空间几何体外接球问题PPT全文课件(27ppt)
人教版高中数学必修二《空间几何体的外接球》

2)在长方体中画出与长方体共顶点的四面体: 四个面都是直角三角形的四面体
3)在长方体中画出与长方体共顶点的四面体: 对棱相等: 其中一条棱与一个面垂直的四面体
【例题】:在四面体中 ABCD ,共顶点的三条棱两两垂直, 其长度分别为 1, 6 , 3 ,若该四面体的四个顶点在一个球面上, 求这个球的表面积。
练习:
例题:已知四面体 A1ABC的四个顶点都在球 O的表面上, A1A 平面ABC,ABC是边长为3的等边三角形,若 A1A 2,则球O的表面积为多少?
例题:正四面体的各个棱长为a, 求其外接球半径。
【举一反三】 若正四面体的中D-ABC中,二面角A-BC-D的 大小变为90度,求变化之后的四面体D-ABC 的外接球半径。
一、球心投影面是普通三角形
O
一、【知识复习】常见多面体的外接球
长方体 直棱柱 正棱锥
图
(在图中 画出外接 球心位置 ,并画出 相应需要 的辅助线 ) 外接球球 心位置 球半径 如果长方体的长宽高a,b,c, 外接球半径是多少?外接球 半径是多少? 如果底面外接圆半径为r, 棱柱高为h,外接球半径 R。它们三个之间有什么 样的等量关系? 如果底面外接圆半径为r, 高为h,外接球半径R。 它们三个之间有什么样的 等量关系?
柱体外接球球心
例题:已知直三棱柱 ABC - A1B1C1的6个顶点都在球 O的球面上,若 AB 3, AC 4,AB AC,侧棱AA1 12,则球O的表面积为多少?
二、补形法
(1)在长方体中画出与长方体共顶点的四面体: 从一个顶点出发的三条侧棱两两互相垂直 的四面体
小结:一般地,若一个三棱锥的三条侧棱两两垂 直,则可以将这个三棱锥补成一个长方体,于是 长方体的体对角线的长即为外接球的直径
立体几何中球的内切和外接问题完美版

性质
内切球的球心位于旋转体 的轴线上,且球的半径等 于旋转体半径。
应用
在几何和工程领域中,内 切球常用于研究旋转体的 体积和表面积。
旋转体的外接球
定义
旋转体的外接球是指与旋 转体外侧相切的球。
性质
外接球的球心位于旋转体 外侧,且球的半径等于旋 转体轴线到旋转体外侧的 垂直距离。
应用
在几何ቤተ መጻሕፍቲ ባይዱ工程领域中,外 接球常用于研究旋转体的 空间位置和关系。
立体几何中球的内 切和外接问题完美 版
目 录
• 球与多面体的内切和外接问题 • 球与旋转体的内切和外接问题 • 球与几何体的内切和外接问题实例 • 总结与展望
01
CATALOGUE
球与多面体的内切和外接问题
多面体的内切球
01
02
03
04
多面体的内切球是指与多面 体的所有顶点和面都相切的
球。
内切球半径的求法:设多面体的 每个面为$S_i$,内切球的半径
03
CATALOGUE
球与几何体的内切和外接问题实例
多面体内切球实例
总结词
多面体内切球是指一个球完全内切于一个多面体,且与多面体的每个面都相切 。
详细描述
多面体内切球的问题可以通过几何定理和公式来解决,例如欧拉公式和球内切 定理。例如,一个正方体的内切球就是其中心,半径等于正方体边长的一半。
旋转体外接球实例
外接球的性质:外接球与 多面体的每个顶点都相切 ,且外接球的直径等于多 面体的对角线长度。
外接球的应用:在几何、 物理和工程领域中,外接 球的概念被广泛应用于研 究多面体的性质和计算。
02
CATALOGUE
球与旋转体的内切和外接问题
几何体的外接球

几何体的外接球一、球的性质回顾如右图所示:O 为球心,O’为球O 的一个小圆的圆心,则此时OO’垂直于圆O’所在平面。
二、常见平面几何图形的外接圆外接圆半径(r )的求法1、三角形:(1)等边三角形:等边三角形也即正三角形,其满足正多边形的基本特征:五心合一,即内心、外心、重心、垂心、中心重合于一点。
内心:内切圆圆心,各角角平分线的交点;外心:外接圆圆心,各边中垂线的交点;重心:各边中线的交点;垂心:各边垂线的交点;中心:正多边形特有。
从而等边三角形的外接圆半径通常结合重心的性质进行求解:a a r 332332=⋅=(其中a 为等边三角形的边长) (2)直角三角形:结合直角三角形的性质:直角三角形斜边上的中线等于斜边的一半;可知:直角三角形的外接圆圆心位于斜边的中点处,求解过程比较简单,该处不做重点说明。
(3)等腰三角形:结合等腰三角形中三线合一的性质可知:等腰三角形的外接圆圆心位于底边的高线即中线上。
由图可得:22)2()(a r h r +-=思考:钝角三角形和锐角三角形外接圆圆心位置的区别。
(4)非特殊三角形:考察较少,若出现除以上三种情况以外的三角形在求解外接圆半径时可以参考使用正弦定理。
2、四边形常见具有外接圆的四边形有:正方形、矩形、等腰梯形,其中正方形与长方形半径求解方法类似,等腰梯形的外接圆圆心不在中学考察范围内,不用掌握。
外接圆圆心是在几何图形所在平面的一个到各个顶点距离相同的点;外接球球心则是空间中到几何体各个顶点距离相同的点。
结合上述所讲内容,外接圆圆心与外接球球心有许多相似之处以三角形为例,过三角形的外接圆圆心作三角形所在平面的一条垂线,不难得到:该垂线上的任意一点到该三角形三个顶点的距离恒定相等。
转化到几何体中,如正方体,其外接球球心位于体心位置,其与正方体任一表面正方形的中心连线均垂直于该正方形。
从而我们得出如下结论:几何体的外接球球心与底面外心的连线垂直于底面,也即球心落在过底面外心的垂线上,简单称之为:球心落在底面外心的正上方。
正方体内切球、外接球、棱切球、图例演示

正方体的外接球
正方体的外接球
D A
D1 A1
C
B O
C1 B1
对角面 A
A1
C
O
C1
正方体的外接球直径是体对角线
例2.如图,正方体ABCD-A1B1C1D1的棱长 为a,它的各个顶点都在球O的球面上,问球
O的表面积。
Байду номын сангаас
略 解 :RtB1D1D中 :
(2R)2 a 2 ( 2a)2 , 得
分析:正方体内接于球,则由球和正方 体都是中心对称图形可知,它们中心重 合,则正方体对角线与球的直径相等。
略 解 :RtB1D1D中 :
(2R)2 a 2 ( 2a)2 , 得 R 3a
2
S 4R2 3a 2
D A
D A11
D A
D A11
C B O
C1
B1
C B O
C1
练习一
1.球的半径伸长为原来的2倍,体积变为原来的_8 倍.
2.一个正方体的顶点都在球面上,它的棱长是4cm,
这个球的体积为_32_3_ cm3.
3.有三个球,一球切于正方体的各面,一球切于正 方体的各侧棱,一球过正方体的各顶点,求这三 个球的体积之比_1_:_2__2_: 3__3_.
例1.钢球直径是5cm,求它的体积.
它包括球面和球面所包围的空间。
半径是R的球的体积:V 4R3
3
2、球的表面积
S 4πR2
练习一:
(1)球的半径伸长为原来的2倍,体积变为原 来的——8 倍.
(2)若球的表面积变为原来的2倍,则半径变 为原来的——2倍。
(3)若球半径变为原来的2倍,则表面积变
人教A版高中数学必修二《简单几何体的外接球》PPT

那如何找球心或求出半径?
●
先找到两个底面的外心。。。
●
● ●
同学们来算算
重心特点 正弦定理
小结: 求简单多面体的外接球常用方法
一招搞定简单多面体外接球问题
正方体???
找载体
长方体???
直三棱柱???
强化训练、已知三棱锥P-ABC中,PA=4,AB=AC=2 3,BC=6, PA⊥面ABC,求此三棱锥的外接球半径?
C
对角面 A
B
O
C1
A1
B1
C
2R 3a O
2a
C1
正方体外接球的直径等于正方体的体对角线长。
长方体的外接球
对角面
2R a2 b2 c2
a2 b2
设长方体的长、宽、高分别为a、b、c 长方体外接球的直径等于长方体体对角线长
例1. 已知三棱锥A BCD的顶点都在球O的球面上,且AB 面BCD, AB 2, BD BC 1, BD BC,则球O的体积为34
b a
体对角线长 a2 b2 c2
c2 b2 25 外接球半径 29
2
表面积
29
3
思考总结:什么样的三棱锥可构造成正方体或长方体?
1、三条侧棱两两垂直的三棱锥
2、一条侧棱垂直于底面,底面是直角三角形的三棱锥
3、正四面体
4、对棱相等的三棱锥
我的作用很大吧!
如果都不是呢?
例4、四面体ABCD的四个顶点都在球O的球面上,AB⊥面BCD, △BCD是边长为3的等边三角形,若AB=2,求球O的表面积?
a2 b2 c2
方法总结 找载体
直径等于对角线长 A
C
B
D
例2. 求棱长为 a 的正四面体 D – ABC 的外接球的半径。
高中数学人教新课标B版必修2--几何体的外接球专题课件

A
C
B
A
C B
三、过关斩将
2、三棱锥S-ABC的所有顶点都在球O的表面上,SA⊥平面 A__B13_6C_,__又_ SA=2,AB=BC=AC=1,则球O的表面积为
S
S
A B
CA
C
B
变式2:已知一个四面体的每个面都是有两条 边长为3,一条边长为2的三角形,则该四 面体的外接球的表面积___11____
P A
A B
C
B
P
C
变式:正三棱锥P-ABC中,M,N为PC,BC中点,且MN⊥AM,
侧棱长为2 3,求三棱锥外接球表面积__3_6____
P
M
A
A
C
B
N
B
N
P
C
M
2、三棱锥S-ABC的所有顶点都在球O的表面上,SA⊥平面 ABC,AB⊥BC,又SA=AB=BC=1,则球O的表面积为 __3_____
S
A
C
B
2、三棱锥S-ABC的所有顶点都在球O的表面上,SA⊥平面 ABC,AB⊥BC,又SA=AB=BC=1,则球O的表面积为 __3_____
S
S
A B
CA
C
B
2、三棱锥S-ABC的所有顶点都在球O的表面上,SA⊥平面 ABC,AB⊥BC,又SA=AB=BC=1,则球O的表面积为 ___3____
1、变式:点A、B、C、D在同一个球的球面上,
AB=BC=2,AC=2 2 ,若四面体ABCD体积
的最大值为
பைடு நூலகம்
4 3
,则该球的表面积为
__9_____ D
BO
C
E A
F
空间几何体的外接球与内切球
总结 提炼
外接球双面定球心法 如图,在三棱锥P-ABC中: ①选定底面△ABC,定△ABC外接圆圆心O1; ②选定面△PAB,定△PAB外接圆圆心O2; ③分别过O1作平面ABC的垂线,过O2作平面PAB的垂线,两垂 线交点即为外接球球心O.
平面SAD∩平面ABCD=AD,O1E⊂平面ABCD,所以O1E⊥ 平面SAD,同理SE⊥平面ABCD.
设等边三角形 SDA 的外接圆的圆心为 O2,过 O2 作 O1E 的平行线,过 O1 作 SE 的平 行线,两平行线交于点 O,则 OO1⊥平面 ABCD,OO2⊥平面 SAD,所以 O 为四棱锥 S-ABCD 外接球的球心,设外接球的半径为 R.由题知等边三角形 SDA 的外接圆半 径 SO2=23SE=23 SA2-AE2=23 SA2-12AD2=2(或在等边三角形 SDA 中,由正弦定 理得2 π3=2SO2,解得 SO2=2).又因为 OO2=12AB= 3,所以 R=OS= O2S2+O2O2
空间几何体的外接球与内切球
视角 1 外接球补形法
1 (1)若四面体 ABCD 的每个顶点都在球 O 的球面上,AB,AC,AD 两两垂直,
且 AB= 3,AC=2,AD=3,则球 O 的表面积为
( B)
A.64π
B.16π
C.4π
D.π
【解析】 四面体 ABCD 的外接球 O 即为以 AC,AB,AD 分别为长、宽、高的长方体 的外接球,所以球 O 的外接球半径 R=12 AB2+AC2+AD2=2,所以球 O 的表面积 S =4πR2=16π.
总结 提炼
内切球等体积法