一种固态物质,其分子、原子或离子按照一定的规律排列而形成的具有有序结构的晶格。

晶体具有一系列特定的物理、化学和光学性质,对于科学、工程和技术领域都具有重要的意义。

1.结构特征:
有序排列:晶体内部的原子、分子或离子按照规则排列成三维结构,形成紧密有序的晶格。

周期性结构:晶体结构具有周期性,即晶胞结构会在三个方向上不断重复。

各向同性:晶体的性质在各个方向上基本上是相同的,具有各向同性的特点。

2.形成与生长:
凝固过程:晶体通常是在液态物质凝固时形成的,根据条件的不同,可以形成不同形态的晶体。

生长过程:晶体的生长是晶体原子或分子逐渐在晶体表面上沉积并排列,逐渐扩大晶体尺寸的过程。

3.物理性质:
光学性质:晶体具有各向异性,对于光的传播有一定的影响,因此在光学器件中具有广泛的应用。

热学性质:晶体的热传导、热膨胀等性质因晶格结构而异,影响材料的热学性能。

电学性质:某些晶体表现出特定的电学行为,如电介质、半导体和导体等。

4.应用与意义:
材料工程:晶体材料在材料科学和工程中具有广泛的应用,如半导体、光电子器件等。

地球科学:晶体矿物是地球科学中研究地壳结构和地球演化的重要对象。

化学合成:某些晶体结构被用于设计新型的化学反应和合成方法。

晶体的研究涉及多个领域,其特殊的结构和性质使其在科学研究、工程应用和技术创新中发挥着重要作用。

最新-高中化学 第三章第一节《认识晶体》课件 鲁科版选修3 精品

最新-高中化学 第三章第一节《认识晶体》课件 鲁科版选修3 精品
化学精品课件:第三章 第一节《认识晶体》
(鲁科版选修3)
《认识晶体》
食盐
雪花
金刚石
一、离子晶体
1、定义
离子间通过离子键结 合而成的晶体。
每个Na+周围有六个Cl-
每个Cl-周围有六个Na+
2、离子晶体的特点 (1)无单个分子存在
(2)硬、密度较大 熔、沸点较高
熔点 沸点
NaCl 801℃ 1413℃ CsCl 645℃ 1290℃
(A)食盐和冰的熔化 (B)金刚石和晶体硅的熔化 (C)二氧化硅和干冰的熔化 (D)纯碱和烧碱的熔化
2、下列各组物质的晶体中化学键类型相
同,晶体类型也相同的是( B ) (A)SO2和SiO2 (B)CO2和H2O (C)NaCl和HCl
(D)NaOH和Na2O2
【作业】
1、阅读教材,复习本节所讲内容 2、完成《目标测试》P30~P31习题。
三种晶体的比较
晶体类型 微粒 结合力 熔沸点 典型实例
离子晶体 离子 离子键 分子晶体 分子 范德华力 原子晶体 原子 共价键
较高 较低 很高
NaCl、NH4Cl CO2、He金刚石、SiO2关于金石和石墨性质的比较金刚石
石墨
【反馈练习】
1、实现下列变化时,需克服相同类型作
用力的是( B D )
分子间作用力存在“分子之间”。
2、强度:
化学键>分子间作用力
2、分子晶体的特点
(1)有单个分子存在
(2)熔、沸点较低 硬、密度较小
熔点 沸点
CO -199℃ -191.5℃
干冰
(CO2)
-78.4℃
3、易形成分子晶体的物质
H2、Cl2、He

认识晶体(完整版)

认识晶体(完整版)
分子晶体
由分子通过范德华力结合而成的晶体,如冰、 干冰等。
03
晶体结构与性质的关系
晶体结构对物理性质的影响
01
02
03
光学性质
晶体具有规则的内部结构, 能够使光线发生折射、反 射和偏振等现象,从而具 有特定的光学性质。
电学性质
晶体中的离子或分子的规 则排列使其具有周期性, 从而影响电场、电流和电 阻等电学性质。
晶体通常具有一定的熔点和沸点, 且在熔化和凝固过程中具有一定
的热容。Biblioteka 晶体的特性稳定性晶体具有高度的稳定性,不易 发生化学反应或被破坏。
规则的几何外形
晶体通常具有规则的几何外形 ,如立方体、八面体等。
内部结构的周期性
晶体的原子、分子或离子排列具有 高度的周期性,这种周期性排列使 得晶体具有独特的物理性质。
某些晶体作为食品添加剂,如糖、盐等,用于调味和保存食品。
药物晶体
药物晶体具有特定的晶型和结晶习性,影响药物的溶解度、稳定性、 疗效和安全性。
宝石晶体
一些美丽的晶体,如水晶、钻石、翡翠等,被用作宝石或首饰。
06
未来晶体技术的发展趋势
新材料晶体的研发
1 2 3
探索新型晶体材料
随着科技的发展,人们不断探索新型晶体材料, 以满足不同领域的需求。例如,新型高温超导晶 体、非线性光学晶体等。
结晶化学原理
根据原子或分子的相互吸引和排斥作用,形成特 定的晶格排列。
相平衡原理
在一定的温度和压力条件下,不同相之间会达到 平衡状态。
晶体生长技术
水热法
在高压水溶液中加热原料,通过控制 温度和压力条件生长晶体。
提拉法
通过旋转提拉熔体,使熔体中的杂质 和气体上浮,获得纯净的晶体。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.非等径圆球的密堆积
由离子构成的晶体可视为不等径圆球的密堆 积,即将不同半径的圆球的堆积看成是大球先 按一定方式做等径圆球的密堆积。小球再填充 在大球所形成的空隙中。
配位数:一个原子或离子周围所邻接的原子或离
子的数目。 如NaCl配位数为6,即每个Na+离子周 围直接连有6个CI-,反之亦然。
常见三种密堆积的晶胞
氯离子:8 ×1/8+6×1/2 = 4 氯离子:8 ×1/8= 1
练习1:根据离子晶体的晶胞结构,判断下 列离子晶体的化学式:(A表示阳离子)
A B
化学式: AB
练习2:根据离子晶体的晶胞结构,判断下 列离子晶体的化学式:(A表示阳离子)
A B
化学式: A2B
练习3:根据离子晶体的晶胞结构,判断下 列离子晶体的化学式:(A表示阳离子)
第一节
认识晶体
一、晶体的特性
1.晶体与非晶体
(1)晶体:内部微粒(原子、离子或分 子)在空间按一定规律做周期性重复 排列构成的固体物质。
非晶体:内部原子或分子的排列呈现杂 乱无章的分布状态。
2.晶体的特性
(1)具有规则的几何外形。 (2)自范性:在适宜条件下,晶体能够 自发地呈现封闭的、规则的多面体外形。
即 AB AB 堆积方式,形成六
A
方紧密堆积---A3型。
配位数 12 。 ( 同层 6,上下层各 3 )
第三层的另一种排列 方式,是将球对准第一层 的 2,4,6 位,不同于 AB 两层的位置,这是 C 层。
12
6
3
54
12
6
3
54
12
6
3
54
第四层再排 A,于是形
A
成 ABC ABC 三层一个周
1.等径圆球的密堆积 由于金属键没有方向性,每个金属原子中的
电子分布基本是球对称的,所以可以把金属晶 体看成是由直径相等的圆球的三维空间堆积而 成的。等径圆球的密堆积方式有A3型最密堆积, A1型最密堆积。
在一个层中,最紧密的堆积方式,是一个球与周围 6 个球相切,在中心的周围形成 6 个凹位,将其算为第 一层。
(3)各向异性:晶体在不同方向上表现 出不同的物理性质。 (4)对称性:晶体的外形和内部结构都 具有特有的对称性。
(5)有固定的熔点而非晶态没有。
3.晶体的种类
根属晶体、原子晶体和分子晶体。
二、晶体结构的堆积模型
组成晶体的原子、离子或分子在没有 其他因素(如氢键)影响时,在空间的排 列大都服从紧密堆积原理,这是因为分别 借助于没有方向性的金属键、离子键和分 子间相互作用形成的金属晶体、离子晶体 和分子晶体的结构中,都趋向于使原子或 分子吸引尽可能多的原子或分子分布于周 围,并以密堆积的方式降低体系的能量, 使晶体变得比较稳定。
Ti
O Ca:1
• 现有甲、乙、丙、丁四种晶胞(如图2-8所
示 比)为_,_1可_:_1推_;知乙:晶甲体晶的体化中学A与式B为的_C_离_2子_D_个;数丙 晶体的化学式为_E__F___;丁晶体的化学式 为_X__Y__2_Z。
金属的 堆积方式
六方紧密堆积 面心立方紧密堆积 立方体心堆积
金属钾 K 的 立方体心堆积
晶体结构的基本单元——晶胞
蜂巢与蜂室
铜晶体
铜晶胞
三、晶体结构的基本单元----晶胞
1.晶胞
(1)晶胞:从晶体中“截取”出 来具有代表性的最小部分, 是 能够反映晶体结构特征的基本 重复单位。代表晶体的化学组 成。 (2)晶胞一定是一个平行六面体。
A B
化学式: AB
练习4:根据离子晶体的晶胞结构,判断下 列离子晶体的化学式:(A表示阳离子)
A B
C
化学式: ABC3
例题分析:
• 如图所示的晶体结构是一种具有优良的压 电、铁电、光电等功能的晶体材料的晶胞。 晶体内与每个“Ti”紧邻的氧原子数和这 种晶体材料的化学式分别是(各元素所带 的电荷均已略去)
微粒数为:12×1/6 + 2×1/2 + 3 = 6
(2)面心立方:在立方体顶点的微粒为8 个晶胞共有,在面心的为2个晶胞共有。
微粒数为:8×1/8 + 6×1/2 = 4
(3)体心立方:在立方体顶点的微粒 为8个晶胞共享,处于体心的金属原 子全部属于该晶胞。
微粒数为:8×1/8 + 1 = 2 长方体晶胞中不同位置的粒子对晶胞的贡献:
第二层 对第一层来讲最紧密的堆积方式是将球对准 1,3,5 位。 ( 或对准 2,4,6 位,其情形是一样的 )
12
6
3
54
12
6
3
54

AB
关键是第三层,对第一、二层来说,第三层可以有两种最紧 密的堆积方式。
第一种是将球对准第一层的球。 下图是A3型六方 紧密堆积的前视图
12
A
6
3
54
B
A
B
于是每两层形成一个周期,
六方晶胞----A3型 可看成由3个晶胞构成
面心立方晶胞----A1型
体心立方晶胞----A2型
无隙并置
平行六 面体
顶点:
棱边:
面心:
体心:
顶点:1/8
面心:1/2
棱边:1/4 体心:1
3.晶胞中微粒数的计算
(1)六方晶胞:在六方体顶点的微粒为6个晶 胞共有,在面心的为2个晶胞共有,在体内的微 粒全属于该晶胞。
顶点 ----1/8 棱----1/4 面----1/2 心----1
面心立方堆积
C B A
体心立方晶胞----A2型
顶点:1/8
面心:1/2
棱边:1/4 体心:1
计算:NaCl晶胞、CsCl晶胞中含有 的阴、阳离子数目分别是多少?
NaCl晶胞
CsCl晶胞
钠离子:1+12×1/4 = 4
铯离子:1
o原子
Ti原子
Ba原子
练习5:下图为高温超导领域的一种化合物——钙钛矿晶体结构, 该结构是具有代表性的最小重复单元。
1)在该物质的晶体中,每个钛离子周围与它最接近且距离相等的 钛离子共有 6 个
2)该晶体结构单元中,氧、钛、钙离子的个数比是 。 3∶1∶1
O:12×1/4=3
Ca
Ti: 8 ×1/8=1
期。 得到面心立方堆积—
C
A1型。
B
12
6
3
54
配位数 12 。 ( 同层 6, 上下层各 3 )
A C B A
面心立方紧密堆积的前视图
ABC ABC 形式的堆积, 为什么是面心立方堆积?
我们来加以说明。
C B A
这两种堆积都是最紧密堆积,空间利用率为 74.05%。
还有一种空间利用率稍低的堆积方式—A2型---立方体心堆积 :立方体 8 个顶点上的球互不相切,但均与体心位置上的球相切 。 配位数 8 ,空间利用率为 68.02% 。
相关文档
最新文档