电子元件可靠性知识
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
可靠性知识
可靠性工程技术简介
国际上,可靠性起源于第二次世界大战,1944年纳粹德国用V-2火箭袭击伦敦,有80枚火箭在起飞
台上爆炸,还有一些掉进英吉利海峡。由此德国提出并运用了串联模型得出火箭系统可靠度,成为第一个
运用系统可靠性理论的飞行器。当时美国诲军统计,运往远东的航空无线电设备有60℅不能工作。电子设
备在规定使用期内仅有30℅的时间能有效工作。在此期间,因可靠性问题损失飞机2.1万架,是被击落飞
机的1.5倍。由此,引起人们对可靠性问题的认识,通过大量现场调查和故障分析,采取对策,诞生了可
靠性这门学科。
40年代萌芽时期:
现场调查、统计、分析,重点解决电子管可靠性问题。
50年代兴起和形成时期:
1952年美国成立了电子设备可靠性咨询组〔AGREE〕并于1957年发表了《军用电子设备可靠性》的
研究报告,该报告成为可靠性发展的奠基性文件,对国际影响都很大,是可靠性发展的重要里程碑。
60年代可靠性工程全面发展时期:
形成了一套较为完善的可靠性设计、试验和管理标准,如MIL-HDBK-217、MIL-STD -781、MIL-STD-785。
并开展了FMEA与FTA分析工作。在这十年中美、法、日、苏联等工业发达国家相继开展了可靠性工程技
术研究工作。
70年代可靠性发展成熟时期:
建立了可靠性管理机构,制定一整套管理方法及程序,成立全国性可靠性数据交换网,进行信息交流,
采用严格降额设计、热设计等可靠性设计,强调环境应力筛选,开始了三E革命〔ESS EMC ESD〕,开展可
靠性增长试验及综合环境应力的可靠性试验。
80年代可靠性向更深更广方向发展时期:
提高可靠性工作地位,增加了维修性工作内容、CAD技术在可靠性领域中应用,开始了三C革命〔CAD
CAE CAM〕,开展软件可靠性、机械可靠性及光电器件和微电子器件可靠性等的研究。最有代表性是美国空
军于1985年推行了“可靠性与维修性2000年行动计划”〔R&M2000〕,目标是到2000年实现可靠性增倍维
修性减半。在1991年海湾战争中“2000年行动计划”见到成效。
90年代可靠性步入理念更新时期:
在20世纪90年代,出现了新的可靠性理念,改变了一些传统的可靠性工作方法,一些经典理论也在
被修改,甚至失效率的“浴盆曲线”也被质凝,最为典型的是英国空军发表的一篇题为《无维修使用期》的
文章,在欧州乃至世界可靠性界引起轰动。尽管本文是论述英国空军寻求提高飞机可靠性的新思路,但对
我们有很大启示,为我们开展可靠性工作提供一个新思路。
可靠性模型建立
可靠性模型〔reliability model〕是指从可靠性观点出发,依照系统各单元间存在的功能逻辑关系用框
图表达出来〔可靠性结构模型〕。用数学方法对这种关系加以描述,这就是可靠性数学模型。可靠性模型是
可靠性结构模型(可靠性框图)和对应的可靠性数学模型的总称。系统的可靠性模型分为基本可靠性模型和
任务可靠
主要可靠性模型有:可靠性并联模型、可靠性串联模型、(m,n)并联模型、混合模型覆盖模型、简单旁
联模型、复杂结构模型。
产品可靠性指标预计
产品可靠性指标预计是可靠性工程重要工作项目之一,是可靠性设计、可靠性分析、可靠性试验等工
作的基础。因此,国内外都投入大量人力、资金进行这项工作。可靠性指标预计方法经过三十多年的应用
和发展,已不仅仅被军品企业所采用。由于科技进步的速度越来越快,尤其是电子元器件水平与种类的迅
速发展,传统的可靠性预计方法也不断遇到挑战。美国MIL-KDBK-217已经过7次更新到目前的F版本,
我国的GJB299经过3次更新到目前的GJB/Z299B,但这两种预计手册所推荐的方法存在如下的缺陷:
1. 不能用于产品的研发早期阶段,尤其是方案阶段,更为重要的是在产品招标、投标确定可靠性指标时不
能应用;
2. 由于电子元器件发展迅猛,新种类的元器件不断涌现。因而,用这两个手册进行预计有时无法进行;
3. 由于元器件的技术设计及制造工艺日新月异的更新,其可靠性水平也不断提高,所以用这两个手册进行
预计结果偏保守;
4. 用这两种手册进行预计时,所用参数众多,且取值很难掌握,难以操作,预计费时多,离差较大。因此,
工程技术人员有抵触情绪。
为此,国内外各厂家都在积极研究符合自己企业需要的预计方法,象Bellcore的RPP和Lucent的RIN
这些预计方法王锡吉同志于80年代在通过大量各类电子产品调查和研究,创引出《简单枚举不完全归纳可
靠性快速预计方法》在国内外一些企业已推广应用,简称CW法(China Wang)在CW法基础上又垣推出
NCW法,经过大量工程实践效果很好,达到快速、准确、易操作的目的。NCW预计方法分为两种,适用
系统(或整机)为NCWA,适用于单板模块单元为NCWB。
可靠性指标分配
可靠性指标分配是为了把系统的可靠性指标按照一定的准则分配给系统各组成单元而进行的工作。其
目的是将整个系统的可靠性定量要求转换为每一个分系统或单元的可靠性要求,它是一个由整体到局部,
由上到下的分解过程。可靠性分配方法有很多,经常使用方法有:评分分配法、比例组合法、AGREE等分
配方法。但这些分配方法都有其不足之处,经过长时间研究和工程实践,创引出工程加权分配法,该方法
科学、合理、可操作性好。加权因素有:重要性因素、复杂性因素、环境因素、标准化因素、维修性因素、
元器件质量因素等。
热设计
通过各种热设计方法使元器件、零部件、设备等在低于规定的环境中工作,以提高可靠性。设计早期
就应制定产品热设计的具体要求。热设计的核心:没计一个冷却系统,在热源至热沉之间提供一条低热阻
通道,保证热量顺利传递出去。
温度对电子产品可靠姓影响极大,尤其对半导体器件最为敏感,,几乎半导体品件所有参数都与温度有
关。
热传递的三种方式:传导散热、对流换热、辐射换热。
缓冲减振设计
电子设备装载在诸如飞机、舰船、装甲车等平台上,在它整个寿命周期内,经历各种机械环境。虽然
家用电器在使用过程中没有经受什么机械环境,但在产品出厂后经过运输、搬运过程,仍然承受机械环境。
机械环境对电子设备影响是比较严重的。
经验证明,在各种机械环境中,主要威胁来自振动应力。设备中由于振动而造成的损坏大大超过冲击
引起的损坏。例如在通信或雷达设备中,振动损坏率比冲击损坏率大4倍。能经受50—70g冲击的元器件,
在持续振动的环境中,最大也只能承受2—3g的振动。
其基本方法有两种:一是采用隔离措施,利用减振装置把设备保护起来或把振动源隔离开;二是选用
合适的材料和合理的安装技术,使设备正常工作时,足以耐受冲击或振动。
对电子设备的振动与冲击防护设计,归纳起来有以下几种常用方法:
1) 消除和减弱振源 2)对振源进行隔离 3)去谐 4)去耦 5)阻尼 6)小型化和刚性化
电磁兼容设计---接地设计
接地技术是电子通讯设备必须采用的重要技术,众所周知,电磁兼容设计三大措施为:接地、屏敞和
滤波。通过现场和试验统计调查,有80%以上的故障源于接地设计不良,正确的接地不仅是保护设备和人
身安全的必要手段,也是电子设备稳定可靠工作的重要条件。如果接地设计不好,轻则导致设备运行不稳
定,如程控数字交换机的呼损增大、光电传输设备的误码率增加、故障率上升,重则导致设备无法正常工
作、甚至发生重大事故、使设备毁坏,这方面的例子很多,造成的损失无法估量。
接地设计的基本原理 :好的接地系统是抑制电磁干扰的一种技术措施,其电路和设备地线任意两点之
间的电压与线路中的任何功能部分相比较,都可以忽略不计;差的接地系统,可以通过地线产生寄生电压
和电流偶合进电路,地线或接地平面总有一定的阻抗,该公共阻抗使两两接地点间形成一定的压降,引起
接地干扰,使系统的功能受到影响。从而影响产品的可靠性。
接地设计的基本原则是电位相同、内部电路不互相干扰、抵御外来干扰。各种地电位相同使不同性质
的电路有一个统一的基准电位,保证电路功能的顺利实现。 电位相同要求不同的地就近相连。内部电路不
互相干扰要求不同的地在较远处相连。所以,电位相同和不互相干扰是一对矛盾的双方,在何处相连应考
虑哪一方占主导地位。 当设备受到的外来干扰(例如:ESD干扰,EFT干扰,辐射干扰)较大时,提高设
备对外来干扰的抵御能力上升为主要矛盾,这时,各种地应合并为大面积接地。
电子设备静电放电(ESD)防护
静电是物体表面的静止电荷。物体在接触、摩擦、分离、感应、电解等过程中,发生电子或离子的转
移,正电荷和负电荷在局部范围内失去平衡,就形成了静电。当物体表面的静电场梯度大到一定的程度,
正电荷和负电荷发生中和,就出现了静电放电(ESD)。静电放电可以出现在两个物体之间,也可由物体表
面静电荷直接向空气放电。
静电作为一种普遍物理现象,近十多年来伴随着集成电路的飞速发展和高分子材料的广泛应用,静电
的作用力、放电和感应现象引起的危害十分严重,美国统计,美国电子行业部门每年因静电危害造成损失
高达100多亿美元,英国电子产品每年因静电造成的损失为20亿英镑,日、本电子元器件的不合格品中
45%是因为静电放电(ESD)造成的。不仅如此,由于ESD在许多领域给人们带来重大损失和危害;如在
第一个阿波罗载人宇宙飞船中,由于ESD导致火灾和爆炸,使三名宇航员丧生。
静电防护主要措施 :
a. 防止静电产生;
b.消除已产生的静电;
c.设计保护电路。
防静电的基本方法:
a. 静电泄漏法;
b. 静电中和法;
c. 静电屏蔽法;
d. 湿度控制法。
ESD耦合到电子通讯设备有三种方式
1. 直接传导
2. 电容耦合(电场耦合)
3. 电感耦合(磁场耦合)
电子设备的ESD防护主要应针对这几种耦合方式采取措施,可总结为下列24字方针:
静电屏蔽,滤波去耦,绝缘隔离,接地泄放,良好搭接,瞬态抑制。