高中数学知识点总结

合集下载

高一数学知识点总结(15篇)

高一数学知识点总结(15篇)

高一数学知识点总结总结是把一定阶段内的有关情况分析研究,做出有指导性结论的书面材料,它能帮我们理顺知识结构,突出重点,突破难点,因此好好准备一份总结吧。

总结怎么写才不会流于形式呢?以下是小编精心整理的高一数学知识点总结,希望能够帮助到大家。

高一数学知识点总结1一、函数的概念与表示1、映射(1)映射:设A、B是两个集合,如果按照某种映射法则f,对于集合A中的任一个元素,在集合B中都有唯一的元素和它对应,则这样的对应(包括集合A、B以及A到B的对应法则f)叫做集合A到集合B 的映射,记作f:A→B。

注意点:(1)对映射定义的理解。

(2)判断一个对应是映射的方法。

一对多不是映射,多对一是映射2、函数构成函数概念的三要素①定义域②对应法则③值域两个函数是同一个函数的条件:三要素有两个相同二、函数的解析式与定义域1、求函数定义域的主要依据:(1)分式的分母不为零;(2)偶次方根的被开方数不小于零,零取零次方没有意义;(3)对数函数的真数必须大于零;(4)指数函数和对数函数的底数必须大于零且不等于1;三、函数的值域1求函数值域的方法①直接法:从自变量x的范围出发,推出y=f(x)的取值范围,适合于简单的复合函数;②换元法:利用换元法将函数转化为二次函数求值域,适合根式内外皆为一次式;③判别式法:运用方程思想,依据二次方程有根,求出y的取值范围;适合分母为二次且∈R的分式;④分离常数:适合分子分母皆为一次式(x有范围限制时要画图);⑤单调性法:利用函数的单调性求值域;⑥图象法:二次函数必画草图求其值域;⑦利用对号函数⑧几何意义法:由数形结合,转化距离等求值域。

主要是含绝对值函数四.函数的奇偶性1.定义:设y=f(x),x∈A,如果对于任意∈A,都有,则称y=f(x)为偶函数。

如果对于任意∈A,都有,则称y=f(x)为奇函数。

2.性质:①y=f(x)是偶函数y=f(x)的图象关于轴对称,y=f(x)是奇函数y=f(x)的图象关于原点对称,②若函数f(x)的定义域关于原点对称,则f(0)=0③奇±奇=奇偶±偶=偶奇×奇=偶偶×偶=偶奇×偶=奇[两函数的定义域D1,D2,D1∩D2要关于原点对称]3.奇偶性的判断①看定义域是否关于原点对称②看f(x)与f(-x)的关系五、函数的单调性1、函数单调性的定义:2设是定义在M上的函数,若f(x)与g(x)的单调性相反,则在M 上是减函数;若f(x)与g(x)的单调性相同,则在M上是增函数。

高中数学知识点全总结简洁版

高中数学知识点全总结简洁版

高中数学知识点全总结简洁版一、集合与函数概念1. 集合:包括集合的基本概念、表示方法、基本关系和运算。

2. 函数:函数的定义、性质、运算、反函数、复合函数和基本初等函数(幂函数、指数函数、对数函数、三角函数)。

二、数列与数学归纳法1. 数列:等差数列、等比数列的通项公式和前n项和公式。

2. 数学归纳法:证明方法,包括P(k)成立,假设P(k)成立,证明P(k+1)也成立。

三、排列组合与概率1. 排列组合:排列、组合的基本概念和计算公式。

2. 概率:古典概型、条件概率、独立事件的概率公式。

四、三角函数与三角恒等变换1. 三角函数:正弦、余弦、正切函数的性质和图像。

2. 三角恒等变换:同角三角函数的基本关系、和差化积、积化和差、倍角公式、半角公式。

五、平面向量与解析几何1. 平面向量:向量的加法、数乘、数量积、向量垂直与平行的判定。

2. 解析几何:直线和圆的方程,圆锥曲线(椭圆、双曲线、抛物线)的标准方程。

六、立体几何1. 空间几何体:多面体、旋转体的结构特征和表面积、体积公式。

2. 空间向量:空间向量的基本运算和用空间向量解决立体几何问题。

七、导数与微分1. 导数:导数的定义、几何意义、常见函数的导数。

2. 微分:微分的概念、微分的运算法则。

八、积分1. 不定积分:基本积分表、换元积分法、分部积分法。

2. 定积分:定积分的概念、性质、计算公式。

九、数列的极限与函数极限1. 极限:数列极限的定义、性质、极限的四则运算。

2. 函数极限:函数极限的定义、性质、极限存在的条件。

十、连续与间断1. 连续:连续函数的定义、性质、闭区间上连续函数的性质。

2. 间断:间断点的分类、间断点的性质。

十一、不等式与不等式组1. 不等式:一元一次不等式、一元二次不等式的解法。

2. 不等式组:不等式组的解集、线性规划。

十二、复数1. 复数的概念:复数的定义、代数形式和几何意义。

2. 复数的运算:复数的加法、减法、乘法、除法。

高中数学每章总结知识点

高中数学每章总结知识点

高中数学每章总结知识点第一章:实数1. 实数的含义和表示:实数是指有理数和无理数的统称。

有理数是可以用两整数的比表示的数,而无理数指那些不能表示为有理数的数。

实数可以用十进制小数来表示。

2. 实数的性质:实数具有加法、乘法封闭性、交换律、结合律、分配律等性质。

另外,实数还具有传递性和对称性等性质。

3. 实数的比较:实数之间可以进行大小的比较,通过对比实数的大小,可以进行大小关系的判断。

第二章:多项式1. 多项式的基本概念:多项式是指由若干项的和组成,每一项又是由数字与字母的乘积构成的代数式。

2. 多项式的运算:多项式之间可以进行加减乘除的运算,通过运算可以得到多项式的和、差、积。

3. 多项式的因式分解:对多项式进行因式分解,可将多项式表示为不可约的因式的乘积,这可以帮助我们更方便地进行运算。

第三章:二次函数与一元二次方程1. 二次函数的基本形式与图像:二次函数的一般形式为f(x)=ax^2+bx+c,通过对a、b、c 的不同取值,可以得到不同类型的二次函数的图像。

2. 一元二次方程的基本概念:一元二次方程是指只含有一个未知数的二次方程,通常可以通过配方法或求根公式来求解。

3. 二次函数与一元二次方程的应用:二次函数与一元二次方程在现实生活中有着广泛的应用,比如抛物线的运动学应用、二次函数的优化问题等。

第四章:指数与对数1. 指数的基本性质:指数是表示数的乘方,具有乘法、幂的分配律、零指数幂等性质。

2. 对数的基本概念与性质:对数是指数运算的逆运算,具有换底公式、对数的乘除性质、对数方程的解法等性质。

3. 指数与对数的应用:指数与对数在科学计算、复利计算、相关度量以及解方程等问题中有着广泛的应用。

第五章:不等式与不等式组1. 不等式的性质与解法:不等式包括带绝对值的不等式以及多项式的不等式,通过对不等式的性质和解法的掌握,可以得到不等式的解集。

2. 不等式组的基本概念:不等式组是由若干不等式组成,通过对不等式组的解法,可以得到不等式组的解集合。

高中数学基本知识点汇总(最新)

高中数学基本知识点汇总(最新)

高中数学基本知识点汇总(最新)一、集合与函数概念1. 集合的基本概念集合的定义:集合是某些确定的、互不相同的对象的全体。

集合的表示方法:列举法、描述法、图示法。

常见数集:自然数集N、整数集Z、有理数集Q、实数集R。

2. 集合间的关系与运算子集、真子集、相等关系。

并集、交集、补集的定义及运算。

集合运算的性质:交换律、结合律、分配律、摩根律。

3. 函数的概念函数的定义:设A、B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数。

函数的三要素:定义域、值域、对应关系。

函数的表示方法:列表法、图象法、解析法。

4. 函数的性质单调性:增函数、减函数的定义及判定。

奇偶性:奇函数、偶函数的定义及判定。

周期性:周期函数的定义及常见周期函数。

最值:函数的最大值和最小值及其求法。

二、基本初等函数1. 一次函数与二次函数一次函数的形式:y = kx + b(k≠0)。

一次函数的图象与性质:直线、斜率、截距。

二次函数的形式:y = ax^2 + bx + c(a≠0)。

二次函数的图象与性质:抛物线、顶点、对称轴、开口方向。

2. 指数函数与对数函数指数函数的形式:y = a^x(a>0且a≠1)。

指数函数的图象与性质:单调性、过定点(0,1)。

对数函数的形式:y = log_a(x)(a>0且a≠1)。

对数函数的图象与性质:单调性、过定点(1,0)。

3. 幂函数幂函数的形式:y = x^α。

常见幂函数的图象与性质:α为正整数、负整数、分数时的图象特点。

4. 三角函数正弦函数、余弦函数、正切函数的定义及图象。

三角函数的性质:周期性、奇偶性、单调性。

三角函数的诱导公式及恒等变换。

三、立体几何1. 空间几何体的结构特征多面体:棱柱、棱锥、棱台的定义及性质。

旋转体:圆柱、圆锥、圆台、球体的定义及性质。

2. 空间几何体的三视图主视图、俯视图、左视图的定义及绘制方法。

高二数学知识点总结(8篇)

高二数学知识点总结(8篇)

高二数学知识点总结一、集合、简易逻辑(14课时,8个)1.集合;2.子集;3.补集;4.交集;5.并集;6.逻辑连结词;7.四种命题;8.充要条件。

二、函数(30课时,12个)1.映射;2.函数;3.函数的单调性;4.反函数;5.互为反函数的函数图象间的关系;6.指数概念的扩充;7.有理指数幂的运算;8.指数函数;9.对数;10.对数的运算性质;11.对数函数.12.函数的应用举例。

三、数列(12课时,5个)2.等差数列及其通项公式;3.等差数列前n项和公式;4.等比数列及其通顶公式;5.等比数列前n项和公式。

四、三角函数(46课时,17个)1.角的概念的推广;2.弧度制;3.任意角的三角函数;4.单位圆中的三角函数线;5.同角三角函数的基本关系式;6.正弦、余弦的诱导公式;7.两角和与差的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函数、余弦函数的图象和性质;10.周期函数;11.函数的奇偶性;12.函数的图象;13.正切函数的图象和性质;14.已知三角函数值求角;15.正弦定理;16.余弦定理;17.斜三角形解法举例。

五、平面向量(12课时,8个)2.向量的加法与减法;3.实数与向量的积;4.平面向量的坐标表示;5.线段的定比分点;6.平面向量的数量积;7.平面两点间的距离;8.平移。

六、不等式(22课时,5个)1.不等式;2.不等式的基本性质;3.不等式的证明;4.不等式的解法;5.含绝对值的不等式。

七、直线和圆的方程(22课时,12个)1.直线的倾斜角和斜率;2.直线方程的点斜式和两点式;3.直线方程的一般式;4.两条直线平行与垂直的条件;5.两条直线的交角;6.点到直线的距离;7.用二元一次不等式表示平面区域;8.简单线性规划问题;9.曲线与方程的概念;10.由已知条件列出曲线方程;11.圆的标准方程和一般方程;12.圆的参数方程。

八、圆锥曲线(18课时,7个)1.椭圆及其标准方程;2.椭圆的简单几何性质;3.椭圆的参数方程;4.双曲线及其标准方程;5.双曲线的简单几何性质;6.抛物线及其标准方程;7.抛物线的简单几何性质。

高中数学知识点全总结(电子版)

高中数学知识点全总结(电子版)

高中数学知识点全总结(电子版)高中数学知识点全一、求导数的(1)基本求导公式(2)导数的四则运算(3)复合函数的导数设在点x处可导,y=在点处可导,则复合函数在点x处可导,且即_二、关于极限1、数列的极限:粗略地说,就是当数列的项n无限增大时,数列的项无限趋向于A,这就是数列极限的描述性定义。

记作:=A。

如:2、函数的极限:当自变量x无限趋近于常数时,如果函数无限趋近于一个常数,就说当x趋近于时,函数的极限是,记作三、导数的概念1、在处的导数。

2、在的导数。

3、函数在点处的导数的几何意义:函数在点处的导数是曲线在处的切线的斜率,即k=,相应的切线方程是_注:函数的导函数在时的函数值,就是在处的导数。

例、若=2,则=()A—1B—2C1D四、导数的综合运用(一)曲线的切线函数y=f(x)在点处的导数,就是曲线y=(x)在点处的切线的斜率。

由此,可以利用导数求曲线的切线方程。

具体求法分两步:(1)求出函数y=f(x)在点处的导数,即曲线y=f(x)在点处的切线的斜率k=_(2)在已知切点坐标和切线斜率的条件下,求得切线方程为x。

如何学好高中数学方法1、上课认真听、仔细做笔记学习新的知识首先得通过老师的讲解,然后自己理解,这样才能通过做题巩固,不然上课不认真听的话,下课自己做题也不会,即使自己参照例题做出来了,也会有很多地方不理解,而且自己学还很浪费时间。

所以高中的学生们一定不能轻视了上课老师讲的内容。

再有一点就是数学也是需要记笔记的,上课的时候把老师讲的书上没有的步骤都记一下,重点的内容该画的画,改写的写,千万不要觉得现在看了一眼就记住了,要知道数学的知识从高一到高三会越来越难,前面的知识相当于为后面做铺垫,尤其是高三复习的时候。

所以同学们在高一高二的时候老师讲的重点的内容一定要整理在笔记上,不然到了高三复习的时候忘记了又得浪费时间重新做笔记。

2、以课本为主,把握课本去理解提高数学成绩主要是靠听课和做题来提高。

高中数学知识点大全(完整版)

高中数学知识点大全(完整版)

高中数学知识点大全(完整版)高中数学知识点大全一、集合、简易逻辑1、集合;2、子集;3、补集;4、交集;5、并集;6、逻辑连结词;7、四种命题;8、充要条件。

二、函数1、映射;2、函数;3、函数的单调性;4、反函数;5、互为反函数的函数图象间的关系;6、指数概念的扩充;7、有理指数幂的运算;8、指数函数;9、对数;10、对数的运算性质;11、对数函数。

12、函数的应用举例。

三、数列(12课时,5个)1、数列;2、等差数列及其通项公式;3、等差数列前n项和公式;4、等比数列及其通顶公式;5、等比数列前n项和公式。

四、三角函数1、角的概念的推广;2、弧度制;3、任意角的三角函数;4、单位圆中的三角函数线;5、同角三角函数的基本关系式;6、正弦、余弦的诱导公式;7、两角和与差的正弦、余弦、正切;8、二倍角的正弦、余弦、正切;9、正弦函数、余弦函数的图象和性质;10、周期函数;11、函数的奇偶性;12、函数的图象;13、正切函数的图象和性质;14、已知三角函数值求角;15、正弦定理;16、余弦定理;17、斜三角形解法举例。

五、平面向量1、向量;2、向量的加法与减法;3、实数与向量的积;4、平面向量的坐标表示;5、线段的定比分点;6、平面向量的数量积;7、平面两点间的距离;8、平移。

六、不等式1、不等式;2、不等式的基本性质;3、不等式的证明;4、不等式的解法;5、含绝对值的不等式。

七、直线和圆的方程1、直线的倾斜角和斜率;2、直线方程的点斜式和两点式;3、直线方程的`一般式;4、两条直线平行与垂直的条件;5、两条直线的交角;6、点到直线的距离;7、用二元一次不等式表示平面区域;8、简单线性规划问题;9、曲线与方程的概念;10、由已知条件列出曲线方程;11、圆的标准方程和一般方程;12、圆的参数方程。

八、圆锥曲线1、椭圆及其标准方程;2、椭圆的简单几何性质;3、椭圆的参数方程;4、双曲线及其标准方程;5、双曲线的简单几何性质;6、抛物线及其标准方程;7、抛物线的简单几何性质。

高中数学知识点总结(最全版)

高中数学知识点总结(最全版)

高中数学知识点总结(最全版)第一章函数概念(1)函数的概念①设、是两个非空的数集,如果按照某种对应法则,对于集合中任何一个数,在集合中都有唯一确定的数和它对应,那么这样的对应(包括集合,以及到的对应法则)叫做集合到的一个函数,记作、②函数的三要素:定义域、值域和对应法则、③只有定义域相同,且对应法则也相同的两个函数才是同一函数、(2)区间的概念及表示法①设是两个实数,且,满足的实数的集合叫做闭区间,记做;满足的实数的集合叫做开区间,记做;满足,或的实数的集合叫做半开半闭区间,分别记做,;满足的实数的集合分别记做、注意:对于集合与区间,前者可以大于或等于,而后者必须,(前者可以不成立,为空集;而后者必须成立)、(3)求函数的定义域时,一般遵循以下原则:①是整式时,定义域是全体实数、②是分式函数时,定义域是使分母不为零的一切实数、③是偶次根式时,定义域是使被开方式为非负值时的实数的集合、④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1、⑤中,、⑥零(负)指数幂的底数不能为零、⑦若是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集、⑧对于求复合函数定义域问题,一般步骤是:若已知的定义域为,其复合函数的定义域应由不等式解出、⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论、⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义、(4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的、事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值、因此求函数的最值与值域,其实质是相同的,只是提问的角度不同、求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值、②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值、③判别式法:若函数可以化成一个系数含有的关于的二次方程则在时,由于为实数,故必须有,从而确定函数的值域或最值、④不等式法:利用基本不等式确定函数的值域或最值、⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题、⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值、⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值、⑧函数的单调性法、(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种、解析法:就是用数学表达式表示两个变量之间的对应关系、列表法:就是列出表格来表示两个变量之间的对应关系、图象法:就是用图象表示两个变量之间的对应关系、(6)映射的概念①设、是两个集合,如果按照某种对应法则,对于集合中任何一个元素,在集合中都有唯一的元素和它对应,那么这样的对应(包括集合,以及到的对应法则)叫做集合到的映射,记作、②给定一个集合到集合的映射,且、如果元素和元素对应,那么我们把元素叫做元素的象,元素叫做元素的原象、(6)函数的单调性①定义及判定方法函数的性质定义图象判定方法函数的单调性如果对于属于定义域I内某个区间上的任意两个自变量的值x1、x2,当x1< x2时,都有f(x1)<f(x2),那么就说f(x)在这个区间上是增函数、(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图象上升为增)(4)利用复合函数如果对于属于定义域I内某个区间上的任意两个自变量的值x1、x2,当x1< x2时,都有f(x1)>f(x2),那么就说f(x)在这个区间上是减函数、(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图象下降为减)(4)利用复合函数②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数、③对于复合函数,令,若为增,为增,则为增;若为减,为减,则为增;若为增,为减,则为减;若为减,为增,则为减、yxo(7)打“√”函数的图象与性质分别在、上为增函数,分别在、上为减函数、(8)最大(小)值定义①一般地,设函数的定义域为,如果存在实数满足:(1)对于任意的,都有;(2)存在,使得、那么,我们称是函数的最大值,记作、②一般地,设函数的定义域为,如果存在实数满足:(1)对于任意的,都有;(2)存在,使得、那么,我们称是函数的最小值,记作、(9)函数的奇偶性①定义及判定方法函数的性质定义图象判定方法函数的奇偶性如果对于函数f(x)定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)叫做奇函数、(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于原点对称)如果对于函数f(x)定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)叫做偶函数、(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于y轴对称)②若函数为奇函数,且在处有定义,则、③奇函数在轴两侧相对称的区间增减性相同,偶函数在轴两侧相对称的区间增减性相反、④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数、第二章基本初等函数(Ⅰ)〖2、1〗指数函数【2、1、1】指数与指数幂的运算(1)根式的概念①如果,且,那么叫做的次方根、当是奇数时,的次方根用符号表示;当是偶数时,正数的正的次方根用符号表示,负的次方根用符号表示;0的次方根是0;负数没有次方根、②式子叫做根式,这里叫做根指数,叫做被开方数、当为奇数时,为任意实数;当为偶数时,、③根式的性质:;当为奇数时,;当为偶数时,、(2)分数指数幂的概念①正数的正分数指数幂的意义是:且、0的正分数指数幂等于0、②正数的负分数指数幂的意义是:且、0的负分数指数幂没有意义、注意口诀:底数取倒数,指数取相反数、(3)分数指数幂的运算性质① ②③【2、1、2】指数函数及其性质(4)指数函数函数名称指数函数定义0101函数且叫做指数函数图象定义域值域过定点图象过定点,即当时,、奇偶性非奇非偶单调性在上是增函数在上是减函数函数值的变化情况变化对图象的影响在第一象限内,越大图象越高;在第二象限内,越大图象越低、〖2、2〗对数函数【2、2、1】对数与对数运算(1)对数的定义①若,则叫做以为底的对数,记作,其中叫做底数,叫做真数、②负数和零没有对数、③对数式与指数式的互化:、(2)几个重要的对数恒等式,,、(3)常用对数与自然对数常用对数:,即;自然对数:,即(其中…)、(4)对数的运算性质如果,那么①加法:②减法:③数乘:④⑤ ⑥换底公式:【2、2、2】对数函数及其性质(5)对数函数函数名称对数函数定义函数且叫做对数函数图象0101定义域值域过定点图象过定点,即当时,、奇偶性非奇非偶单调性在上是增函数在上是减函数函数值的变化情况变化对图象的影响在第一象限内,越大图象越靠低;在第四象限内,越大图象越靠高、(6)反函数的概念设函数的定义域为,值域为,从式子中解出,得式子、如果对于在中的任何一个值,通过式子,在中都有唯一确定的值和它对应,那么式子表示是的函数,函数叫做函数的反函数,记作,习惯上改写成、(7)反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式中反解出;③将改写成,并注明反函数的定义域、(8)反函数的性质①原函数与反函数的图象关于直线对称、②函数的定义域、值域分别是其反函数的值域、定义域、③若在原函数的图象上,则在反函数的图象上、④一般地,函数要有反函数则它必须为单调函数、〖2、3〗幂函数(1)幂函数的定义一般地,函数叫做幂函数,其中为自变量,是常数、(2)幂函数的图象(3)幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象、幂函数是偶函数时,图象分布在第一、二象限(图象关于轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限、②过定点:所有的幂函数在都有定义,并且图象都通过点、③单调性:如果,则幂函数的图象过原点,并且在上为增函数、如果,则幂函数的图象在上为减函数,在第一象限内,图象无限接近轴与轴、④奇偶性:当为奇数时,幂函数为奇函数,当为偶数时,幂函数为偶函数、当(其中互质,和),若为奇数为奇数时,则是奇函数,若为奇数为偶数时,则是偶函数,若为偶数为奇数时,则是非奇非偶函数、⑤图象特征:幂函数,当时,若,其图象在直线下方,若,其图象在直线上方,当时,若,其图象在直线上方,若,其图象在直线下方、〖补充知识〗二次函数(1)二次函数解析式的三种形式①一般式:②顶点式:③两根式:(2)求二次函数解析式的方法①已知三个点坐标时,宜用一般式、②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式、③若已知抛物线与轴有两个交点,且横线坐标已知时,选用两根式求更方便、(3)二次函数图象的性质①二次函数的图象是一条抛物线,对称轴方程为顶点坐标是、②当时,抛物线开口向上,函数在上递减,在上递增,当时,;当时,抛物线开口向下,函数在上递增,在上递减,当时,、③二次函数当时,图象与轴有两个交点、(4)一元二次方程根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布、设一元二次方程的两实根为,且、令,从以下四个方面来分析此类问题:①开口方向:②对称轴位置:③判别式:④端点函数值符号、①k<x1≤x2 ②x1≤x2<k ③x1<k<x2 af(k)<0 ④k1<x1≤x2<k2 ⑤有且仅有一个根x1(或x2)满足k1<x1(或x2)<k2 f(k1)f(k2)0,并同时考虑f(k1)=0或f(k2)=0这两种情况是否也符合⑥k1<x1<k2≤p1<x2<p2 此结论可直接由⑤推出、(5)二次函数在闭区间上的最值设在区间上的最大值为,最小值为,令、(Ⅰ)当时(开口向上)①若,则②若,则③若,则xy0>aOabx2-=pqf(p)f(q)xy0>aOabx2-=pqf(p)f(q)xy0>aOabx2-=pqf(p)f(q)xy0>aOabx2-=pqf(p)f(q)①若,则②,则xy0>aOabx2-=pqf(p)f(q)(Ⅱ)当时(开口向下)①若,则②若,则③若,则xy0<aOabx2-=pqf(p)f(q)xy0<aOabx2-=pqf(p)f(q)xy0<aOabx2-=pqf(p)f(q)①若,则②,则、xy0<aOabx2-=pqf(p)f(q)xy0<aOabx2-=pqf(p)f(q)第三章函数的应用一、方程的根与函数的零点1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中国特级教师高考复习方法指导〈数学复习版〉 中国教育开发网 高中数学知识点总结 1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。 如:集合,,,、、AxyxByyxCxyyxABC|lg|lg(,)|lg

中元素各表示什么? 2. 进行集合的交、并、补运算时,不要忘记集合本身和空集的特殊情况。 注重借助于数轴和文氏图解集合问题。 空集是一切集合的子集,是一切非空集合的真子集。 如:集合,AxxxBxax||22301

若,则实数的值构成的集合为BAa

(答:,,)1013

3. 注意下列性质: ()集合,,……,的所有子集的个数是;1212aaa

nn

()若,;2ABABAABB (3)德摩根定律: CCCCCC

UUUUUUABABABAB,

4. 你会用补集思想解决问题吗?(排除法、间接法) 如:已知关于的不等式的解集为,若且,求实数xaxxaMMMa50352

的取值范围。

(∵,∴·∵,∴·,,)335305555015392522Maa

Maa

a

5. 可以判断真假的语句叫做命题,逻辑连接词有“或”,“且”和()() “非”(). 若为真,当且仅当、均为真pqpq 若为真,当且仅当、至少有一个为真pqpq 若为真,当且仅当为假pp 中国特级教师高考复习方法指导〈数学复习版〉 中国教育开发网 6. 命题的四种形式及其相互关系是什么? (互为逆否关系的命题是等价命题。) 原命题与逆否命题同真、同假;逆命题与否命题同真同假。 7. 对映射的概念了解吗?映射f:A→B,是否注意到A中元素的任意性和B中与之对应元素的唯一性,哪几种对应能构成映射? (一对一,多对一,允许B中有元素无原象。) 8. 函数的三要素是什么?如何比较两个函数是否相同? (定义域、对应法则、值域) 9. 求函数的定义域有哪些常见类型? 

例:函数的定义域是yxxx4

32lg (答:,,,)022334

10. 如何求复合函数的定义域? 如:函数的定义域是,,,则函数的定fxabbaF(xfxfx())()()0

义域是_____________。 (答:,)aa

11. 求一个函数的解析式或一个函数的反函数时,注明函数的定义域了吗? 如:,求fxexfxx1().

令,则txt10 ∴xt21 ∴ftett()2121 ∴fxexxx()21210

12. 反函数存在的条件是什么? (一一对应函数) 求反函数的步骤掌握了吗? (①反解x;②互换x、y;③注明定义域) 

如:求函数的反函数fxxxxx()10

02

(答:)fxxxxx1110()

13. 反函数的性质有哪些? ①互为反函数的图象关于直线y=x对称; ②保存了原来函数的单调性、奇函数性; 中国特级教师高考复习方法指导〈数学复习版〉 中国教育开发网 ③设的定义域为,值域为,,,则yf(x)ACaAbCf(a)=bf1()ba ffafbaffbfab111()()()(),

14. 如何用定义证明函数的单调性? (取值、作差、判正负) 如何判断复合函数的单调性? (,,则(外层)(内层)yfuuxyfx()()()

当内、外层函数单调性相同时为增函数,否则为减函数。)fxfx()()

如:求的单调区间yxxlog1222

(设,由则uxxux22002 且,,如图:log12211uux

u

O 1 2 x 当,时,,又,∴xuuy(]log011

2

当,时,,又,∴xuuy[)log121

2

∴……) 15. 如何利用导数判断函数的单调性? 在区间,内,若总有则为增函数。(在个别点上导数等于abfxfx'()()0

零,不影响函数的单调性),反之也对,若呢?fx'()0 

如:已知,函数在,上是单调增函数,则的最大afxxaxa013()

值是( ) A. 0 B. 1 C. 2 D. 3

(令fxxaxaxa'()333302 中国特级教师高考复习方法指导〈数学复习版〉 中国教育开发网 则或xaxa33

由已知在,上为增函数,则,即fxaa()[)1313 ∴a的最大值为3) 16. 函数f(x)具有奇偶性的必要(非充分)条件是什么? (f(x)定义域关于原点对称)

若总成立为奇函数函数图象关于原点对称fxfxfx()()()

若总成立为偶函数函数图象关于轴对称fxfxfxy()()() 注意如下结论: (1)在公共定义域内:两个奇函数的乘积是偶函数;两个偶函数的乘积是偶函数;一个偶函数与奇函数的乘积是奇函数。

()若是奇函数且定义域中有原点,则。2f(x)f(0)0

如:若·为奇函数,则实数fxaaaxx()2221

(∵为奇函数,,又,∴fxxRRf()()000

即·,∴)aaa22210100 又如:为定义在,上的奇函数,当,时,,fxxfxxx()()()()1101241

求在,上的解析式。fx()11

(令,,则,,xxfxxx1001241()

又为奇函数,∴fxfxxxxx()()241214

又,∴,,)ffxxxxxxxx()()()0024110024101









17. 你熟悉周期函数的定义吗? (若存在实数(),在定义域内总有,则为周期TTfxTfxfx0()() 中国特级教师高考复习方法指导〈数学复习版〉 中国教育开发网 函数,T是一个周期。) 如:若,则fxafx()

(答:是周期函数,为的一个周期)fxTafx()()2 又如:若图象有两条对称轴,fxxaxb()

即,faxfaxfbxfbx()()()() 则是周期函数,为一个周期fxab()2 如:

18. 你掌握常用的图象变换了吗? fxfxy()()与的图象关于轴对称

fxfxx()()与的图象关于轴对称 fxfx()()与的图象关于原点对称 fxfxyx()()与的图象关于直线对称1 fxfaxxa()()与的图象关于直线对称2 fxfaxa()()()与的图象关于点,对称20

将图象左移个单位右移个单位yfxaaaayfxayfxa()()()()()00

上移个单位下移个单位bbbbyfxabyfxab()()()()00

注意如下“翻折”变换: fxfxfxfx()()()(||) 中国特级教师高考复习方法指导〈数学复习版〉 中国教育开发网 如:fxx()log21

作出及的图象yxyxloglog2211

y y=log2x

O 1 x

19. 你熟练掌握常用函数的图象和性质了吗? (k<0) y (k>0)

y=b O’(a,b)

O x x=a ()一次函数:10ykxbk

()反比例函数:推广为是中心,200ykxkybkxakOab'()

的双曲线。 ()二次函数图象为抛物线30244222yaxbxcaaxbaacba

顶点坐标为,,对称轴baacbaxba24422

开口方向:,向上,函数ayacba0442

min

ayacba0442,向下,max

应用:①“三个二次”(二次函数、二次方程、二次不等式)的关系——二次方程 axbxcxxyaxbxcx212200,时,两根、为二次函数的图象与轴

相关文档
最新文档